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Abstract

We study correlation functions in the complex fermion SYK model. We focus, specif-
ically, on the h = 2 mode which explicitly breaks conformal invariance and exhibits
the chaotic behaviour. We numerically explore a fermion six-point OTOC, with two and
three real-time folds, respectively. While our approach is expected to yield an early-time
chaotic growth, we nevertheless observe a near-maximal value. Following the program
of Gross-Rosenhaus, we estimate the triple short time limit of the six point function. Un-
like the conformal modes with high values of h, the h = 2 mode has contact interaction
dominating over the planar in the large q limit.
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1 Introduction

A generic dynamical system is inherently chaotic [1]. For classical systems, chaos can be easily
characterized by the sensitivity of trajectories with respect to initial conditions. For quantum
systems, lacking in the concept of trajectories, the notion of chaos is more subtle. Often, quan-
tum chaos can be characterized in terms of properties of the spectrum of the Hamiltonian. In
the semi-classical approach, there is a relatively simple definition of chaotic behaviour, directly
adopted from the sensitivity of classical trajectories with respect to initial conditions.

For classical dynamical systems, characterized by phase space coordinates {q(t), p(t)},
where q(t) and p(t) are generalized positions and generalized momenta. A particular tra-
jectory is represented by q(t). High sensitivity of the late time trajectory with respect to the
initial condition can be quantified as:

exp (λL t) =
∂ q(t)
∂ q(0)

≡ {q(t), p(t)} , (1)

whereλL is the so-called Lyapunov exponent and the right-most expression above is the Poisson
bracket [1]. By virtue of the correspondence principle, we obtain a quantum mechanical char-
acterization, by replacing the Poisson bracket with a commutator: {q(t), p(t)} → −iħh[q(t),
p(t)] [2]. Instead of computing the commutator, one calculates the squared commutator, so
that there is no spurious cancellation due to destructive phases. This argument, however, is
limited and does not necessarily imply that allowing for such phases will always cancel the
chaotic growth. In this article, we will calculate the cubic power of the commutator, which
will explicitly display the exponential growth behaviour.

We define a generic function for the diagnostic of chaos:

C(n)(t1, t2)≡ 〈[V (t1), W (t2)]
n〉 , (2)

where n ∈ Z+, and V and W are two self-adjoint operators and the expectation value is defined
with respect to a particular state of the system. Note that, in defining the chaos diagnostic in
(2), we have recast the chaotic property as a feature of 2n-point correlation function of the
system. In this article, we will explicitly discuss the case for n= 3 in a thermal state.

Before doing so, let us briefly look at the n = 2 case. Written explicitly, the commutator
contains various four-point functions with no particular time-ordering, since t1 and t2 are de-
fined without any ordering. For a thermal state expectation value, using the KMS conditions1,
it is further possible to rearrange the various four-point functions in terms of two pieces: one

1KMS condition is simply the Euclidean periodicity condition on thermal correlators. For example, for two
operators V (0) and W (t), the KMS condition on the two-point function reads:

tr
�

e−βHW (t)V (0)
�

= tr
�

e−βH V (0)W (t + iβ)
�

. (3)

Here β is the inverse temperature. Evidently, this condition can be used to interchange the order of the operators
inside a thermal correlator.
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time-ordered four-point function and another out-of-time-ordered correlator (OTOC). These
are given by 〈V (0)V (0)W (t)W (t)〉 and 〈V (0)W (t)V (0)W (t)〉, respectively, choosing t1 = 0
and t2 = t. The time-ordered correlator does not display the exponential growth, it is con-
tained in the four-point OTOC.

For n= 3, upon using the KMS condition, the chaos diagnostic in (2) has one time-ordered
and two OTOC pieces. These are simply, 〈V (0)V (0)V (0)W (t)W (t)W (t)〉 (time-ordered) and
〈V (0)W (t)V (0)W (t)V (0)W (t)〉, 〈V (0)W (t)V (0)V (0)W (t)W (t)〉, 〈W (t)V (0)V (0)W (t)V (0)
W (t)〉, etc, which are OTOC. While a complete understanding of the behaviour of (2) for
arbitrary n is desirable, we will explore an exact calculation for n = 3 in this article, with a
particularly simple model.2 Note that, the correlator of the form 〈VW VW VW 〉 requires three
time-folds in the Schwinger-Keldysh framework, while an OTOC of the form 〈VW V VWW 〉
require only two time-folds. These OTOCs, generically, would not carry the same physical
information. For the present model, however, we expect the same four-point OTOC physics in
the second case.3

The model we consider is a simple generalization of the so-called Sachdev-Ye-Kitaev (SYK)
system [3–6], in which one considers fermionic degrees of freedom with an all-to-all inter-
action. The interaction coupling is drawn from a random Gaussian distribution with a zero
mean value and a given width. In the large N limit, in which the number of fermionic degrees
of freedom becomes infinite, the system becomes analytically tractable in the sense that the
corresponding Schwinger-Dyson equations can be explicitly determined. The solution of this
equation readily determines the two-point function, as a function of the coupling strength, in
general. In particular, in the low energy limit, this Schwinger-Dyson equation is analytically
solvable and yields a two-point function with a manifest SL(2, R) symmetry. In the infra-red
(IR), this is described by a conformal field theory (CFT), and the two-point function breaks
the conformal group into the SL(2, R) subgroup. In the large N limit, further, the four-point
correlator can be explicitly calculated, which yields the corresponding Lyapunov exponent:
λL = 2πT , where T is the temperature of the thermal state. Here, we are working in natural
units. This Lyapunov exponent saturates the so-called chaos bound [7]. Intriguingly, the chaos
bound saturation also occurs for black holes, in which the local boost factor at the event hori-
zon determines the corresponding Lyapunov exponent as well as the corresponding Hawking
temperature. Only extremal black holes have an SL(2, R) global symmetry, due to the existence
of an AdS2 sector near the horizon. Correspondingly, the low energy conformal system coming
from the SYK model can be shown to capture the essential physics of the AdS2 [8].

The low energy effective action for the SYK model is simply given by a Schwarzian ef-
fective action, which can also be shown to arise from the two-dimensional Jackiw-Teitelboim
theory in [8,9](In fact, exact derivation of the Schwarzian effective action has been done using
the fluid/gravity correspondence [6]). However, in this context, the non-trivial statements of
holography necessitates keeping a leading order correction away from the purely AdS2 throat,
as well as from the purely CFT1 in the IR, hence it goes by the acronym of NAdS/NCFT. From
the geometric perspective, AdS2 appears in the following two cases: (i) in the extremal limit of
a black hole in asymptotically flat background, (ii) in the deep IR of an asymptotically AdSd+1-
background. Often, in the second case, the deep IR results from an RG-flow connecting a UV
CFTd to an IR CFT1, as a result of a relevant density perturbation in the UV CFT. Holographi-
cally, such operators correspond to turning on a bulk U(1)-flux, in the simplest case. A standard
example of this is the AdS–Reissner-Nordstrom black hole: It asymptotes to an AdS geometry
and the extremal limit consists of an AdS2 in the IR, which is supported by the flux. In the

2Note that, our explicit expressions of the OTOCs are written in an abuse of notation: KMS conditions will
render some of the time-arguments to pick up imaginary parts, proportional to the inverse temperature β . We
suppress these explicit factors here, for simplicity, but take those into account for the explicit calculation of the
six-point correlator later.

3We thank the Referee for raising this issue.

3

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.018


SciPost Phys. Core 4, 018 (2021)

AdS2 throat, the flux is a simple scalar field, and the boundary theory has a natural notion of
a conserved charge and therefore a non-vanishing chemical potential.

The SYK model which is defined with N Majorana fermions, ψi (i = 1, ..., N) in (0 + 1)
dimensions, cannot have a charge density and correspondingly a non-vanishing chemical po-
tential. If we, instead, consider N complex fermions, ψi and ψ†

i , it is natural to introduce
a ψ†

iψi term in the Lagrangian, with chemical potential as the coupling. Similar to the SYK
model, we consider a q-body interaction term, with q/2 number of ψ and q/2 number of ψ†,
whose couplings are chosen from a Gaussian distribution, with a standard deviation denoted
by J . In the limit q � 1, this system becomes exactly solvable in an (1/q)-expansion [4],
which is what we will use in evaluating the explicit correlation functions. Motivated from the
previous paragraph, it is therefore natural to consider a particular generalization of the SYK
model with a U(1) global symmetry.

The standard SYK theory, with Majorana fermions, has a particular operator at the con-
formal fixed point, whose four point OTOC displays chaotic behavior with Lyapunov expo-
nent λL =

2π
β [3–6, 10–37]. The generalization of this model to complex fermions was done

in [38–40]. In [38], the low energy effective action of an SYK-model with complex fermions
was discussed. It was shown that the presence of a non-vanishing chemical potential does not
break the conformal symmetry in the deep IR, as long as one amends the conformal transfor-
mations with a gauge transformation. Thus, the resulting low energy effective action is simply
a Schwarzian action along with a free bosonic theory with a standard kinetic term [14, 17].
Therefore, from a strict IR perspective, the maximal chaos holds for any non-vanishing value
of the chemical potential.

The non-triviality comes from the order of limits. The exponential growth of the four-point
OTOC holds for a larger regime compared to the long-time (and therefore, deep IR) limit. For
sufficiently large time, one recovers the maximal chaos. However, there exists an intermediate
regime in which the exponential growth takes place with a different Lyapunov exponent. This
is physically equivalent to staying in a medium energy scale and finding a chaotic behaviour
of the correlation function at this energy scale. This associates naturally an RG-flow of the
Lyapunov exponent itself.

In the standard SYK model, in the large q limit, the relevant scale in the system is provided
by an effective coupling:

J 2 =
qJ2

2q−1
,

which has mass dimension one. The IR CFT resides in the J →∞ limit, but the exponential
growth of OTOC and subsequently the Lyapunov exponent can be obtained as a perturbation
series in 1/J . This naturally gives an RG-flow of the Lyapunov exponent [4]. In [40] we
studied the SYK model with complex fermions in the large q limit in the presence of a chemical
potential µ. Here, in the UV Hamiltonian, we have two natural parameters: βµ and βJ and
the effective coupling in the IR is given by,

J 2
eff =

q
2

J2

(2+ 2 cosh (µβ))
q
2−1

. (4)

The strict IR is located at Jeff →∞ limit, and one can calculate systematically the RG-flow
of the Lyapunov exponent in a perturbation series in 1/Jeff. This RG-flow shows sensitive
behaviour for the Lyapunov exponent as the UV parameter βµ is dialled up [40].

In keeping with the theme, in this article, we further compute higher point OTOC for
complex fermion SYK-model, with a non-vanishing chemical potential. Our analyses follow
closely the analyses in [41], in the large q limit. However, our analyses are performed in
the complementary regime in that we completely focus on the operators that display chaotic
nature and away from the conformal limit. In spirit of the NAdS/NCFT picture, this is rather
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natural regime to consider; in the context of chaotic properties of many body systems, this is an
example of a tractable and explicit higher point OTOC which displays the expected exponential
growth.

It is worth noting that, even though our calculations are performed with a non-vanishing
chemical potential, all analyses are still valid near the conformal point. Therefore, it is not
surprising that we find a maximal Lyapunov exponent. On the other hand, our numerical
methods are expected to extract a Lyapunov behaviour only at early times. We demonstrate,
with explicit examples, that such an early time calculation still captures a chaotic growth, with
a (Schwinger-Keldysh) two-folded 6-point correlator. Furthermore, it captures the maximal
Lyapunov with a (Schwinger-Keldysh) three-folded 6-point correlator. At present, we do not
have a deeper understanding of an underlying, universal physics that may be responsible for
this. However, we do certainly take note that, if generic, this provides us with a tremendous
computational convenience in extracting similar chaotic growth, both qualitatively and quan-
titatively, in various other systems as well.

In this paper, after computing the fermion six point function with a non-vanishing chemical
potential, we take the triple short time limit to estimate the the bulk three point correlator,
away from the conformal limit. In this regard, we compute bulk three point function(triple
short time limit of the fermion six point correlators, neglecting the Schwarzian mode) of the
modes satisfying conformal invariance as well as the Schwarzian mode, using the techniques
employed by Gross and Rosenhaus [41].

This paper is organized as follows. In Section 2, we briefly review the SYK model with
complex fermions. In Section 3, we compute the six point fermion correlator in the triple short
time limit. We then interpret it in terms of the bulk three point correlator in the IR limit of the
conformal modes and check that we do indeed find them to be of the form of conformal three-
point function, in the triple short time limit. We apply this technique in Section 4 to compute
the six point function away from the conformal limit and we look at the enhanced contribution
due to the non-conformal mode. In Section 5 we take the triple short time limit to determine
the three point correlation function of fermion bilinears away from the conformal limit. We
carry out this computation in the presence of a chemical potential µ. We also compute the
relevant Eucledian correlators which on analytic continuation to real time, is supposed to give
us the two fold OTOC as well as the three fold OTOC. From this data we extract the Lyapunov
exponent. We conclude with the discussion of our results, and possible future directions.

2 SYK model with complex fermions

The SYK model with complex fermion in 0+1 dimensions is defined by the Hamiltonian with
all to all random interaction between q fermions,

H =
∑

Ji1 i2···iq/2 iq/2+1···iqψ
†
i1
ψ†

i2
· · ·ψ†

iq/2
ψiq/2+1

· · ·ψiq . (5)

An exhaustive study of this model is done in [39], we will mention some of the essential
features that will be necessary for our analysis. In addition to the higher dimensional operators
of the form On =

1
N

∑

iψ
†
i ∂

2n+1
t ψi which behave in a manner similar to those found in the SYK

model with Majorana fermions; we also have the operators of the form Õn =
1
N

∑

iψ
†
i ∂

2n
t ψi .

The lowest lying mode of these operators give the Schwarzian mode and the U(1) charge
respectively. In absence of a mass like term in the action the two point function of the particle
and anti-particle are the same in the free case as well as the low energy limit of the interacting
theory.

G f ree(τ) =
1
2

sgn(τ), Gc(τ) = b
sgn(τ)

|τ|
2
q

, (6)
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where, Gc(τ) is the propagator in the conformal limit. In the low energy, i.e., IR limit it is
possible to obtain the four point function of the fermions using the expansion in the eigen-
basis of the quadratic Casimir operator. We will skip the details and only state the results here.
Since we have complex fermions, i.e., ψi = ξi + iηi , in case of the correlation functions we
have contributions of two different kind,

〈ψ†(t1)ψ(t2)...〉= 〈(ξ(t1)ξ(t2) +η(t1)η(t2))...〉+ i〈(ξ(t1)η(t2)−η(t1)ξ(t2))...〉 . (7)

While the first piece, namely, the real part is anti-symmetric under the exchange of t1 and t2,
the second piece is symmetric.

In case of the four point function if we consider the time reversal invariant contribution
this leads to two different contributions namely FA(τ1,τ2,τ3,τ4) and FS(τ1,τ2,τ3,τ4)which
are respectively anti-symmetric and symmetric under t1 ↔ t2 and t3 ↔ t4. The first term,
i.e., FA(τ1,τ2,τ3,τ4) is identical to the SYK with Majorana fermions but the second term is
new and occurs in the complex fermion model. From [39] we have,

FA(τ1,τ2,τ3,τ4)
G(τ12)G(τ34)

= α0

∫ ∞

0

sds
π2

kA(1
2 + is)

coth(πs)(1− kA(1
2 + is))

ΨA
1
2+is
(χ)

+α0

∑

2 j>0

2 j − 1
2

π2

kA(2 j)
1− kA(2 j)

ΨA
2 j(χ) , (8)

FS(τ1,τ2,τ3,τ4)
G(τ12)G(τ34)

= α0

∫ ∞

0

sds
π2

kS(1
2 + is)

coth(πs)(1− kS(1
2 + is))

ΨS
1
2+is
(χ)

+α0

∑

2 j+1>0

2 j + 1
2

π2

kS(2 j + 1)
1− kS(2 j + 1)

ΨS
2 j+1(χ) , (9)

where,

χ =
τ12τ34

τ13τ24
, (10)

is the conformal cross ratio and ΨA and ΨS are linear combinations of the eigen-functions of
the quadratic Casimir. ΨA is antisymmetric, while ΨS is symmetric under the transformation,

χ →
χ

χ − 1
, (11)

which effectively exchanges the first two or last two arguments of four point function. Finally
kA and kS are eigenvalues of the retarded kernels (for antisymmetric and symmetric) which
commute with the Casimir.

2.1 Large q limit

We now augment this q-point interaction with a quadratic coupling term by introducing a
chemical potential µwhich couples to the conserved charge

∑

iψ
†
iψi . The fermion propagator

in the Fourier space derived from the quadratic part of the action is,

G0(µ,ω) =
1

iω+µ
. (12)

Once we take the interaction terms in the Hamiltonian into account it gives the dressed prop-
agator. In the large N limit, the contribution of melonic diagrams dominates. If we also take
large q limit (q < N) then the loop corrected propagator is amenable to analytic computations,

G(µ,τ) = G0(µ,τ)
�

1+
g(µ,τ)

q
+ · · ·

�

, (13)

6
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where, G0(µ,τ) is the free propagator in real space. To compute the two-point function in the
interacting theory one sets up the Schwinger-Dyson equation and seeks a solution in the large
q limit. This Schwinger-Dyson equation at finite inverse temperature β can be cast in the form
of a differential equation,

(∂τ −µ)2 [G0(µ,τ)g(µ,τ)] =
qJ2G0(µ,τ)

(2+ 2cosh(µβ))q/2−1
exp

�

1
2
{g(µ,τ) + g(µ,−τ)}

�

. (14)

The solution to this equation in given by [40],

eg(µ,τ) =
cos2

�

πν
2

�

cos2
�

πν
�

|τ|
β −

1
2

�� , where βJeff =
πν

cos
�

πν
2

� , (15)

where Jeff is defined in (4).

3 Correlation Functions

Let us begin with the short time, i.e., τ1 − τ2 = τ12 → 0 limit of the four point function both
for the symmetric and anti-symmetric case,

FA(τ1,τ2,τ3,τ4) =G(τ12)G(τ34)
∞
∑

n=1

c2
n

�

|τ12τ34|
|τ13τ14|

�hn

,

FS(τ1,τ2,τ3,τ4) =G(τ12)G(τ34)
∞
∑

n=1

c̃2
n

�

|τ12τ34|
|τ13τ14|

�hn

.

(16)

When we calculate the the six point function of the complex fermions we go to different short
time limits, where the correlation functions take some effective form. In the triple short time
limit we calculate it as an effective three point function of the fermion bi-linear operators.
This way one can compute the correlation function near points where different arguments
approach each other yielding poles and by the property of being analytic everywhere else we
get the full contribution.

In the remaining part of this article we calculate the O(1/N2) coefficient of the six point
function with respect to the 1/N expansion. To this order there are contributions from the
contact diagrams as well as from the planar diagrams (see Fig.1).

We will now write down the corresponding expressions:

S = S1 +S2 + S̃1 + S̃2 , (17)

τ1

τ2

τ3

τ4

τ5
τ6

τ1

τ2

τ3

τ4

τ5
τ6

Figure 1: Contact (left) and Planar (right) diagrams for six point function. The dou-
ble lines are dressed four point functions which include melonic corrections.
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where the contributions of S1 (contact) and S2 (planar) are exactly same as those in [41], i.e.,
they agree with corresponding results for the Majorana fermions. In case of the SYK model
with complex fermions, if we demand time reversal invariance, (since the Hamiltonian is itself
time reversal invariant) we have only two other contributions. Now,

S̃1

15
= (q− 1)(q− 2)J2

∫∫ ∞

−∞
dτadτbG(τab)

q−3FS(τ1,τ2,τa,τb) ×

FA(τ3,τ4,τa,τb)F
S(τ5,τ6,τa,τb) , (18)

is the contact diagram contribution. Here, we have written only one particular assignment
of the arguments; there are other possible assignments whose contributions account for the
factor of 1/15 on the left hand side. There are total 15 possible independent configurations4.

We will use same symbol h to denote the conformal weight of the bi-linear operators both
for FA and FS , although the values are different for the two: for FA⇒ hn = 2n+1+2∆+O

�1
k

�

,
and for FS ⇒ hn = 2n+ 2∆+O

�1
k

�

. The planar contribution is given by,

S̃2

15
=

∫ ∞

−∞
dτadτbdτc FS

amp(τ1,τ2,τa,τb)FA
amp(τ3,τ4,τb,τc)FS

amp(τ5,τ6,τc ,τa) , (19)

where,

FS
amp(τ1,τ2,τ3,τ4) = J2

∫

dτ0FS(τ1,τ2,τ3,τ0)G(τ40)
q−1 . (20)

Using the Selberg integrals in its special and general forms, one obtains:

FS
amp(τ1,τ2,τ3,τ4) = G(τ12)

∑

n

c̃2
nξ̃nsgn(τ12)sgn(τ43)

|τ12|hn |τ34|hn−1

|τ24|hn+1−2∆|τ23|hn−1+2∆
. (21)

Using the short time expansion of four point amplitudes, we get:

S̃1

15
=bq(q− 1)(q− 2)J2

∑

n,m,k

c̃ncm c̃k|τ12|hn |τ34|hm |τ56|hk G(τ12)G(τ34)G(τ56)I
(1)
nmk ,

S̃2

15
=bq(q− 1)(q− 2)J2

∑

n,m,k

c̃ncm c̃kξ̃nξmξ̃k|τ12|hn |τ34|hm |τ56|hk ×

G(τ12)G(τ34)G(τ56)I
(2)
nmk ,

(22)

where explicit expressions of the constants c, ξ, c̃, ξ̃ are given in appendix A. The integrals
I (1) and I (2) are given by,

I (1)nmk(τ1,τ3,τ5) = sgn(τ12)sgn(τ56)

∫ ∞

−∞
dτa dτb

sgn(τ1aτ1bτ5aτ5b)|τab|hn+hm+hk−2

|τ1a|hn |τ1b|hn |τ3a|hm |τ3b|hm |τ5a|hk |τ5b|hk
,

(23)

I (2)nmk(τ1,τ3,τ5) = −sgn(τ12)sgn(τ56)

∫ ∞

−∞
dτa dτb dτc

�

sgn(τ3b)sgn(τ3c)
|τ3c|hm−1+2∆|τ3a|hm+1−2∆

×

sgn(τab)sgn(τbc)|τab|hn−1|τca|hm−1|τbc|hk−1

|τ1a|hn−1+2∆|τ1b|hn+1−2∆|τ5b|hk−1+2∆|τ5c|hk+1−2∆

�

.

(24)

4Instead of taking τ1,τ2 for the first four point function argument we could take any other two, for example
τ1,τ3. Also interchanging the vertices among themselves This way the total number of possibilities is given by
�6

2

�

×
�4

2

�

× 1
3! = 15

8

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.018


SciPost Phys. Core 4, 018 (2021)

The integral (23) can be simplified by the change of variables, τa→ τ1 − (1/τa), and τb→
τ1−(1/τb). The simplification is done by first decomposing the integral into sums of integrals.
Namely the integration from −∞ to∞ will be written as a sum of two, an integral from −∞
to 0 and an integral from 0 to∞. We implement the change of variables on each fragment
separately, simplify each of them before recombining them back. At the end of this exercise
we get,

I (1)nmk(τ1,τ3,τ5) = sgn(τ12)sgn(τ56)

∫ ∞

−∞
dτa dτb

�

1
|τ31|2hm |τ51|2hk

×

|τab|hn+hm+hk−2sgn(τ51τa + 1)sgn(τ51τb + 1)

|τa +
1
τ31
|hm |τb +

1
τ31
|hm |τa +

1
τ51
|hk |τb +

1
τ51
|hk



 .

(25)

These change of variables are followed up by another pair of change of variables which are
carried out in a sequential manner. We will first implement τa→ τa − (1/τ31), and τb→
τb − (1/τ31) and then we will rescale the integration variables τa → (τ53τa)/(τ31τ51) and
τb→ (τ53τb)/(τ31τ51).

I (1)nmk(τ1,τ3,τ5) =
sgn(τ12)sgn(τ56)

|τ31|hn+hm−hk |τ51|hn+hk−hm |τ53|hk+hm−hn
× Ĩ (1)nmk(hn, hm, hk) ,

Ĩ (1)nmk(hn, hm, hk) =

∫ ∞

−∞
dτa dτb

|τab|hn+hm+hk−2sgn(τa − 1)sgn(τb − 1)
|τa|hm |τb|hm |1−τa|hk |1−τb|hk

= S̃ f ul l
2,2 (α,β ,γ) ,

(26)

where, α = −hn + 1, β = −hk + 1, and γ = hn+hm+hk
2 − 1. To summarize, the aim of the

above exercise was to obtain a conformal three point correlation function for fermion bi-linear
operators denoted above by I (1)nmk.

As in [41], we divide the Selberg integral, S̃ f ul l
2,2 , into different parts. This is achieved by

decomposing the integral into three pieces [−∞, 0], [0,1] and [1,∞] for each integration
variable. This results in six Selberg integrals with appropriately modified arguments. Carefully
keeping track of the signs gives,

S̃ f ul l
2,2 (α,β ,γ) = S2,2(α,β ,γ) + S2,2(1−α− β − 2γ,β ,γ)

+ S2,2(1−α− β − 2γ,α,γ) + 2S2,1(1−α− β − 2γ,α,γ)

− 2S2,1(α,β ,γ)− 2S2,1(α, 1−α− β − 2γ,γ) .

(27)

The generalized Selberg integrals and some important results which are used above are given
in [41], but for completeness we give the relevant definitions here,

Sn,n(α,β ,γ) =

∫

[0,1]n
dτ1...dτn

n
∏

i=1

|τi|α−1|1−τi|β
∏

i< j

|τi j|2γ ,

Sn,p(α,β ,γ) =

∫

[0,1]p

∫

[1,∞)n−p

dτ1...dτn

n
∏

i=1

|τi|α−1|1−τi|β
∏

i< j

|τi j|2γ .

(28)

In a similar fashion one can manipulate I (2)nmk to bring it in a form of the conformal three
point function. This computation, however, is considerably more involved, we instead do the
analysis in the large q limit. The I (2)nmk in our case differs from that obtained in [41] by only
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the sgn functions while the rest of the integrand has exactly the same form. So for us also at
large q, I (2)nmk takes the form,

I (2)nmk(τ1,τ2,τ3)≈
s̃(2)nmk

|τ31|hn+hm−hk |τ51|hn+hk−hm |τ53|hk+hm−hn
+ · · · (29)

In our case of course s̃(2)nmk is different from s(2)nmk obtained by Gross and Rosenhaus [41].

4 Away from the Conformal Limit

In this section we carry out the calculation of correlation functions away from the conformal IR
fixed point. In our earlier work [40], we studied the effect of introducing a chemical potential
µ, in the SYK-model with complex fermions. We found that a non-zero µ takes us away from
the conformal limit since it explicitly introduces a scale in the problem. The effect of introduc-
tion of this scale parameter is reflected in the chaotic behavior of the model, namely, it brings
down the value of the Lyapunov exponent. We computed the required quantities and studied
the maximally chaotic mode(in the large q limit where things could be handled analytically).

We write below the relevant expressions in the large q limit. The two point function(to the
leading order in large N) in the region τ > 0 is given by,

G(µ,τ) = G0(µ,τ)



1+
1
q

log





cos
�

πν
2

�

cos
�

πν
�

1
2 −

τ
β

��



+ ..



 , (30)

where,

G0(µ,τ) = −
eµτ

eµβ + 1
, 0≤ τ≤ β , (31)

G0(µ,τ) =
eµτ

e−µβ + 1
,−β ≤ τ≤ 0 . (32)

The above relation can be written in a compact manner by writing,

G0(µ,τ) = −sgn(τ)
eµτ

eµβsgn(τ) + 1
, 0≤ τ≤ β . (33)

We now aim at calculating the enhanced contribution to the four point function slightly away
from the conformal limit with the chemical potential µ. Note that since we want to be slightly
away from the IR, we will keep µβ to be small and expand all functions in this variable. Then
it can be interpreted that we move slightly away from the IR by turning on a small chemical
potential.

To this end we need to first calculate the shift in the eigenvalue of the Kernel for the h= 2
mode. For this we incorporate the technique used in [4], we begin with the equation,

KΨ = kΨ , ⇒
∫ ∫

K(τ1,τ2,τ3,τ4)Ψ(τ3,τ4)dτ3dτ4 = kΨ(τ1,τ2) . (34)

The Kernel is given by,

K(τ1,τ2,τ3,τ4) = −(−1)q/2J2(q− 1)G(µ,τ13)G(µ,−τ24)G(µ,τ34)
q/2−1G(µ,−τ34)

q/2−1 .
(35)
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We will work in the large q limit. Substituting the Kernel in equation (34) gives,

−qJ2

∫

dτ3dτ4
sgn(τ13)sgn(τ24)eµτ13 e−µτ24

(eµβsgn(τ13) + 1)(e−µβsgn(τ24) + 1)

cos2
�

πν
2

�

sin2
�

x̃34
2

� ×

Ψ(τ3,τ4)
{(eµβsgn(τ34) + 1)(e−µβsgn(τ34) + 1)}q/2−1

= kΨ(τ1,τ2) , (36)

where ν is defined in (15) and x̃ i j =
2πντi j

β + π(1 − ν). Multiplying (36) by e−µτ12 on both
sides of the equation, and differentiating twice, once with respect to τ1 and once with respect
to τ2 gives,

∂τ1
∂τ2

�

sgn(τ13)sgn(τ24)
(eµβsgn(τ13) + 1)(e−µβsgn(τ24) + 1)

�

= 4δ(τ13)δ(τ24) . (37)

Using the parametrization k = 2
h(h−1) eq.(36) reduces to,

−
qJ2 cos2

�

πν
2

�

(2+ 2cosh(µβ))q/2−1
×

e−µτ12

sin2
�

x̃12
2

�Ψ(τ1,τ2) =
2

h(h− 1)
∂τ1
∂τ2

�

e−µτ12Ψ(τ1,τ2)
�

. (38)

If we substituteΨ(τ1,τ2) = eµτ12 e−in(τ1+τ2)ψn(τ12) followed by some manipulation of eq.(38)
(also using (15)) we arrive at the differential equation,

�

n2 + 4∂ 2
x −

ν2h(h− 1)

sin2
� x̃

2

�

�

ψn(x) = 0 . (39)

Here, x = 2πτ
β and we have suppressed the subscript on τ since everything is now a function

of the time difference τ12.
The solution to this equation with appropriate boundary condition is well known. In fact

this is the same equation as obtained in [4]. The solution is given by, (with ñ= n/ν)

ψh,n(x) =
�

sin
x̃
2

�h

2F1

�

h− ñ
2

,
h+ ñ

2
,
1
2

; cos2
�

x̃
2

��

, n= even ,

ψh,n(x) = cos
x̃
2

�

sin
x̃
2

�h

2F1

�

h− ñ+ 1
2

,
h+ ñ+ 1

2
,
3
2

; cos2
�

x̃
2

��

, n= odd .

The quantization condition on h is obtained by demanding that the wave function vanishes at
x = 0, i.e., x̃ = π(1 − ν). As we approach the conformal limit ν → 1 this solution actually
diverges for generic values of h near 2 (we are interested in the h= 2 eigenfunctions). But we
want values of h such that the solutions are finite or vanishing, so the first or second argument
of the hypergeometric function has to be a negative integer. This gives the quantization of h
near 2 to be,

hn = 2+ |ñ| − |n|, hn = 2+ |n|
�

1− ν
ν

�

. (40)

This gives the shift in the eigenvalue k = 2
h(h−1) to be,

k(2, n) = 1−
3|n|

2
(1− ν) +

�

7n2

4
−

3|n|
2

�

(1− ν)2 + ... (41)

This result is identical to the shift obtained in [4], only difference being that ν now depends
on the effective coupling βJeff instead of βJ .
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4.1 The enhanced four point contribution

Let us now look at the four point function and use the above result to figure out the enhanced
contribution for the Schwarzian mode slightly away from the conformal limit. We begin with
the expansion of the four point function in the basis of eigenfunctions of the Kernel (using the
variable θ = 2πτ

β on the thermal circle and the period becomes 2π),

F(θ1,θ2,θ3,θ4)
G(θ12)G(θ34)

= 2
∑

h,n

k(h, n)
1− k(h, n)

Ψexact
h,n (θ1,θ2)Ψ

exact∗
h,n (θ3,θ4) . (42)

To find the enhanced contribution of the Schwarzian or h= 2 mode we use the eigenfunction
of the Casimir for h = 2 and the shifted eigenvalue in the denominator. In the numerator we
just use the eigenvalue with h = 2 in the IR. This is done to ensure that we are only slightly
away from the conformal limit driven by introducing a small chemical potential. Here we will
use all results for the large q limit,

F(θ1,θ2,θ3,θ4)
G(θ12)G(θ34)

=
4βJ
π2

∑

|n|≥2

ein(y ′−y)

n2(n2 − 1)(1+ a)

�

sin
� nx

2

�

tan
� x

2

� − n cos
�nx

2

�

�

×





sin
�

nx ′
2

�

tan
� x ′

2

� − n cos
�

nx ′

2

�



 , (43)

where,

x = θ1 − θ2, x ′ = θ3 − θ4, y =
θ1 + θ2

2
, y ′ =

θ3 + θ4

2
, a =

�q
2
− 1

� (µβ)2

8
, (44)

and for large βJeff we have used 1− ν∼ 2
βJeff

≈ 2
βJ +

� q
2 − 1

� (µβ)2

4βJ .
We will now carry out the sum over n. The final expression after all simplifications can be

written in a compact form [4]. To proceed with the six point function using these results we use
numerical computation, in carrying out the integration. Subsequently, we extract the chaotic
behavior of the OTO six point correlator, even though we do not have an analytic result. This
will be discussed in a later section.

4.2 The Contact and the Planar diagrams

There are two types of topologies of Feynman diagrams contributing to six point function.
The contact diagrams and the planar diagrams (see Fig. 1). We will now claim that among
these diagrams, which contribute to the six point function at the leading order in ∼ 1/N , the
contribution of the contact diagrams dominates over that of the planar ones by an order q4,
for the enhanced non-conformal mode contribution to the four point function. So at large
q, the contact diagrams dominate over the planar ones, and hence we will look at only the
former. But before that we will demonstrate this dominance of the contact diagrams below by
studying the scaling behaviour in the large q limit of the contact and planar contributions.

The contact contribution is given by,

Sc = (q− 1)(q− 2)J2

∫

dτadτbG(τab)
q
2−3G(−τab)

q
2 ×

F(τ1,τ2,τa,τb)F(τ3,τ4,τa,τb)F(τ5,τ6,τa,τb) . (45)

Whereas the planar contribution is,

Sp =

∫ ∞

−∞
dτadτbdτc Famp(τ1,τ2,τa,τb)Famp(τ4,τ3,τc ,τa)Famp(τ5,τ6,τb,τc) , (46)

12

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.018


SciPost Phys. Core 4, 018 (2021)

where,

Famp(τ1,τ2,τ3,τ4) = −
∫ β

0

dτ0F(τ1,τ2,τ3,τ0)

∫

dω4

2π
e−iω4τ40

1
G(µ,ω4)

,

is the amputated four point function. We can use the SD equations to write,

1
G(µ,ω4)

= −iω4 +µ−Σ(µ,ω4) . (47)

Since we are working at finite temperature, we have to do the Matsubara sum. However, notice
that the iω+µ term has no poles, so when we evaluate the sum using the contour integration
prescription, contribution of this part vanishes and we are left with,

Famp(τ1,τ2,τ3,τ4) =

∫ β

0

dτ0 F(τ1,τ2,τ3,τ0)Σ(µ,τ40) ,

Famp(τ1,τ2,τ3,τ4) = J2

∫ β

0

dτ0 F(τ1,τ2,τ3,τ0)G(τ40)
q/2−1G(−τ40)

q/2 . (48)

Now we can convert the τ integrals to θ integrals via appropriate scaling and we get the
contribution from the contact diagram to be,

Sc ∼
q(βJe f f )3

(2π)2
, (49)

where,

Famp(τ1, ...,τ4)∼
βJe f f

2πqβ
. (50)

In terms of the θ variable we have,

F(θi ,θ j ,θa,θb)∼ βJeffG(θi j)G(θab) , (51)

and in the large q limit, for large but finite βJeff,

(G(θab))
q
2 (G(−θab))

q
2 ∼

1

(βJeff)2 sin2
�

θab
2

� . (52)

Here we have put ν = 1 inside the sine function which is consistent to the leading order with
ν → 1 as βJe f f →∞. As a consequence the (βJeff)2 coefficient of the contact diagram as
well as the amputated four point function cancels out due to the (βJeff)2 appearing in the
denominator of (52).

The planar six-point diagram, on the other hand, is given by the product of three amputated
four point functions hence, when we take the product and convert the τ integrals to θ integrals
in (46), we get,

Sp ∼
(βJeff)3

q3(2π)6
. (53)

Taking the ratio of Sc with Sp we see that,

Sc

Sp
∼ (2π)4q4 . (54)

So in the large q limit as one can easily see that the contact diagram is far more dominant
compared to the planar ones and hence it is justified to consider the contribution of the contact
diagrams only.
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4.3 The six point function

Although one can get an analytic answer for the enhanced four point contribution slightly
away from the conformal limit, calculation of the full six point function becomes somewhat
messy to carry out analytically. We therefore compute the six point function using numerical
methods.

Let us first summarize the results, we will then we state all the relevant values used in
carrying out these computations.

• We first compute the six point contribution with three h = 2 modes, for a fixed µβ ,
keeping all the time arguments separate and then we take the short time limit θ2→ θ1,
θ4 → θ3, etc. We then change the value of µβ and compute the correlator again. We
see that the six point function decreases in this limit as µβ is increased, while keeping
βJ fixed at some large value.

• We can instead first take the triple short time limit and then carry out the integrals
numerically for all the possible nonconformal contributions, i.e.,

Fh=2FcFc , Fh=2Fh=2Fc , Fh=2Fh=2Fh=2 . (55)

We find that among the three terms in (55), the first contribution seems to vanish to all
orders in µβ expansion, on the other hand the remaining two terms, although are small,
have contribution at the same order, namely O

�

(µβ)2
�

. These results will get corrected
as we go to higher orders.

• To benchmark the code we compute λ(1)11k (as was done in [41] for all three conformal
modes)5 for the contact diagrams and plot it against k, where for large k, hk = 2k+1+2∆
+O(1/k). We find the similar fall off behavior at large k.

Let us now look at some details of the analysis. One of the things that we have to keep in
mind is that we are slightly away from the conformal limit because we have turned on a small
µβ . We need to be careful while working with the conformal modes. Due to explicit scale in
the theory, the modes may not be conformal anymore. In other words, the normalized four
point contributions of these modes may not be a function of only the cross ratio χ anymore.
However, for small βµ, the conformal perturbation theory makes sense and within this limit
using the conformal basis is justified.

If we recall the eigenvectors of the Kernel then we see that,

Ψ(θ1,θ2) = e
µβ
2π (θ12)ein

θ1+θ2
2 ψn(θ12)

and to obtain the conformal modes one has to go to the IR, do the sum over n in the four point
function to obtain the sum over integer values of h as well as the integral over the principle
continuous series. One then deforms the contour to pick up the poles at kc = 1, eigenvalue of
the kernel in the conformal limit. In the IR limit the exponential µβ factor becomes equal to 1,
but since it has no n dependence it plays no role when we carry out the sum over n. Therefore,

5λ
(1)
nmk defines the bulk cubic coefficient for Contact diagrams of operators with conformal dimensions

hn = 2n+ 1+ 2εn, hm = 2m+ 1+ 2εm and hk = 2k+ 1+ 2εk.
�

ε j =
1
q

j(2 j+1)+1
j(2 j+1)−1

�

with j = n, m, k
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slightly away from the conformal limit we will have (small µβ),

Fh 6=2(θ1,θ2,θ3,θ4)

G(θ12)G(θ34)
= e

µβ
2π (θ12+θ34)

∞
∑

m=1

c2
mχ

hm
2F1(hm, hm, 2hm,χ) (56)

=
∞
∑

m=1

c2
mχ

hm
2F1(hm, hm, 2hm,χ) +

µβ(θ12 + θ34)
2π

∞
∑

m=1

c2
mχ

hm
2F1(hm, hm, 2hm,χ)

+
�

µβ

2π

�2 (θ12 + θ34)2

2!

∞
∑

m=1

c2
mχ

hm
2F1(hm, hm, 2hm,χ) + · · · .

The above expression breaks conformal invariance and this is the four point function we will
be working with away from the conformal limit.

Since βJeff appears as an overall factor we strip off this factor and look at the integrals
only. For small µβ this factor is large but finite. We will keep µβ fixed at µβ ∼ 7.4× 10−4.

5 The Short time and OTO behavior of the Six point function

In this section we will study short time limit of the six point function as well as its out-of-
time ordered behaviour. In both cases the expressions are quite involved and we had to take
recourse to numerical methods. We will first look at the short time limit.

5.1 Short time limit of the six-point function

Let us first look at the short time limit of the six point function. Since the terms we will
be looking at are a part of the non-conformal piece, we will first compute it by keeping all six
times different. We will then take the limit in which one of the temporal variable is approaching
another, for example θ2 → θ1, while holding rest of the time variables fixed. In this limit we
will study the behaviour of the six point function. We do not have analytic control over this
computation and hence we take a recourse to the numerical methods. Figure 2 contains the
plot of numerical evaluation of the behavior of the six point, involving only the h = 2 modes,
as a function of θ1 in the short time limit, θ2→ θ1 while keeping θ3 = θ4, and θ5 = θ6 fixed.
In the triple short time limit, it is easy to see that the six point function vanishes.

0.2 0.4 0.6 0.8 1.0

θ1

-0.0020

-0.0015

-0.0010

-0.0005

S

Figure 2: The plot of the six point function S in the short time limit θ2→ θ1. In this
figure we have chosen arguments θ3 = θ4 = π, and θ5 = θ6 = 5π/3.
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θ3 = 0

θ2 = π/2− iλL t

θ4 = π

θ1 = θ2 −π

Figure 3: The 2-fold Schwinger-Keldysh contour characterising
〈ψi(t)ψ j(0)ψi(t)ψ j(0)〉

While the contribution to the non-conformal piece coming from the product of h = 2
modes is shown in Fig. 2, computing the contribution for one or two h 6= 2 modes requires
some care because in this case the planar diagrams may have enhanced contribution but in
the large q limit, it will still be subdominant. In a similar way it can be checked that the planar
contribution is finite by analysing behavior of Famp(θ1, · · · ,θ4) as a function of its arguments.
However, we do not explicitly compute this because we do not need it in our analysis.

5.2 Maximal Lyapunov from six-point OTOC

Before discussing the details, let us emphasize that even though we have analytic control over
the ingredients, thanks to the large q-expansion, the calculation of the Euclidean correlator in-
volves performing multi-variable integrations over the Euclidean time. The resulting integral,
for the 6-point correlator, is a function of six Euclidean times. Ideally, one needs to first obtain
this function of six variables, and subsequently carry out the analytic continuation correspond-
ing to the Lorentzian correlator that one wants to compute. However, this is a challenging task
in general, and it is even more so when one lacks an analytic expression for the Euclidean 6-
point correlator. In view of this, we will discuss below a simple-minded numerical approach
that appears to capture the correct Lyapunov behaviour.

Before considering the 6-point function, let us concentrate on the 4-point function eval-
uated in [4]. It is known to produce to well-established maximal value λL = 1, in units of
T = 1/(2π). The assignment of the time arguments in the alternating configuration, in [4],
was set to be:

θ2 =
π

2
− i t, θ1 = θ2 −π, θ3 = 0, θ4 = π . (57)

This implies that both θ1 and θ2 are analytically continued to real time and from their assign-
ment on the thermal circle we find figure 3 as the corresponding Schwinger-Keldysh contours.
Clearly, in this case, one computes a two Lorentzian time-folded correlator which corresponds
to the true 4-point OTOC. The ordering of the imaginary time co-ordinates do not matter when
analytically continuing to real time. There the ordering is fixed by epsilon prescription. The
fact that the above chosen configuration yields the expected value of the maximal Lyapunov
exponent, suggests that the information of the epsilon prescription can be translated to the
configuration we choose. Furthermore, note that, even though the general 4-point OTOC is a
function of four real-time variables, the choice in (57) simplifies this dependence to only one
real-time variable, denoted by t. A similar statement holds for the Euclidean correlator.

Given the above choice of time-assignments, we perform the following tasks: (i) We numer-
ically generate Euclidean data points, this yields a function F4(θ ), where F4 is the Euclidean
four-point correlator and θ is the only Euclidean time variable, with our proposed assignment
in (57). (ii) We numerically fit the data with a guess-function. By trial and error, and motivated
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by simplicity, we have used a cosine function as the fitting function, in which the frequency
and the amplitude of the fitting function are found out as a result of the numerical fitting. (iii)
We read off the frequency to be the corresponding Lyapunov exponent, since

cos (λLθ )→ ()1eλL t + ()2e−λL t , (58)

where ()1,2 are overall constants. In the large time limit, such a term is dominated by the eλL t ,
and therefore the Lyapunov is obtained from the frequency of the Euclidean periodic function.
We have explicitly checked that, the above numerical implementation does reproduce λL = 1,
within acceptable numerical accuracy, for the OTOC considered in [4]. This is not a water-tight
argument that such an analysis will work for arbitrary cases, but, in absence of a better method,
worth exploring. Furthermore, note that one does not need the complete information about
the frequency spectrum of the Euclidean correlator, but only the dominant one, to extract the
maximum Lyapunov exponent. This may provide a justification of why this method should
work, however, we do not have any further reasons to offer at this point.

We will subsequently use a similar numerical method to compute the 6-point OTOCs, both
with two time-folds and three time-folds. Finally, we will fit the data and extract the maximum
Lyapunov exponent.

5.2.1 2-fold Schwinger-Keldysh contour

First we compute the quantity:

〈ψi(τ)ψ j(0)ψk(0)ψi(τ)ψ j(0)ψk(0)〉 ,

which corresponds to the OTOC with two time-folds and τ denotes the Euclidean time. Thus,
this is not a truly 6-point OTOC, since the out-of-time physics is captured by a 4-point OTOC
that lies inside the 6-point correlator. Motivated by our discussion above, in this case, we
assign:

θ1 =
π

6
+τ, θ2 = θ1 +

3π
2

, θ3 =
π

3
, θ4 = θ3 +

3π
2

, θ5 =
π

2
, θ6 = θ5 +

3π
2

, (59)

and we choose τ= −0.5,−0.4, ...., 0.5. Thus we have,

θ1 + θ2

2
= π +τ .

Note that, within the regime of the τ-variable: τ ∈ [−0.5,+0.5], we ensure the ordering:
θ1 < θ3 < θ5 and therefore θ2 < θ4 < θ6, by choosing the configuration in (59). This ordering
ensures that there are no operator crossing and the corresponding correlator remains a two-
folded OTO correlator, for the regime of τ considered above. We note that this is only a
representative configuration, however, the qualitative physics does not appear to significantly
change.

We set the following values for different quantities:

q = 10, ⇒ a =
(µβ)2

2
= 0.001 .

The 2-fold contour, corresponding to the assignment in (59), is shown in figure 4. Now we
compute the numerical data, as a function of τ, the result of which is shown in figure 5. To
this data, we fit a function of the form:

c1 + c2 cos
�

λL

�

θ1 + θ2

2
+π

��

≡ c1 + c2 cos (2πλL +λLτ) . (60)
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θ6

θ1

θ3
θ5

θ2

θ4

Figure 4: The 2-fold Schwinger-Keldysh contour for six-point OTOC

2.8 3.0 3.2 3.4 3.6

τ +π
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-0.02
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S

Figure 5: Cosine fit to the data with step-size=0.05. λL = 0.823131

Now, under analytic continuation τ→ i t, we end up with a real valued function. For the
step size 0.05, the data can be fitted to the function in (60) with the following values of the
coefficients and frequency:

c1 = 0.0327781 ; c2 = −0.121711 ; λL = 0.823131 . (61)

Clearly, λL is not far from the maximal value, but it is not sufficiently close.

5.2.2 3-fold Schwinger Keldysh contour

Now let us consider the quantity:

〈ψi(τ)ψ j(0)ψk(τ)ψi(0)ψ j(τ)ψk(0)〉 ,

which is a true 6-point OTOC. The corresponding assignment of the Euclidean coordinates are
given by

θ1 =
π

6
+τ, θ2 =

7π
6

, θ3 =
π

3
, θ5 = θ1 +

π

3
, θ4 = θ5 +

5π
6

, θ6 =
3π
2

. (62)
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This implies:
θ1 + θ4 + θ5

3
=

2π
3
+τ .

This configuration corresponds to the following 3-fold contour: As before, it is straight-
forward to check that, for the range of τ ∈ [−0.5,+0.5], the configuration in (62) respects
the ordering: θ1 < θ3 < θ5 and therefore θ2 < θ4 < θ6. Thus, the 3-folded OTO correlator
remains a 3-folded one, for the entire variation of τ ∈ [−0.5,+0.5].

The numerical result is plotted in figure 7, along with the fitting curve, of the form:

c′1 + c′2 cos
�

λL

�

θ1 + θ4 + θ5

3
+

4π
3

��

≡ c′1 + c′2 cos (2πλL +λLτ) .

From the fit we obtain the following values of the coefficients and frequency:

c′1 = −0.193813 , c′2 = 0.191047 , λL = 1.01853 . (63)

Once again, the value of the corresponding Lyapunov is close to the maximal one.
Before concluding this section, let us note that our calculations are done near the con-

formal point and therefore it is not surprising that the corresponding Lyapunov exponent is
numerically close to its maximal value. However, a few comments are in order.

Firstly, note that all our calculations are performed in the Euclidean description. By con-
struction, the Euclidean time τ ≤ β , where β is the inverse temperature. At best, we can
ascertain τ ∼ O(β). Naively, within this regime, the analytic continuation to the Lorentzian
time, via τ → i t, should capture physics at time-scales t ∼ 1/T ∼ td , where td is the dissi-
pation time-scale. Therefore, our method is expected to capture the early-time physics that is
still close to the physics at the dissipation time-scale.

It is therefore quite interesting that, at a pragmatic level, both the two-fold and the three-
fold OTO correlators seem to capture an exponential growth even at this early time-scale.
Moreover, the three-folded OTO seems to suggest a maximal Lyapunov exponent already at
these time-scales, while the 2-fold OTOC (which is a four-point OTOC, fused with a two-point
correlator; and not a truly 6-point OTOC) suggests an exponential growth, slightly below the
maximal behaviour.

Naively, such a behaviour is not completely unexpected, since a higher point time-ordered
correlator can decay faster than a lower point time-ordered correlator. Stated simple, slightly
after the dissipation time-scale, a 4-point function 〈φφφφ〉 ∼ 〈φφ〉 〈φφ〉 ∼ e−2t/td , while
〈φφφφφφ〉 ∼ 〈φφ〉 〈φφ〉 〈φφ〉 ∼ e−3t/td , assuming that the two-point function decays as
〈φφ〉 ∼ e−t/td . Therefore, as compared to the 4-point OTOC, the 6-point OTOC can already
begin showing a chaotic growth that is closer to the large time behaviour of the corresponding
correlator. In general, therefore, an n-point function, for sufficiently large n, can display the
maximal Lyapunov growth at very early times. Of course, these statements are only plausible

θ1
θ3

θ5

θ2

θ4

θ6

Figure 6: The 3-fold Schwinger-Keldysh contour characterising six-point OTOC.
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Figure 7: Six point OTOC with 3-fold Schwinger-Keldysh contour. Step-size= 0.05,
λL = 1.01853

ones, based on the limited evidence that we have gathered for this particular example. To gain
some confidence in this plausibility argument, we studied behaviour of the six point OTOC with
two fold and three fold contour with same ordering but for a couple of slightly differing choices
of the argument. We find that the Lyapunov index is reasonably robust under such variations
which further justifies our argument. It will be very interesting to explore this in more detail
by considering different arguments of the OTOC as well as considering higher point OTOC
correlators.

6 Conclusion

We have computed the fermion six point function in the SYK model with complex fermions in
the presence of a non-vanishing chemical potential. We then took triple short time limit of this
correlation function so that it appears as a three point function of fermion bilinears. We show
that the three point function of fermion bilinears, for h 6= 2 modes, have the scaling property
of conformal field theory three point function, as is expected as a generalisation of the results
of [41] to the complex fermion case. Like in [41], we find that the contribution of the contact
three point graphs in the large q limit is subleading compared to that of the planar graphs.

We also compute three point function of fermion bilinears for the h= 2 mode. This mode
is known to break the conformal invariance of the SYK model, both spontaneously as well
as explicitly. This mode is known to exhibit chaotic behaviour with the Lyapunov exponent
λL that saturates the chaos bound. The three point function of bilinears in this case has a
behaviour different from those of the conformal, i.e., h 6= 2 modes. In this case we find that in
the large q limit, the contribution of the planar graphs is subleading compared to the contact
graphs.

We have also explored the out-of-time-order physics of the associated six-point correla-
tion function, upon taking the analytic continuation of the Euclidean result. As we have em-
phasized before, our approach is expected to extract an early-time Lyapunov growth in the
corresponding OTOC. It is rather interesting that, for a higher point OTOC (e.g. the 6-point
one), this early-time Lyapunov growth already features closely a maximal growth, while the
4-point OTOC already hints at the chaotic growth behaviour with a close to maximal Lyapunov
behaviour. While there is no apparent inconsistency with the “maximally braided, k-OTO" cor-
relation function studied in [42], it raises the possibility that the late-time Lyapunov growth
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may already be pragmatically distillable at early-time physics, provided one explores an n-
point OTOC, for sufficiently large n. Evidently, an explicit calculation of an n-point OTOC, for
larger and larger values of n becomes more and more difficult. So, one is not able to bypass the
difficulty of understanding large-time physics, by simply computing a sufficiently high-point
OTOC at early-times. These points deserve a better and more thorough scrutiny, and perhaps
a natural point to explore is to consider the formal limit of n→∞. We hope to come back to
this aspect in future.

As a further future direction to explore, coming back to the model at hand, since the cou-
plings of the SYK model are chosen from random gaussian distributions, it is also tempting to
ask if one can apply techniques of stochastic quantisation to reconstruct the bulk description.
We hope to report on this soon.
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ICTS/adscft20/05) during the course of this work.

A Parameters appearing in eq.(22)

In this appendix we collect the expressions of the constants that appear in six point amplitude.

cn =
2q

(q− 1)(q− 2) tan(π∆)

(hn −
1
2)

tan
�

πhn
2

�

Γ 2(hn)
k′A(hn)Γ (2hn)

, (64)

c̃n =
2q

(q− 1)(q− 2) tan(π∆)

(hn −
1
2)

cot
�

πhn
2

�

Γ 2(hn)
k′S(hn)Γ (2hn)

, (65)

ξn = bqπ1/2 Γ (1−∆+
hn
2 )Γ (

1
2 −

hn
2 )Γ (∆)

Γ (1
2 +∆−

hn
2 )Γ (

hn
2 )Γ (

3
2 −∆)

, (66)

ξ̃n = bqπ1/2 Γ (
1
2 −∆+

hn
2 )Γ (1−

hn
2 )Γ (∆)

Γ (∆− hn
2 )Γ (

1
2 +

hn
2 )Γ (

3
2 −∆)

. (67)

B Four point function used in the computation of the six point
function

In this appendix we will present the explicit form of various elements that go into the calcula-
tion of the 6-point correlator. The basic object of interest is the following function:

S(ta, tb; t1, t2, t3, t4, t5, t6) =
1

sin2
� ta−tb

2

�F(t1, t2, ta, tb; a) ×

F(t3, t4, ta, tb; a)F(t5, t6, ta, tb; a) ,

(68)
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where

F(t1, t2, ta, tb; a) =

cot
� t1 − t2

2

�

cot
� ta − tb

2

�

(−p1(t1 − tb, a)− p1(t2 − ta, a) + p1(t2 − tb, a) + p1(t1 − ta, a))

+ cot
� ta − tb

2

�

(p2(t1 − ta, a)− p2(t1 − tb, a) + p2(t2 − ta, a)− p2(t2 − tb, a))

− cot
� t1 − t2

2

�

(p2(t1 − ta, a) + p2(t1 − tb, a)− p2(t2 − ta, a)− p2(t2 − tb, a))

+p3(t1 − ta, a) + p3(t1 − tb, a) + p3(t2 − ta, a) + p3(t2 − tb, a) , (69)

with the following definitions:

p1 (θ , a) =
∞
∑

n=2

cos(nθ )
n2(n2 − 1)(1+ a)

, (70)

p2 (θ , a) =
∞
∑

n=2

cos(nθ )
(n2 − 1)(1+ a)

, (71)

p3 (θ , a) =
∞
∑

n=2

sin(nθ )
n(n2 − 1)(1+ a)

. (72)

Now, the corresponding six-point correlator is computed as a function of {t1, . . . , t6}, by inte-
grating over ta and tb.
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