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Abstract

The diffusion coefficient–a measure of dissipation, and the entropy–a measure of fluc-
tuation are found to be intimately correlated in many physical systems. Unlike the fluc-
tuation dissipation theorem in linear response theory, the correlation is often strongly
non-linear. To understand this complex dependence, we consider the classical Brown-
ian diffusion in this work. Under certain rational assumption, i.e. in the bi-component
fluid mixture, the mass of the Brownian particle M is far greater than that of the bath
molecule m, we can adopt the weakly couple limit. Only considering the first-order ap-
proximation of the mass ratio m/M , we obtain a linear motion equation in the reference
frame of the observer as a Brownian particle. Based on this equivalent equation, we get
the Hamiltonian at equilibrium. Finally, using canonical ensemble method, we define a
new entropy that is similar to the Kolmogorov-Sinai entropy. Further, we present an an-
alytic expression of the relationship between the diffusion coefficient D and the entropy
S in the thermal equilibrium, that is to say, D =

ħh
eM exp [S/(kBd)], where d is the dimen-

sion of the space, kB the Boltzmann constant, ħh the reduced Planck constant and e the
Euler number. This kind of scaling relation has been well-known and well-tested since
the similar one for single component is firstly derived by Rosenfeld with the expansion
of volume ratio.
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1 Introduction

Study of relationship between diffusion coefficient D of a tagged molecule and the entropy S of
complex systems has been an interesting topic in statistical physics since the first quantitative
relation between the two was established by Adam and Gibbs [1]. It provides a good viewpoint
to access the field of the Brownian motion in some complex fluid [2].

In 1977, the scaling relationship between diffusion coefficient and the excess entropy of
single component, which only includes the Brownian particle, which readsD = a exp(bS/kB),
where a and b only are some empirical fitting parameters and kB is the Boltzmann con-
stant, was first proposed by Rosenfeld with the expansion of volume ratio [3, 4]. The scaling
relationship reads

D∗ = D
ρ1/3

(kB T/m)1/2
≡ a exp(bSex/kB) , (1)

where Sex =
Stot−SI

N , Stot is the total entropy of the system, SI is the entropy of the ideal
gas, a and b are the empirical fitting parameters, m is atom mass, ρ is the number density.
And Dzugutov proposed a similar universal scaling relationship, where the entropy is defined
through the radial distribution function [5]. These relationships have been well-tested by
many experiments in different systems [6–10]. The scaling relationship reads

D∗ =
D

4σ4 g(σ)ρ(πkB T/m)1/2
≡ a exp(bSex/kB) , (2)

where σ is the hard-sphere diameter, g(ζ) is the radial distribution function. In real system,
σ is the position of the maximum of the function g(ζ).

A more rigorous scaling law for the binary fluid mixture has been presented at the begin-
ning of 21th century [11,12]. However,in Ref. [11], the entropy is defined in thermodynamic
form and dependent on the partition function. The kind of canonical entropy is hard to an-
alytically calculate. And one has to make the cut-off in the cluster expansion to calculate it.
In Ref. [11], the result of the entropy is only at the level of the two-body interaction accu-
racy. All above-mentioned universal scaling laws are found to fail in low density case due to
the parameter b varying [13]. In the binary fluid mixture, the mass dependence of diffusivity
happens [14, 15]. Considering that the mass of Brownian particles, such as colloids, is far
heavier than one of bath particles, we aim at this kind of relationship in low density case in
this paper. Using the canonical ensemble method, we define a new entropy that is similar
to the Kolmogorov-Sinai entropy. The definition of Kolmogorov-Sinai entropy is based on the
change ratio of phase-space volume as time varying so that it is easier to calculate than the
thermodynamic entropy. At the accuracy of the first-order approximation of the mass ratio, we
present a analytic expression of the relationship between the diffusion coefficient D and the
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entropy S in the thermal equilibrium where the parameter a and b are explicitly given. Here-
unto, although the Rosenfeld’s relationship seemly does not have an acknowledged theoretical
explanation [16], we try to provide an alternative view to interpret it in this work.

The outline of this paper is as follows. In Section II, we consider the classical Brownian
diffusion. Under certain rational assumption, i.e. in the bi-component fluid mixture, the mass
of the Brownian particle M is far greater than that of the bath molecule m, we know that
every Browian particle suffer the same stochastic force. In Section III, we obtain a linear
motion equation in the reference frame of the observer as a Brownian particle and give the
Hamiltonian at equilibrium. In Section IV, using these snapshot probability distributions, we
define a new entropy and present the relationship between diffusion coefficient and entropy.
Finally, in Section V, to check the superiority of our treatment, we compare our results with
that of hard-sphere model where the entropy is dependent of the volume ratio.

2 Langevin equation and Langevin operator

A Brownian motion particle in d-dimensional space can be described by the Langevin equation

M
d2x
d t2
+α

dx
d t
= ζ(t) , (3)

where M is the particle mass, ζ(t) is the white Gaussian noise with correlations 〈ζi(t)ζ j(t
′
)〉=

2αkB Tδi jδ(t−t
′
). The diffusion coefficient D satisfies Einstein’s relation D = kB T

α . The velocity
has a decay time γ−1, where α = Mγ. In general, the mass of the particle is very small in
micro/nano scale. The inertial term can be ignored, compared with the viscosity term. That
is in the low Reynolds number regime where the Stoke-Einstein relation could be established.
When the system is at equilibrium, the total entropy production rate is zero, and the velocity
of Brownian particles follows the Maxwell-Boltzmann velocity distribution [17, 18]. There
exits many techniques to obtain the Langevin equation [19,20]. One of these techniques is as
follows [19]. Considering a system including N light bath molecules of mass m and a heavy
point-like Brownian particle of mass M , the mass ratio λ2 = m

M is very small. The Hamiltonian
of the system is

Hs =
1

2M
p2 +H0 , (4)

H0 =
pN · pN

2m
+ U(rN ) +Φ(rN ,x) , (5)

where p is the momentum of the Brownian particle, pN and rN are Nd-dimensional positions
and momentums of the bath molecules, U(rN ) is the two-body interaction potential between
bath molecules, Φ is the interaction potential between bath molecules and the Brownian par-
ticle. The Liouville operator L is defined by

L = L0 + L1 ,

L0 =
pN

m
· ∇rN −∇rN H0 · ∇pN ,

L1 =
p
M
· ∇x −∇xΦ · ∇p = λ(

p
m
· ∇x −∇xΦ · ∇p) = λL2 ,

(6)

where p= λp. The projection operator P̂ is defined by the following equation [19]

P̂A= 〈A〉=
∫

Z−1
0 e−βH0(t=0)AdrN dpN , (7)
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here β ≡ kB T , and the partition function Z0 =
∫

e−βH0(t=0)drN dpN . ζ(0) indicates the force at
t = 0. Then we can get ζ(t) = eLtζ(0), 〈ζ(0)〉= 0. Finally, as was shown in Refs. [18,19,21],
the Langevin equation is given by

dp
d t
= λ2

∫ t

0

eL(t−τ) P̂ L2ζ
+(τ)dτ+λζ+(t)

= λ2

∫ t

0

eL(t−τ)(∇p − β
p
m
) · 〈ζ(0)ζ+(τ)〉dτ+λζ+(t)

≈ −λ2 β

m

∫ t

0

p(t −τ)) · 〈ζ(0)ζ0(τ)〉dτ+λζ0(t)

= −γp+λζ0(t) ,

(8)

here ζ+(t) = eÔLtζ(0) with the operator Ô = 1− P̂, and ζ0(t) = eL0 tζ(0). The above equation
is obtained in the weak coupling limit( namely, λ2→ 0, t →∞,λ2 t is limited) [19].

3 Hamiltonian at equilibrium in the reference frame of the ob-
server as a Brownian particle

Because the mass of the Brownian particle is far greater than that of the bath molecules (i.e.
M � m), the mean velocity of Brownian particle is far slower than that of the bath molecules,
the force on an arbitrary Brownian particle approximately equals to ζ0(t) [18]. One can choose
a Brownian particle as an observer which has the same initial position as the Brownian particles
is motionless at t = 0. The sign ν0 indicates the initial velocity of a Brownian particle. The
position x o of the observer satisfies the Langevin equation

M
d2xo

d t2
+α

dxo

d t
= ζ(t) . (9)

For convenience, we introduce y ≡ x− xo. In the reference frame of the observer, y satisfies
the equation which reads,

M
d2y
d t2
+Mγ

dy
d t
= 0 , (10)

where, the initial relative position is zero and the initial relative velocity ν0. Its solution is
y= ν0

γ (1− e−γt). The solution also satisfies an other system that is described by [22]

M
d2y
d t2
≡ −

∂ φ(y)
∂ y

= Mγ2y−Mγν0 , (11)

here the potential reads φ(y) = constant+Mγν0 ·y−
M
2 γ

2y2. Both systems share the common
phase curve, thus we can get

φ(x− xo)≈ φ(0) +Mγν0(x− xo)−
M
2
γ2(x− xo)2 . (12)

Eq.(8) is a second-order equation ofλ andφ is the same level. Now the system is linear and will
reach equilibrium at t =∞. Two particles with the same initial position but a initial velocity
difference ν0 can get a maximum divergence of ∆x = ν0

γ , therefore the term Mγν0(x − xo)
will involve in the form being M(γ∆x)2. Consequently, the final Hamiltonian of the ensemble
system with n Brownian particles in the reference frame at equilibrium reads

Htotal(t =∞) =
n
∑

i

�

1
2M

p2
i +

M
2
γ2(xi − xo)2 +φ(0)

�

. (13)
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It needs to point that the entropy whose definition depends upon the Hamiltonian is similar
to the Kolmogorov-Sinai entropy. The definition of Kolmogorov-Sinai entropy is based on the
change ratio of phase-space volume as time varying. Dzugutov, Aurell and Vulpiani have made
the assumption that the Kolmogorov-Sinai entropy can be connected to the conventional ther-
modynamic entropy [23]. The derivation of Eq.(13) based on the Kolmogorov-Sinai entropy
would be showed in APPENDIX A. In APPENDIX B, the formula of the thermodynamic entropy
of Brownian particle is derived, but it is hard to analytically solve. Fortunately, Dzugutov et al.
have point that Kolmogorov-Sinai entropy, when expressed in terms of the atomic collision fre-
quency, is uniquely related to the thermodynamic excess entropy by a universal linear scaling
law [23]. The linear law is not influence the exponential relationship between the diffusion
coefficient and the entropy.

4 Relationship between diffusion coefficient and entropy

When the system is in the thermal equilibrium, we can use the canonical ensemble method
to calculate the entropy. Form Eq.(13), one can know that the system is uncouple. The one-
particle partition function

Z =
1

(2πħh)d

∫

exp
§

−β
�

1
2M

p2 +
M
2
γ2(x− xo)2 +φ(0)

�ª

dpdx=
�

1
ħhβγ

�d

e−βφ(0) , (14)

here ħh is the reduced Planck constant. The one-particle entropy is

S = kB

�

ln Z − β
∂

∂ β
ln Z

�

= kBd[1− ln(ħhβγ)] = kBd ln
�

eM D
ħh

�

, (15)

here, e is the Euler number. The relationship between diffusion coefficient and entropy reads,

D =
ħh

eM
exp [S/(kBd)]≡ a exp(bS/kB) , (16)

here the parameter a = ħh
eM and b = 1

d . In an anisotropic system, if the particle has the
corresponding diffusion coefficient Di in the different dimension, one can get

d
∏

i=1

Di = (
ħh

eM
)d exp(S/kB) . (17)

5 Results and discussion

Our result shown in Eq.(16) has the same form as Eq.(1)and Eq.(2), but our method can give
the analytic formula and make it possible to calculate some more complex model.

In this paper, we only consider the point-like particle and the accuracy of the λ2. To obtain
the more accurate relationship, one can expand the motion equation in the higher-order terms
of λ. The entropy can be expanded in terms of λ related to the mass ratio. λ maybe plays
the same role as the quantity related to the volume ratio,such as η in the 3-dimensional hard-
sphere model. In the model that has been well-solved at the level of 10-body interaction, the
entropy is [3]

S = NkB

�

ln
�

2πmkB T
h2

�
3
2

+
5
2
+ ln

1
ρ
−

4η− 3η2

(1−η)2

�

, (18)
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where η = πNd
3

6V , d is the hard-sphere diameter, Sex = −
4η−3η2

(1−η)2 . Because diffusion coefficient

D ∝ ν

ρd
2 , and (ρ)−

1
3 is larger than d for the dilute gas, so that b is larger than 1

3 for the

function D = a · eb·s/kB . For Brownian particle, its mass and volume is far lager than that of
bath molecules, its remaining space is filled with these light molecules, so that its (ρ)−

1
3 is

close to d, then Eq.(16) is roughly right. On the other hand, Eq.(8) is only valid up to order
λ2. the term Sex will be included in the nonlinear Langevin equation

M
d2 x
d t2
+α

d x
d t
+α1

�

d x
d t

�3

= ζ(t) , (19)

where α1
α ≈

m
6kB T for the generalized Rayleigh model [18]. The relationship in the nonlinear

Langevin equation will be considered in our future work.
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A Definition of Kolmogorov-Sinai entropy and derivation of final
Hamiltonian

We introduce the Kolmogorov-Sinai entropy defined as

S = sup
Q

h(Q)≡ sup
Q

�

− lim
n→∞

1
nτ

∑

ω

µ(ω) lnµ(ω)

�

,

ω= {X(t) = (t i ,Xi), t i = iτ, i = 0,1, 2 · · · , n− 1} . (1)

Here,ω denotes a path of the particle, and µ(ω) is the probability. A Brownian motion particle
can be described by the Langevin equation which reads

dp
d t
+ γp= ζ0(t),ζ0(t) = eL0 tζ(0) . (2)

In the 1st and 2nd ensemble, the path of the Brownian particle is X00(t) and X11(t), re-
spectively. In the two ensembles, the Brownian particles have different initial velocities be-
ing v00 and v11, but the bath molecules have the same initial velocity distributions. Due to
ζ0(t) = eL0 tζ(0), the forces ζ0(t) are the same. One can get

lim
n→∞

[X11(t)−X00(t)] = lim
t→∞

[X11(t)−X00(t)] =
v11 − v00

γ
. (3)

Assuming that the systems are in thermal equilibrium, one can get the probability ratio of two
paths which reads

µ(ω2)
µ(ω1)

∝ exp

�

−
M(v11 − v00)2

2kB T

�

= lim
t→∞

exp

�

−
Mγ2[X11(t)−X00(t)]2

2kB T

�

. (4)
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So, when t →∞, the probability of all possible paths satisfies

µ∝ exp

�

−
Mv2

00

2kB T
−

Mγ2[X11(t)−X00(t)]2

2kB T

�

. (5)

Therefore, based on the definition of Kolmogorov-Sinai entropy, one can obtain the final Hamil-
tonian of the ensemble system which reads

Htotal(t =∞) =
n
∑

i

�

1
2M

p2
i +

M
2
γ2(xi − xo)2 +φ(0)

�

. (6)

B Formula of the thermodynamic entropy of Brownian particle

One can assume that a system labelled as System 1 with the volume V , only includes N bath
particles,which Hamiltonian reads,

H =
pN · pN

2m
+ U(rN ) . (7)

The partition function of this system under canonical ensemble is

Z1 =
1

N !hdN

∫

e−βH dp1...dpN dr1...drN . (8)

When one introduces a heavier Brownian particle to join in the system, it is labelled as System
2, which partition function is

Z2 =
1

N !hdN hd

∫

e−βHs dp1...dpN dr1...drN dpdx , (9)

one can define the entropy of Brownian particle which equals the difference of entropy of
System 2 and System 1. One can obtain ∆ ln Z , which reads

∆ ln Z ≡ ln Z2 − ln Z1

=
d
2

ln
�

2πM
h2β

�

+ ln

�∫

e−βΦ−βU dr1...drN dx

�

− ln

�∫

e−βU dr1...drN

�

=
d
2

ln
�

2πM
h2β

�

− ln

�

〈eβΦ〉
V

�

.

(10)

Based on the formula of the thermodynamic entropy being

S = k(ln Z − β
∂

∂ β
ln Z) . (11)

The thermodynamic entropy of Brownian particle ST reads

ST =
kd
2
[ln(

2πM
h2β

) + 1]− k ln[
〈eβΦ〉

V
] + kβ

∂

∂ β
ln(〈eβΦ〉) . (12)
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