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Asymmetric transport in long-range interacting chiral spin chains
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Abstract

Harnessing power-law interactions (1/rα) in a large variety of physical systems are in-
creasing. We study the dynamics of chiral spin chains as a possible multi-directional
quantum channel. This arises from the nonlinear character of the dispersion with com-
plex quantum interference effects. Using complementary numerical and analytical tech-
niques, we propose a model to guide quantum states to a desired direction. We illustrate
our approach using the long-range XXZ model modulated by Dzyaloshinskii-Moriya (DM)
interaction. By exploring non-equilibrium dynamics after a local quantum quench, we
identify the interplay of interaction range α and Dzyaloshinskii-Moriya coupling giving
rise to an appreciable asymmetric spin excitations transport. This could be interesting
for quantum information protocols to transfer quantum states, and it may be testable
with current trapped-ion experiments. We further explore the growth of block entangle-
ment entropy in these systems, and an order of magnitude reduction is distinguished.
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1 Introduction

Recently, long-range interacting quantum systems have received an increasing attention in
quantum applications [1–5]. Many natural and engineered quantum systems show long-
range interactions decaying with distance r as a power law 1/rα, such as van der Waals or
dipole-dipole interactions. This has triggered fundamental questions related to the spreading
of correlation in such systems, in particular the generalization of light-cone picture of the Lieb-
Robinson (LR) bound [6]. Comprehension the quantum dynamics in this more general case is
an active field of theoretical research [7–17].

With local quenches in the long-range transverse Ising model [3, 7] and XY model [4],
the behavior of correlation propagation is classified into different regimes as a function of the
decay exponent α. For spreading of correlation, the dynamics are divided into (i) a regime
of short-range interactions where α > 2, and (ii) a regime of intermediate- and long-range
interactions when α < 2, with certain features also changing at α = 1. While the light-
cone picture remains a good description for short and intermediate-range, at long-range the
maximal velocity is predicted to diverge and the light-cone is no longer exists.

Moreover, noncollinear spin models with unique rotational states, such as chiral spin-
spirals, have also received great attention for their application potential in spintronics, in-
formation technology and likelihood hosts for Majorana Fermions with coupled to a supercon-
ductor [18, 19]. Moreover, experiments show the importance of Dzyaloshinskii-Moriya (DM)
interactions in the appearance of a spin-spiral ground state configuration [20] and the appear-
ance and importance of a vector spin chirality, an order parameter, in the system dynamics
and transmit information down the chain [21, 22]. While linear coupling in the spin models
(∼ Si ·S j) favors a parallel (ferromagnetic) or antiparallel (antiferromagnetic) alignment, the
DM coupling (∼ Si × S j) favors perpendicular alignment, which could possess a frustrated
ground state [23], as well as rich three-dimensional spin skyrmion structures [24]. Further-
more, long-range DM interactions showed a rich phase diagram and quantum dynamics in 1D
systems [25]. The DM couplings between spins exist only when the inversion symmetry is bro-
ken at the middle point between the two spins [26,27]. For models with inversion symmetry,
the external electric field ~E induces the DM interaction. Namely Di j ∼ ~E × ~ei j , where ~ei j is the
unit vector connecting the two sites i and j.

Motivated by these possibilities, we study local quench dynamics in the long-range inter-
acting XXZ model [3, 4] modulated with noncollinear DM interaction. While several studies
on 1D systems with colinear interactions have been reported, the effect of long-range DM in-
teractions has not been explored before (to the best of our knowledge). Using complementary
numerical and analytical techniques we explore the possible quantum state engineering, and
our main results on the quantum correlation spreading are summarized in Fig.1. It sketches
the situation when a polarised spin state undergoes a local quench dynamics when long-range
DM interaction is absent or present. In the absence of DM interaction, excitation propagates
symmetrically about the perturbation. While the presence of DM interaction modulates an
asymmetric transport for all α’s, but is only appreciable for intermediate- and long-rage (small
α). The direction in which spin excitation transport can also be controlled by DM coupling.
A similar asymmetric transport has been recently reported in Abelian anyons [28]. Contrary
to the Abelian anyons in which non-local anyonic commutation plays a role, in fermionic and
bosonic models presented in this work complex quantum interference induces asymmetric
transport.

The rest of this article is arranged as follows: In Sec. II, we present the long-range models,
the quantum quench protocol setup, and details of the tools we use to probe the experiment.
In Sec. III, we then present the results, giving details of the methods we use to solve. We
provide a summary in Sec .IV.
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Figure 1: (colour online) Sketch of the protocol. (a) at time t = 0 initializing state
with all spins aligned in the z-direction, and perturb single spin at the middle of
chain by reversing it direction. Probing local spin evolution at later times (b) in the
absence of DM interaction Di j = 0 for all range of interaction, and in the presence
of DM interaction Di j 6= 0 for (c) nearest-neibour interaction α =∞, (d) at finite
α <∞ but significant in long-range regime α→ 0.

2 Models and Observables

Two long-range interacting Ising [3] and XY [4] spin models have already been engineered ex-
perimentally with ion trapped technique and studied theoretically [7]. The out-of-equilibrium
dynamic following local and global quenches in these two models have been investigated, and
shown that at sufficiently long-range interaction, the locality is expected to be spoiled (namely,
not obeying LR bound). Here, we assume it could also be feasible to engineer a long-range
interaction as of DM interaction which occurs when a model is no longer symmetric under
inversion [26, 27]. Having this assumption, we come up with the following long-range XXZ
Hamiltonian:

H =
∑

i 6= j

�

Ji j

�

σx
i σ

x
j +σ

y
i σ

y
j +∆σ

z
iσ

z
j

�

+ Di j ·
�

σi ×σ j

�

�

+ h
∑

i

σz
i , (1)

where Ji j = J/|i − j|α and Di j = Dẑ/|i − j|α with tunable exponent between infinite range
(α = 0) and nearest-neighbour (α =∞), J and D denote the nearest-neighbor interaction
strength, ∆ is exchange anisortiopy, and h is local magnetic field. In this system, the total
axial magnetization Stotal =

∑L
i=1σ

z
i is a conserved quantity. Model is nonintegrable for all

finite α, but reduces to integrable models in the limit α→ 0.
Local and global quenches are two well-tested protocols in the community of nonequilib-

rium dynamics. Here, we follow exactly the local quench setup as used in the experiment of
Ref. [3]. We prepare a polarised spin state in which all spins are aligned in the external field z-
direction (see Fig.1-a), as a ground state of the models at extreme case h�max{Ji j , Di j}, then
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we perturb a single spin at the middle of the system by flipping its direction |ψ0〉= σx
L/2 |ψGS〉,

as |ψ0〉= |↑ · · · ↑↓↑ · · · ↑〉, and observing its subsequent evolution. This can be done by probing
spatially and temporally resolved spin polarization〈σz

i 〉t or equal-time connected correlation
function Ci,L/2(t) = 〈σz

iσ
z
L/2〉t − 〈σ

z
i 〉t〈σ

z
L/2〉t .

The block entanglement entropy (EE) also gives interesting information of quantum cor-
relations between two segments of a system (namely the left and right half of the chain). We
will use the von Neumann entropy, which is given via

SvN(ρl)≡ Sl ≡ −tr(ρl logρl) , (2)

where ρl is reduced matrix of the left segment of chain and is defined as ρl ≡ trr (|ψ〉 〈ψ|),
which trr denotes the partial trace over the right segment of chain. In this work, we consider
the EE of half of the chain SL/2(t), as its time-dependent growth summaries the buildup of
quantum correlations between two halves of the chain.

Spreading information and distribution of entanglement across either side of the initial ex-
citation in this setup could potentially be useful for application. Quantum mutual information,
which gives more information on the distance of correlations [8], is the information between
two distant spins i and j, and is defined via

Ii j = SvN(ρi) + SvN(ρ j)− SvN(ρi j) , (3)

where ρi = t rk 6=i(|ψ〉〈ψ|) and ρ j = t rk 6= j(|ψ〉〈ψ|) denote the reduced density matrices of
the single spins (obtained by tracing over all other spins k), and ρi j = t rk 6=i, j(|ψ〉〈ψ|) is the
reduced density matrix of the composite system of the two spins.

As said before, our main goal is to explore the way correlations propagate in the model and
plausible control over them. In the following section, we exploit both analytical and numerical
techniques to measure the above tools to tackle the problem.

3 Results

To get an intuition, it may help to start with the nearest-neighbor (namely α =∞) model
with ∆ = 0.0 and map Hamiltonian Eq.(1) to a fermionic model. This model can be solved
analytically using the Jordan-Wigner transformation. For the long-range interacting case, the
analytical fermionic picture is no longer applicable, so one can switch to the bosonic language
as an analytical tool or exploit numerical techniques to inspect the dynamic of the model. To
treat the many-body problem and considering the interacting term ∆ 6= 0, we choose the ex-
act diagonalizing (ED) method but note that ED is limited to small system size L ≈ 14 due
to exponential growth of the Hilbert space dimension 2L . However, to study the dynamic of
many-body systems, the Krylov-space technique with exploiting the sparse structure of Hamil-
tonian can push limit bigger system size [29–31]. We notice for the long-range interaction
the Hamiltonian matrix is not sparse as a short-range case. Nevertheless, with the method we
were able to reach system sizes up to L = 23 with dimension dim(H) = 223 ≈ 107.

3.1 Mapping to fermionic particles (∆= 0.0)

To understand the excitation spread, it is instructive to start with the case of nearest-
interactions, i.e., with a decay exponent α → ∞, and discuss the dynamics of the quanti-
ties in this regime. In the limit ∆ = 0.0, the model Hamiltonian Eq.(1) becomes a standard
XX model of the form

Hfermion =
∑

j

J̃
�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1

�

+ hσz
j , (4)
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Figure 2: (colour online) (a) Energy dispersion (left panel) relations for Hamiltonian

in Eq.(4) for D = 0.0 and D = 1.0. The corresponding group velocity vg =
dωq

dq are

shown in the right panel. (b) single site occupation 〈ψt | c
†
j c j |ψt〉 versus time. Excita-

tion at L/2 spreads light-cone-like, bonded by the maximal group velocity vmax = 2J̃ ,
shown with dashed line.

where J̃ =
p

J2 + D2. Note that we performed a unitary transformation Hfermion = QHQ′
to

eliminate the D term. Where Q =
∏

j∈even e−iθσz
j , and tan (θ ) = −D/J . This model has been

well studied in the literatures [32–34]. Rewriting the local spin-lowering and spin-raising op-
erators σ±j = (σ

x
j ± iσ y

j )/2, then with a Jordan-Wigner transformation, these operators can be

mapped to anti-commuting quasiparticles via ci =
∏

j<i(−1)σ
+
j σ
−
j σ−i =

∏

j<i(1− 2σ+j σ
−
j )σ

−
i .

This end up with a one-dimensional noninteracting spinless fermion Hamiltonian:
Hfermion =

∑

j J̃(c†
j c j+1 + h.c.) + hc†

j c j . By doing a Fourier transformation into the momentum

space as c j = L−1/2
∑

q e−iq jcq, one get diagonalised Hamiltonian as Hfermion =
∑

qωqc†
qcq,

where ωq = 2(J̃ cos q + h). For L spins, the quasi-momenta are given by q = n2π/L, where

n = −L/2, . . . , L/2 − 1. The group velocity of quasiparticles is given by vg =
dωq

dq . Fig.2-(a)
shows energy dispersion relation ωq and the corresponding group velocity. It can be noticed
that the energy is bounded with band width 4J̃ , and the DM interaction normalizes the cou-
pling with a visible impact on maximum group velocity vmax

g = 2J̃ at q = ±π/2.
Now lets explore the out-of-equilibrium dynamics. We prepare an initial state

|ψ0〉 = c†
L/2 |0〉, which in fermionic language means crating a single quasiparticle at the mid-

dle of chain as |0 · · ·00100 · · ·0〉L . This fermionic state can be easily prepared in experi-
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ments [35]. Then we probe spreading of excitation in system with monitoring single site
occupation 〈ψt | c

†
j c j |ψt〉, where |ψt〉 = L−1/2

∑

q ei(qL/2−ωq t)c†
q |0〉. With a little algebra we

have 〈c†
j c j〉t = L−2

∑

q1,q2
e−i(q1−q2)(L/2− j)ei(ωq2

−ωq1
)t . Note that connection with the original

spin model can be traced with 〈σz
j 〉t = 2〈c†

j c j〉t −1, which means, in Fig.2-(b), we are looking
at the correct observable.

Fig.2-(b) shows results for a chain with L = 51 sites. A locally perturbed system causes
emitting quasiparticles at different speeds, which the fastest particles propagate at a speed
vmax

g = 2J̃ . It gives rise to LR bound, which defines an effective causal cone for spatial correla-
tions, outside of which the correlations are exponentially suppressed [6]. It is readily apparent
that with the perturbing system at the center, excitations propagate in a symmetric way to both
sides and a perfect light cone is constructed. As discussed, tuning DM interaction increases
vmax

g , and this is clear by comparing left (D = 0.0) and right (D = 1.0) panels in Fig.2-(b). For
the time window present in these figures, quasiparticles for the case D = 1.0 hit the bound-
aries. Fig.2-(a) shows that for regime α→∞, the dispersion and corresponding velocity are
bounded. This leads to a well-defined boundary of light-cone, which is clear in Fig.2-(b).

3.2 Mapping to bosonic particles (∆= 0.0)

The presence of long-range interactions makes it impossible, as the Jordan-Wigner transfor-
mation is a non-local string operator, to map directly from the spin system to fermionic parti-
cles. However, we can use linear spin-wave (LSW) theory to describe Hamiltonian in terms of
quantum fluctuations around its classical ground state. For model Hamiltonian Eq.(1) with the
absence of DM interaction, the validity of LSW in the presence of power-law interactions has
recently been addressed [36]. Moreover, for the initial state considered here, as is composed
of a single magnon, the LSW treatment is exact.

We can map spin particles onto a system of hard-core bosons (magnons), introducing the
Holstein-Primakoff transformation, σz

j → n j − 1/2, σ+j → b†
j , and σ−j → b j where b†

j (b j)
are the creation (annihilation) operators of hard-core bosons and ni is the number operator at
site i. These bosons obey the bosonic commutation relationships, [b j , b†

j ] = 1, with constrain

b2
j = (b

†
j )

2 = 0, such that a site either filled by one boson or empty. This can be interpreted, a
spin up particle is represented by a filled site and a spin down particle by an empty site. To treat
the dynamic, the picture of non-interacting magnons is only valid when L−1

∑

q〈b
†
q bq〉(t)� 1

at all times, otherwise one has to account for the presence of magnons interactions. Consid-
ering the initial ordering of the spins along the z-axis (as close to initial state prepare before
quench in this work) shown be a good approximation for ∆= 0) [9,36].

Then we end up with a noninteracting magnonic (bosonic) Hamiltonian

Hboson =
∑

i j

�

Ji j b
†
i b j + h.c.

�

+ h
∑

j

b†
j b j , (5)

where Ji j = Ji j+iDi j . The complex hopping, can be recast into a phase like term as Ji j =
J̃ eiφ

|i− j|α
with φ = D/J independent of the decay exponent α . By doing a Fourier transformation
into the momentum space as b j = L−1/2

∑

q e−iq j bq, one get diagonalised Hamiltonian as
Hboson =

∑

q εq b†
q bq, where εq = J̃

∑

r 6=0 cos (qr −φ)r−α + h. In contrast to the nearest-
neighbour limit, for long-range interaction on a finite system with open boundary conditions,
maximal group velocity can be extracted with vmax

g ≡ |maxq

�

εq+π/(L+1) − εq

�

(L + 1)/π|. In
contrast to the nearest-neighbor case (α→∞), now the DM interaction is not gauging away
with helping the unitary transformation Q.

Figs.3-(a,b) show the energy dispersion relation εq and the corresponding group velocity
for various interaction ranges. In the absence of DM interaction (D = 0, left panels), a clear
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Figure 3: (color online) (a,b) Energy dispersion εq and corresponding group velocity

vg =
dεq

dq of Eq.(5) for various interactions range. Results of two DM interactions
shown on left (D = 0.0) and middle (D = 1.0) panels, respectively. (c,d) A figure of
merit which qualitatively shows asymmetric features of energy and group velocity.

difference going from short-range regime to long-range regime is visible. For regime α > 2,
the energy dispersion as well as its derivative are bounded i.e. vmax

g ≡ ε′q <∞. As we already
noted, this ends in a clear light-cone shape of correlation spread. The situation changes for
α < 2 as a kink appear at zero momentum q = 0. For the regime where 1 < α, although the
dispersion is bonded εq <∞, the velocity diverges. This enhances leakage of correlations
outside of the light cone. On the other hand when α < 1, both dispersion and group velocity
become unbounded, and the light-cone disappears.

Now let us turning on the DM interaction. The dispersion relation and corresponding group
velocity for D = 1.0 are illustrated on the middle panels of Figs.3-(a,b). As before, by changing
interaction from short to long-range, a kink appears at q = 0. However, an asymmetry is
noticeable in energy dispersion and also group velocity, which develops by complex hopping
accompanied by phase shift in the model. As emerges, the asymmetry is getting substantial
if the model exists at a long-range regime. To attain a deeper understanding, in Figs.3-(c,d),
we plot a figure of merit to depict qualitatively asymmetry dependence versus decay exponent
α. As demonstrated, the figure of merit is zeros when D = 0.0, whereas for D 6= 0 model has
a certain level of asymmetry at short-range and gradually increases towards the long-range
regime (α→ 0). Analytically, one can also show that the presence of the DM term accompanied
with interaction range, α, leads to asymmetric excitation propagation throughout the model.
To this end, let us assume φ < 1 and expand velocity about momentum q = 0. Then by
considering contribution of the lowest modes to the velocity gives vq=0+ − vq=0− ≈

4πφ
L r1−α.

This is in agreement with the figure of merit shown in Fig.3-(d).
This feature greatly impacts on correlation spreading of the model. We will show it within

the quench setup introduced in the proceeding part.
We prepare an initial state with one boson at the center of the chain as |ψ0〉 = b†

L/2 |0〉,
which this bosonic state also can be prepared in experiments [37]. Fig.4 displays spatially
resolved single site occupation 〈ψt | b

†
j b j |ψt〉 versus time for α = 1.1. Note that connection
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Figure 4: (colour online) Single site bosonic particle occupation 〈ψt | b
†
j b j |ψt〉 ver-

sus time for D = 0.0 and D = 1.0 depicted on left and right panels, respectively.
Parameter α= 1.1.
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Figure 5: (colour online) Same as Fig. 4, but for a domain-wall state as spread over
x > 0 as |ψ0〉= c†

L/2 · · · c
†
L |0〉.

with original spin model reads as 〈σz
j 〉t = 〈b

†
j b j〉t − 1/2. In the absence of DM interaction,

excitation at the center propagates to the both sides of the chain symmetrically. Although
the wavefront needs finite time, the light cone is not as clear as the short interaction regime
[7]. The situation changes when DM interaction is turned on. It is apparent that wavefront
propagation is no longer symmetric. Indeed, if we look more closely at the right panel of
Fig.4, we see that long-range DM interaction behaves as a barrier and guides the spin-wave
into the desired direction [38, 39]. By changing the DM interaction, namely from ẑ to −ẑ,
one can reverse propagation direction. This could be understood as follows: the phase in
the hopping (in hard-core boson language) does not do anything if one has nearest-neighbor
interactions, however at long-range interactions, one has closed loops, and now there are
interference effects between different hopping paths where the phases come into play. This
can also be rephrased in terms of the unitary transformation, which does not amount to a
simple shift of the dispersion relation when interactions are longer ranged because the lattice
is no longer bipartite.

Before closing this part, it is worth commenting on that the magnon propagation with a
dispersion εq ≈ cos (qr −φ) is not parity symmetric. With choosing an initial state which is

8

https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.021


SciPost Phys. Core 5, 021 (2022)

−5.0 −2.5 0.0 2.5 5.0

site
0

2

4

6

8

10

tim
e[

1/
J

]

α = 6.0

−5.0 −2.5 0.0 2.5 5.0

site

α = 0.5
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: (color online) Numerical exact results of spatially and temporally resolved
spin polarisation 〈σz

i 〉t of XXZ model (see Eq.(1)) with ∆ = 1.5 for D = 1.0 at short
(α= 6.0, left panel) and long (α= 0.5, right panel) range interacting regimes.

perfectly localized in space (or a uniform superposition of in momentum space), and since
the dispersion relation is just shifted in momentum space, it will continue to look symmetric.
However, considering a different initial state, e.g. a magnon wave-packet spread over a width
of x > 0 lattice sites, this would be nonuniform in momentum space, preferentially selecting
momenta around zero. Thus, this wave-packet would move asymmetrically due to DM inter-
actions. To verify this, we consider a domain-wall state |ψ0〉 = c†

L/2 · · · c
†
L |0〉. As can be seen

in Fig.5, while for the case with D = 0.0 wave packet almost confined into x > 0, for the case
with D 6= 0 nonuniform momentum contribution combined with phase shift modulated with
DM interaction leads to asymmetry propagating of excitation through the model.

3.3 Exact diagonalization

Testing the preceding results in a many-body picture demands numerical techniques to con-
sider Eq. (1), as it is not trivial to tackle analytically. Using the Krylov-space technique, we
probe the spin polarisation 〈σz

i 〉t . For an initial state, without loss of generality, we choose
a two-body state as |ψ0〉 = c†

L/2−1c†
L/2+1 |0〉. Fig.6 depicts results for the XXZ model with

∆ = 1.5. Consistent with the fermionic picture, at short-range interaction, the initially local-
ized perturbation spread bounded by LR velocity, leads to the formation of the light cone (see
the left panel of Fig.6). Although, the presence of DM interaction changes the propagation
speed and induces a degree of asymmetry, the light cone still exists (as the Hamiltonian is
local and LR bound is well defined). Increasing interaction range (decreasing α) leads the
correlations instantaneously spread over the chain as shown in the right panel of Fig.6. This
confirms the breakdown of LR bound similar to that of Ref. [3,4,7].

By turning the DM interaction, we find results similar to the single-particle case (see the
right panel of Fig.6). Interestingly, with complex interference effects induced by DM coupling,
spin excitation guides to the desired direction.This calls that one could expect these behaviors
to survive even in the many-body regime, as recently an asymmetric transport also reported
in Abelian anyons [28]. However, contrary to the Abelian anyons in which non-local anyonic
commutation plays a role, for the model proposed in this work complex quantum interference
and non-trivial shift of dispersion relation (as the lattice is no longer bipartite with long-range
interaction) are possible scenarios to explain asymmetric transport.
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Figure 7: (colour online) Main panels (a-c) show time evolution of quantum mutual
information polarization ∆I between spin at centre (place of initial perturbation)
and the spins located at edges of chain. Side panels correspond to the quantum
mutual information Ii j of the main panel. Data for chain size L = 23 and ∆= 0.5.

3.4 Quantum information tools

It would also be interesting to look at the entanglement spreading in the setup. To this end,
we first numerically analyze block entanglement entropy.

Fig.8 displays growth of half-chain entanglement entropy SvN. In all sets of parame-
ters shown here, SvN(t) initially grows as a power of time t and at longer time saturates
to SvN(t) = log 2 independent of system regime. Figs.8(a,b) present results for long-range
(α = 0.5) and short-range (α = 6.0) regimes with different DM coupling strengths. By in-
creasing DM, the linear(in logarithmic scale) behavior of SvN breaks down and changes into
an oscillatory before entering the saturation regime. As observed, while the presence of DM
coupling modulates a higher value of entanglement at a smaller time, it finds lower entangle-
ment at later times. This may be explained in connection to the confinement of elementary
excitations [13, 40]. It leads to the suppression of entanglement entropy which in general
instances turns out to oscillate rather than grow indefinitely.
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The situation is more profound in the long-range regime as correspondingly excitations
speed modified by DM interaction. Figs.8(c,d) illustrate results for a fixed DM coupling by
changing the power exponent α. In absence of the DM coupling (Fig.8-(c)) and for α > 1.0,
the half-chain entropy initially increases as a power of t, while it starts to oscillate at short times
for the long-range regime. Remarkably, this becomes more prominent with the presence of DM
interaction. In Fig.8(d), it can be seen that by changing α, SvN shows appreciable oscillation
with a few orders of magnitude reduction. This may show a signature of diffusive rather than
ballistic transport in the chain. Although a detailed study in this line needs separate work, we
give some elaboration on this issue in the appendix. Another explanation would be that the
dynamics are constrained to take place in a small part of the total available Hilbert space. This
is already addressed in Ref. [8], in the case of infinite-range interactions with connection to
the Lipkin-Meshkov-Glick Hamiltonian [41,42].

At the experimental level, this is more straightforward to measure quantum mutual infor-
mation than the von Neumann entropy. So further confirmation may be accessed by inspection
quantum mutual information between two distant spins Ii j . In Fig.7, we have plotted a figure
of merit to measure quantum information polarization

∆I =
�

�

�

�

I1,L/2 − IL,L/2

I1,L/2 + IL,L/2

�

�

�

�

,

between spin located at the center with spins is sitting at the edges of the chain. For com-
parison purposes, results for three different regimes are presented in the same time window.
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Figure 8: (colour online) Growth of half-chain entanglement entropy SvN for various
parameters in the Hamiltonian of Eq.(1). The horizontal dashed line is saturate value
SvN(t) = log 2. Insert plot illustrates shaded area in logarithmic scale. Data for chain
size L = 23 and ∆= 0.5.
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Noticeably, we find that for the intermediate and the long-range regime distant spins become
entangled instantaneously, whereas for the short-range regime quasiparticle needs a certain
time to reach edges (consistent with LR bound). Furthermore, we notice that for D = 0 and
irrespective the interaction range, ∆I is always zero. This confirms the symmetric spread
of quantum information to either sides of the chain. However, for a finite α (appreciable for
α¯ 2), the presence of DM interaction changes the way quantum information spreads over the
chain. Interestingly, as shown in Fig.7, by gradually tuning the DM coupling strength quantum
information ∆I increases and even may reach a fully polarized one for some time intervals.

4 Summary and Outlook

Recently, long-range spin chains have gained attention as platforms to study quantum infor-
mation dynamics. One can use the possibility of controlling the power-law interactions and
vector chirality of DM coupling in order to drive information along the chain. We proposed
a protocol setup consisting of long-range spin-1/2 chain modulated with DM coupling. For
translationally invariant fermionic or bosonic models, information spreading occurs in a spa-
tially symmetric way. However, our results reveal that by adjusting the interaction range and
DM coupling direction transport excitation can be guided in desired path. This could poten-
tially enable us to design quantum information protocols with unidirectional and bidirectional
quantum channels, and maybe testable with current state-of-the-art trapped-ion experiments.
We further explore the growth of block entanglement entropy in these systems and an order
of magnitude reduction distinguished. This could also be interesting to simulate the quantum
system on a computer, as linear growth of entanglement with time, often makes numerical sim-
ulation unfeasible. [43–45]. Finally, it would be interesting to study the effects of long-range
DM interactions on other systems, e.g. many-body localized systems [46, 47], or long-range
disorder spin chains [48].
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A Half-chain entanglement growth

In this appendix, we aim to have more analysis on SvN. Fig.9 plots results of entanglement
growth for different system sizes. Interestingly, the results at the long-range regime shows
clear size dependence with reduction of entanglement growth at thermodynamic limit. The
DM interaction effects are also visible with comparing panels (a) and (b). Although, at the
long-range regime and for short times, SvN increases faster than the nearest- neighbor case
(see the solid-black line in Fig.9), but a suppression at a later time is profound
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Figure 9: (colour online) Growth of half-chain entanglement entropy SvN of Hamil-
tonian Eq.(1) with ∆ = 0.5 for various different chain length at long-range regime
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