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Abstract

SKA will be a major step forward not only in astrophysics, but also in precision cosmol-
ogy. We show how the neutral hydrogen intensity map can be combined with the Planck
measurements of the CMB power spectrum, to provide a precision test of the inflaton po-
tential. For a conservative range of redshifts we find that SKA can significantly improve
current constraints on the Hubble slow-roll parameters.
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1 Introduction

Cosmic inflation [1–3], originally designed as a solution to the flatness and horizon problems,
provides a viable mechanism for seeding cosmic structures [4–7]. It can be studied through
fluctuations in the cosmic microwave background at early times and through the distribution
of dark matter and galaxies in the late Universe. The standard paradigm assumes a spatially
homogeneous scalar inflaton fieldϕ with a potential V (ϕ) and a coupling to gravity through its
energy momentum tensor. If a single inflaton is initialised in a slow-roll state [8–10] it drives
an accelerated expansion of the background spacetime. During this exponential expansion

1

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.037
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.5.3.037&amp;domain=pdf&amp;date_stamp=2022-07-18
https://doi.org/10.21468/SciPostPhysCore.5.3.037


SciPost Phys. Core 5, 037 (2022)

the comoving horizon shrinks and sets the amplitude of fluctuations at the moment of their
horizon exit. We can then compute the spectrum of scalar and tensor perturbations from the
time evolution of the Hubble function, which in turn is completely determined by the inflaton
potential and initial conditions.

Planck’s observations of the cosmic microwave background (CMB) temperature and polar-
isation anisotropies have advanced our understanding of inflation tremendously [11,12]. The
natural next step would be to include observations on a larger range of scales, to further con-
strain the spectral shape and with that the inflationary potential. Here, structures in the late
Universe ideally complement the CMB, but one needs to proceed with caution as non-linear
structure formation adds significant amounts of power in the spectra on small scales. In addi-
tion, depending on the observational channel, the relationship between the fundamental fields,
density or gravitational potential, and the actual observable might be nonlinear, as is the case
of the galaxy distribution. In this article we study the distribution of neutral hydrogen, mapped
out by the Square Kilometer Array (SKA) [13–24], as a probe of inflation models. The density
field on these scales is, to good approximation, in a linear stage of structure formation with
Gaussian statistics and can potentially take cosmology to the next level of precision [25–29],
even for non perfectly Gaussian fields [30,31], along with a determination of the astrophysical
parameters [32]. Combined with with comparatively low systematic influences due to X -ray
or UV-sources [33–37] or due to baryonic feedback processes [38–40], this should allow us
to probe inflationary parameters through 21cm tomography in this window. While we will
use idealising assumptions in constraining inflationary parameters in this work, modelling of
the reionisation process at high redshift has reached a high degree of sophistication [41–46]
and takes care of astrophysical processes, which are likewise modelled in machine learning
approaches [47,48].

Several studies have looked at 21cm neutral hydrogen tomography as a tool for precision
measurements of the spectral index ns and its running [49–55], to constrain the inflationary
potential. Focusing on redshift z = 8 – 10 we analyze the SKA potential in constraining the
Hubble slow-roll (HSR) parameters [56], which are defined either as logarithmic derivatives
of the Hubble function. A wide range of scales enters this measurement, ideally from 10−2

to 1 Mpc−1, and the systematics related to nonlinear structure formation on small scales or
nonlinear relation between observable and the density perturbations can be controlled. This
will allow SKA to derive tight bounds on the Hubble slow-roll parameters, in combination with
the Planck measurements of the CMB spectrum.

In Sec. 2 we discuss the required formalism for inflation assuming a single field ϕ driving
the inflation. We validate our approach using the constraints on slow-roll parameters from the
Planck 2018 measurements in Sec. 3. We discuss about forecast on the slow-roll parameters
from SKA and, combined Planck and SKA in Sec. 4. Finally, we summarize our results.

2 Cosmic inflation and cosmic structures

The Planck measurements of the CMB temperature and polarisation anisotropies have been the
first systematic probe of inflationary parameters. The spectral index ns, its running dns/d ln k,
and the scalar-to-tensor ratio r have been measured with high precision, and the impact of
cosmological parameters and the optical depth τ has been investigated in detail. Assuming
single field inflation, these measurements can be translated into slow-roll parameters, as we
will briefly review below.
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Slow-roll inflation

During cosmic inflation, the evolution of the Universe is dominated by the gravitational effect
of a single field ϕ, whose energy-momentum content acts as a source of gravity. As ϕ is
assumed to conform to the FLRW-symmetries, it can only depend on time. Because its action

S =

∫

d4 x
p

−g
�

1
2

gµν∇µϕ∇νϕ − V (ϕ)
�

(1)

does not contain any dissipative terms or couplings to other fields, it acts as an ideal fluid with
density ρ, pressure p, and a covariantly conserved energy momentum tensor. Variation with
respect to ϕ and imposing the FLRW-symmetries gives us the Klein-Gordon equation

ϕ̈ + 3
ȧ
a
ϕ̇ = −

dV (ϕ)
dϕ

. (2)

The gravitational effect of ϕ on a FLRW-spacetime with scale factor a(t) is given by the Fried-
mann equations

�

ȧ
a

�2

=
8π

3mPl
2
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ϕ̇2

2
+ V (ϕ)
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and
ä
a
= −

8π
3mPl

2
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ϕ̇2

2
− V (ϕ)

�

. (3)

The limit ϕ̇2 � 2V (ϕ) is referred to as the slow-roll phase. The Klein-Gordon equation to-
gether with the first Friedmann equation allow us to write the evolution of the FLRW-universe
in terms of the Hubble function H = ȧ/a = d ln a/dt,

ϕ̇ = −
mPl

2

4π
H ′(ϕ) ,

V (ϕ) = −
mPl

4

32π2
[H ′(ϕ)]2 +

3mPl
2

8π
H2(ϕ) , (4)

with H ′ = dH/dϕ. In ideal slow roll, the expansion of the Universe is exponential with a
constant Hubble function. Deviations are parametrized by

εH =
mPl

2

4π

�

H ′

H

�2

. (5)

which reflects the equation-of-state parameter w= p/(ρc2)≈ −1, as required by an exponen-
tial expansion. Analogously, a small value of

ηH =
mPl

2

4π

�

H ′′

H

�

(6)

makes sure that slow roll is maintained for a sufficiently long time.
Starting from these two intuitive parameters one defines a full hierarchy of Hubble slow-

roll parameters that quantify logarithmic changes to the Hubble function,

λ
(n)
H =

�

mPl
2

4π

�n�
(H ′)n−1

Hn

dn+1H
dϕn+1

�

, n≥ 1 , (7)

with the usual correspondence ηH = λ(1), ξ2
H = λ

(2), and ω3
H = λ

(3). Expanding around the
inflaton field valueϕ∗ at the horizon crossing with the pivot scale k∗ = 0.05 Mpc−1, the Hubble
function can be reconstructed in the observable window defined by the range of observationally
accessible spatial scales as

H(ϕ) =
N
∑

n=0

1
n!

dnH
dϕn

�

�

�

�

ϕ∗

(ϕ −ϕ∗)n , (8)

expressed in terms of the λ(n)H .
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Perturbation theory

A suitable coordinate choice for perturbation theory is comoving gauge, where spatial hyper-
surfaces are orthogonal to the worldlines of FLRW-observers, and the corresponding gauge
invariant quantity is the Mukhanov potential

u= aδϕ −
R
H
∂ ϕ

∂ η
. (9)

It is constructed from the curvature perturbation R and the inflationary field perturbation δϕ,
and η is conformal time. Its Fourier modes u(k) evolve according to

d2

dη2
u(k) +

�

k2 −
1
z

d2z
dη2

�

u(k) = 0 , (10)

where z = aϕ̇/H and the initial conditions are formally set at

u(k,η→−∞) =
e−ikη

p
2k

. (11)

This evolution equation is tackled by first solving the background evolution of the FLRW-
universe with the Hubble function as a Taylor series and then solving the mode equation.
This way we obtain a scale-dependent prediction of u(k) at the end of inflation, where slow
roll is violated and the Universe transitions away from exponential expansion. The amplitudes
of the Fourier modes define the spectrum of curvature perturbations

PR(k) =
k3

2π2

�

�

�

�

u(k)
z

�

�

�

�

2

. (12)

While perfect slow roll would guarantee scale-independent curvature perturbations and gen-
erate a perfect Harrison-Zel’dovich-spectrum, any deviation leads to modulations. They can
be computed by mapping the slow-roll parameters onto a logarithmic Taylor expansion of the
potential of the type

lnPR(k) = ln As + ln
k
k∗

�

(ns − 1) +
α

2
ln

k
k∗
+
β

3!
ln2 k

k∗
+ . . .

�

, (13)

where the expansion scale k∗ is exactly the pivot scale.
For ns = 1 and α = β = 0 we recover the Harrison-Zel’dovich spectrum PR(k) = const.

The curvature perturbation spectrum PR(k) defined in Eq. (12) serves as an input for the
computation of all observables, most notably the CMB temperature and polarisation spectra,
as well as for fluctuations in the 21cm brightness.

To determine the constraints on the slow-roll parameters we use the MCMC engine Mon-
tePython3 [57, 58], interfaced with the Boltzmann code CLASS III [59, 60] to solve the back-
ground and perturbation equations and find the power spectrum. We truncate the series in
Eq.(8) at N = 4, such that our parameter space is spanned by

�

Ãs,εH ,ηH ,ξ2
H ,ω3

H

	

, (14)

also denoted as the Hubble slow-roll (HSR) parameters. The parameter HSR0 ≡ Ãs is defined
in Ref. [59]. The primary reason behind this choice of parameterization is to validate our
results as well as to compare the potential of SKA to that of Planck 2018 [11]. Note that
this parameterization does not depend on the slow-roll approximation. Here, we chose to
parameterize H in Eq. (10) as a Taylor expansion with respect to (ϕ−ϕ∗) as given in Eq. (8).
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Hence the HSR parameters are not constant in the observable window and evaluated at the
pivot scale k∗ = 0.05 Mpc−1 corresponding to the comoving horizon size. However, for the
Ãs, ns, α and β parameterization we have truncated the Taylor expansion in Eq. (12) at β
and assumed the primordial spectrum PR(k) is well captured in the observable window of
comoving wave numbers.

For the reference cosmological models through out the paper we assume spatially flat
ΛCDM-cosmology, with specific fixed parameters choices

ωb = 2.242× 10−2 , ωc = 0.12 ,

τreio = 0.05678 , h= 0.6724 , (15)

corresponding to our reproduced Planck 2018 measurements [11], as discussed in the next
section.

3 Planck validation

As illustrated above, the combined system of differential equations for the slow-roll parameters
and the mode equation for the amplitudes u(k) predict the spectrum PR(k). Any deviation
from perfect slow roll induces a scale dependence and a deviation away from the idealised
Harrison-Zel’dovich shape. A measurement which is sensitive to slight variations from a pure
power law necessarily encompasses a wide range of scales, ideally from the horizon ck = aH
to as small scales as possible. Evading nonlinear structure formation on the smallest scales, the
requirement of a linear relationship between observable and potential fluctuations conserving
all statistical properties and access to a wide range of scales starting at the pivot scale k∗
suggests a combination of the CMB at a redshift around 103 and the neutral hydrogen density
at a redshift around 10 as a powerful probe of inflationary dynamics.

The established window to inflationary fluctuations are observations of the CMB tempera-
ture and polarisation anisotropies [12]. Perturbations on the spectral distribution of photons
along a line of sight incorporate baryonic acoustic oscillations and Sachs-Wolfe-type effects
and can be cast into the angular spectra C T T (`), C EE(`) and C T E(`). As long as we neglect
the mode equation associated with gravitational waves, we set the spectrum of primordial
tensor mode to zero and compute the E-mode polarisation from the curvature perturbation
alone. Combining the three measured spectra to a likelihood with Planck’s noise model and a
suitable covariance allows us to constrain Hubble slow-role parameters from simulated Planck
data and check our results with the conventional (α,β)-parametrization defined in Eq.(13).

For a first test of our method we fix the background cosmology to a conventional ΛCDM-
model. The noise model uses Gaussian beam shapes and the typical noise levels as specified
for Planck. We restrict ourselves up to N = 4 in Eq.(8), as done in Ref. [12]. We sample the

Table 1: Mean values and error bars (95% CL) for the slow-roll parameters shown in
Fig 1.

Parameters mean 95% CL

Ãs × 109 2.084 [1.978, 2.197]
εH 0.006095 < 0.01518
ηH −0.005849 [−0.02804, 0.02104]
ξ2

H 0.01133 [−0.1498, 0.1797]
ω3

H 0.5182 [−1.213, 2.309]
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Figure 1: Marginalized joint distributions for parameter pairs at 68% and 95%
confidence and marginalized distributions for individual parameters from the 5-
dimensional likelihood of the slow-roll parameters in Eq.(14), also marginalized over
the cosmological parameters in Eq.(15). We use the joint TT,TE,EE+lowE Planck
data, these results should be compared with Fig. 13 of Ref. [12].

slow-roll parameters with flat priors [12,61,62]. The reconstructed inflation parameters from
TT,TE,EE+lowE data are shown in Fig. 1 and in Tab. 1. Our results are in good agreement with
the dashed contours of Fig. 13 of Planck 2018 [12]. Our values shown in Tab. 1 are mildly
weaker than the values shown in Tab. 7 of Ref. [12], as we to not include BK15 and lensing
data. For illustration, we also show the angular power spectra for the TT and EE correlations
with the respective noise for few representative samples from our parameter scan in Fig. 2.

While the primary aim of this paper is to estimate the potential of SKA and 21cm tomogra-
phy in measuring the inflaton potential, we need to keep in mind that any SKA measurement
will be combined with the Planck CMB constraints. This means we first need to understand the
way this correlated set of fundamental parameters affects the CMB power spectra. To illustrate
the relation between the different model parameters, we start with a set of ten 2-dimensional
parameter scans, fixing three parameters of the 5-dimensional model space defined in Eq.(14).
For each 2-dimensional scan we set the remaining three parameters to the mean values given
in Tab. 1. We can then assume that the maximum in the 2-dimensional scan should also repro-
duce the mean values in Tab. 1, but with a correlated uncertainty. In Fig. 3 we show these 2-
dimensional parameter planes and confirm that for the combined Planck measurements there
do not exist especially strong correlations. In Tab. 2 we give the mean values and the 95%
confidence level limits for the 2-dimensional parameter planes shown in Fig. 3.
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Figure 2: Angular power spectra for the TT (left) and EE (right) correlations for
representative samples of the slow-roll parameters along with respective noise power
spectrum.
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Figure 3: Sliced 2-dimensional likelihoods for the slow-roll parameters from CMB
data.
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Table 2: Mean values and error bars for 2-dimensional contours of the slow-roll
parameters space for the CMB (Fig. 3), 21cm hydrogen spectrum (Fig. 4) and their
combination (Fig. 8).

Parameter Planck SKA SKA+Planck
mean 95% CL mean 95% CL mean 95% CL

Ãs × 109 vs εH
2.0842 [2.0792, 2.0892] 2.08401 [2.08314, 2.08489] 2.08403 [2.08318,2.08491]
0.0061 [0.0050, 0.0071] 0.006096 [0.006050, 0.006141] 0.006096 [0.006052,0.006142]

Ãs × 109 vs ηH
2.0842 [2.0791, 2.0894] 2.08400 [2.08331, 2.08469] 2.08401 [2.08333,2.08468]
−0.0059 [−0.0081,−0.0037] −0.005849 [−0.005941,−0.005756] −0.005850 [−0.005940,−0.005758]

Ãs × 109 vs ξ2
H

2.0843 [2.0791, 2.0897] 2.08400 [2.08365, 2.08436] 2.08400 [2.08365,2.08436]
0.010 [−0.024,0.044] 0.01134 [0.01052, 0.01218] 0.01134 [0.01055,0.01215]

Ãs × 109 vs ω3
H

2.0841 [2.0782, 2.0898] 2.08400 [2.08379, 2.08420] 2.08400 [2.08381,2.08420]
0.51 [−0.02,0.97] 0.518 [0.498,0.537] 0.518 [0.498, 0.537]

εH vs ηH
0.0060 [0.0048, 0.0072] 0.00609 [0.00593, 0.00625] 0.00609 [0.00593,0.00624]
−0.0061 [−0.0085,−0.0037] −0.00586 [−0.00627,−0.00545] −0.00587 [−0.00628,−0.00549]

εH vs ξ2
H

0.0058 [0.0038, 0.0078] 0.006095 [0.006066, 0.006123] 0.006095 [0.006066,0.006123]
0.002 [−0.059,0.065] 0.0113 [0.0101,0.0126] 0.0113 [0.0101, 0.0126]

εH vs ω3
H

0.00606 [0.00513, 0.00699] 0.006095 [0.006085, 0.006105] 0.006095 [0.006085,0.006105]
0.51 [0.07,0.92] 0.518 [0.499,0.536] 0.517 [0.498, 0.536]

ηH vs ξ2
H

−0.0059 [−0.0080,−0.0038] −0.005848 [−0.005933,−0.005762] −0.005848 [−0.005935,−0.005760]
0.011 [−0.020,0.043] 0.0114 [0.0099,0.0128] 0.0113 [0.0099, 0.0128]

ηH vs ω3
H

−0.0059 [−0.0079,−0.0039] −0.005849 [−0.005875,−0.005822] −0.005849 [−0.005875,−0.005822]
0.52 [0.07,0.94] 0.518 [0.498,0.537] 0.517 [0.498, 0.536]

ξ2
H vs ω3

H
0.011 [−0.018,0.040] 0.01133 [0.01083, 0.01183] 0.01132 [0.01082,0.01183]
0.51 [0.09,0.93] 0.518 [0.497,0.538] 0.517 [0.496, 0.538]

4 SKA projections

The second window to the matter spectrum at relatively high redshift are intensity fluctuations
of the 21cm hydrogen line. We focus on the redshifts range between 8 and 10. The upper
bound avoids the position dependence of the spin temperature, since the spin temperature
couples to the gas temperature through the Wouthuysen-Field effect in this redshift range [49].
The lower bound allows us to avoid position-dependent reionization, as there is still nearly
no reionized helium. Since this redshift regime probes patterns from before the reionization
started, the neutral hydrogen fraction is xH = 1 and we can identify the power spectrum of the
neutral hydrogen perturbations PHI(k) with the matter power spectrum Pδ(k, z). This means
the two-point temperature correlations of the 21cm intensity can be expressed as [53,63]

〈∆T21(k)∆T21(k
′)〉 ≡ P21(k, z)(2π)3δ(k− k′) , (16)

where ∆T21(k) is the Fourier transformation of the difference between the 21cm temperature
T21(x) with,

P21(k) =
�

A(z) + T21(z)µ
2
�2

PHI(k, z) . (17)

Here the parameter µ≡ k‖/k is the cosine between the line of sight k‖ and the absolute value
k and the T21(z) is the average 21cm temperature at redshift z where the function A(z) can
be found from Refs. [63, 64]. The PHI(k, z) is the spectrum of the neutral hydrogen density
fluctuation which we assumed to be equal to the matter spectrum Pδ(k, z), implying zero
(re)ionisation [65]. Before the beginning of reionization the function A(z) and the average
temperature at a specific redshift can be approximated as [53]

A(z) = T21(z) = 27.3 mK× xH

Ts − Tγ
Ts

�

1+ z
10

�1/2

. (18)
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During the epoch of recombination the spin temperature can be taken to be much larger than
the photon temperature due to the Wouthuysen-Field effect. The gas temperature in the inter-
galactic medium is heated by X -ray photons up to hundreds of Kelvin [49]. This allows us to
drop the temperature factor, which reduces the previous expression to

A(z) = T21(z) = 27.3 mK× xH

�

1+ z
10

�1/2

. (19)

This way, the 21cm-intensity and the matter distribution are linked in the most straightforward
way possible, with a uniform modelling of the relationship between fundamental field and
observable [66, 67], ignoring cross-correlations [68, 69] and taking into account velocities
only [70], while ignoring structures beyond that of a continuous Gaussian random field such
as halo formation [71].

The instrumental noise power spectrum in Fourier space can be expressed as [72,73]

PN
21 =

πT2
sys

to f 2
cover

d2
A(z)yν(z)

λ2(z)
D2

base

, (20)

where Dbase is the baseline of the antenna array that is uniformly covered up to a fraction
fcover and to is the observation time, with λ(z) the 21cm-transition wavelength at redshift z
(for optimisations of the design, please refer to [74]). The conversion function from frequency
ν to line of sight k‖ is yν = 18.5((1+ z)/10) Mpc/MHz, while the system temperature can be
parameterized as [53]

Tsys = 180 K×
� ν

180 MHz

�−2.6
. (21)

Here the frequency is the 21cm transition at redshift z, ν= ν0/(1+z). We take the observation
time as to = 10000 hours (hrs) for our analysis, however we also provide results for 1000 hrs
for comparison. The baseline Dbase = 1 km is taken to be the baseline specified for SKA-LOW in
Ref. [22]. The coverage fraction in the nucleus of the antenna array can be computed as [72]

fcover = Na
D2

D2
base

, (22)

where Na is the number of antennas while D is their diameter. For SKA-LOW [22] the coverage
fraction is approximately fcover ≈ 0.0091.

For a specific redshift bin centered at zi the χ2 functional can be expressed as [53,75]

χ2
i =

fsky

2
Voli
(2π)3

∫ kmax

kmin

dk(2πk2)

∫ 1

−1

dµ
[P21(k, z,θ )− P f id

21 (k, z,θfid)]2

[P21(k, z,θ ) + PN
21(z)]2

, (23)

where subscripts i denote the redshift bin and θ = {Ãs,ε,η,ξ,ω}. The comoving volume of the
redshift bin Voli can be computed as a spherical shell in comoving distance r(zi) and r(zi−1),
where zi and zi−1 are the edges of the redshift bin of interest. The expression to compute the
volume reads approximately as

Voli =
4
3
π
�

r(zi)
3 − r(zi−1)

3
�

, (24)

which is over the redshift range considered very accurate in comparison to integration over
the volume evolution, due to the fine slicing in redshift.

For our analysis we take the 22 equally spaced redshift bins in the region z ∈ [8, 10]. The
comoving wave numbers are bounded from above by the non linear scale which we set as
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Figure 4: Sliced 2-dimensional likelihoods for the slow-roll parameters from SKA
projections.

kNL = 1Mpc−1, as in Ref. [53]. On the other hand, the astrophysical foregrounds will cut off
wave numbers smaller than kmin ≈ 10−2 Mpc−1 [53]. Summing up all the different χ2

i we get
the overall χ2 =

∑

i χ
2
i . The fiducial power spectrum Pfid

21 (k, z,θfid) is computed according to
Eq.(17) and fsky is set to 0.58 according to Ref. [76]. The parameters θ are used to compute
the matter power spectrum. For the computation of the fiducial power spectrum we choose
the mean values for these parameters based on the Planck likelihoods.

Whenever we combine the data sets, we assume that CMB and 21cm data are uncorre-
lated. This assumption could be challenged if one takes into account effects such as gravita-
tional lensing on the radiation backgrounds by the same structures or correlated secondary
anisotropies [77, 78]. We ignore such effects also because they are expected to remain sub-
leading compared to the primary fluctuations of the two radiation backgrounds.

Slow-roll parameters from SKA

In this section we discuss the potential of 21cm tomography in constraining the slow-roll pa-
rameters in detail. As we shall see shortly a clear hierarchy in sensitivity of observables on
cosmological parameters, we simply keep the background cosmology fixed to the ΛCDM given
in Eq.(15). With this vanilla parameter choice, the SKA data only constrains the inflationary
potential through the slow-roll parameters defined in Eq.(14).

To understand the correlations between different slow-roll parameters we first plot all
possible 2-dimensional Markov chains in Fig. 4 based on the likelihood discussed in Sec. 4.
The figure should be compared with Fig. 3 where we show the 2-dimensional Markov chains
for Planck 2018 data. The corresponding mean values and errors are presented in Tab. 2
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Figure 5: Sliced 3-dimensional likelihood ellipsoids for a selection of slow-roll pa-
rameters from SKA projections.

which can be compared with similar one for Planck 2018 as given in Tab. 2. It is clear that
SKA offers more stringent constraints on slow-roll parameters then Planck for all 2-dimensional
combinations of slow-roll parameters. As for Fig. 3 we set the all remaining parameters of our
2D analyses to the mean values given in the Tab. 1.

In a similar fashion we can study 3-dimensional Markov chains for the slow-roll param-
eters, illustrating a few combinations in Fig. 5. In Fig. 6 we project the 3-dimensional error
ellipses into two dimensions and superimpose the 2-dimensional chains from Fig. 4. We also
plot 2D slices from the 3-dimensional Markov chains and superposed them with 2D Markov
chains of Figs. 11 and 12 for all slow-roll parameter combinations in App. A. These figures
illustrates that the 3-dimensional Markov chains still reflect the correlations observed in 2D
chains. For the full set of slow-roll parameters from Eq.(14) we rely on the combination with
the Planck data, where the numerics are less challenging than for SKA alone.

The observed improvement in sensitivity on slow-roll parameters provided by SKA orig-
inates from the wide range of scales that are probed and that the range of accessible scales
stretches to small spatial scales, too, giving SKA in comparison to Planck a better lever to con-
strain the effect of slow-roll parameters on the spectrum. In Fig. 7 we illustrate variations in
the spectrum for a representative selection of samples of the slow-roll parameters. We show
the largest scales close to the pivot-scale, as probed by Planck, and the smallest scales, where
SKA plays out its unique sensitivity and resolution. Comparing Fig. 7 and Fig. 2 one should
keep in mind that on the largest scales there is a significant cosmic variance, which is not
included in the shown noise levels, such that the constraining power of CMB-spectra on the
largest scales remains limited. We have chosen h to be consistent with the comparatively low
values from the CMB in all our forecasts, as both observations probe the high-redshift universe.
The choice of a higher value of h as reported from low-redshift observations would not have
a strong influence on the constraints of slow-roll parameters, as preliminary tests suggest.

Slow-roll parameters from SKA and Planck

To illustrate how the combined SKA and Planck likelihoods constrain the slow-roll parameters,
we again start with the 2-dimensional contours in Fig. 8. The corresponding mean values
and 95% CL limits are included in Tab. 2. The projected 2-dimensional constraints from the
Planck and SKA combination are extremely similar to the SKA limits alone, as expected from
the weaker Planck limits shown in Fig. 3. This is expected since the constraints from SKA in
the 2D parameters sets are much stronger than the Planck as can be compared from Tab. 2.
We provide the 3-dimensional constraints from the Planck and SKA combination in Fig. 13 in
the Appendix. Unlike SKA likelihood alone as in previous section we find that 5-dimensional
slow-roll parameters converge well, since the Planck likelihood cuts off approximately flat
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Figure 6: Marginalized 3-dimensional likelihoods from Fig. 5, compared with the
2-dimensional likelihoods in Fig. 4.

directions. The marginalized 2D contours from the 5-dimensional Markov chains for the slow-
roll parameters given in Eq.(14) are shown in Fig. 9.

We finally provide constraints on the full set of slow-roll parameters from Planck alone and
from Planck and SKA combined in Fig. 10, also varying cosmological parameters ωb, ωc , τreio
and h. These limits can be compared directly to the final Planck results reproduced in Fig. 1 and
shown as dashed contours. We assume total observation times of 1000 and 10000 hours for
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Figure 9: Marginalized 68% and 95% CL contours from the 5-dimensional likelihood
of the slow-roll parameters in Eq.(14). We combine the 2018 Planck results with SKA
projections assuming 10000 hrs observation time.

SKA. The corresponding mean and 95% CL limits are summarized in Tab. 3. It is clear that the
constraints from the combined likelihoods are much stronger than the Planck 2018 data alone.
In particular, we find the combined constraints are about one order of magnitude stronger than
the Planck constraints for the slow-roll parameters ξ2

H and ω3
H . Moreover, the combined data

can constrain the slow-roll parameters ξ2
H andω3

H more stringently than that of εH and ηH , as
can be easily seen from Fig. 10 and Tab. 3. The sensitivity gain for the higher-order slow-roll
parameters ξ2 and ω3 is related to the fact that those parameters impact the shape of the

Table 3: Mean values and 95% CL error bars for the slow-roll parameters from Planck
2018 data and combined Planck plus SKA with 1000 hrs or and 10000 hrs observation
time, marginalized over cosmological paramers, and corresponding to Fig. 10.

Planck SKA+Planck (1000 hrs) SKA+Planck (10000 hrs)
Parameter mean 95% CL mean 95% CL mean 95% CL

Ãs × 109 2.084 [1.978,2.197] 2.075 [2.046, 2.110] 2.075 [2.048,2.106]
εH 0.006095 < 0.01518 0.0043 < 0.0101 0.0041 < 0.00951
ηH −0.005849 [−0.02804,0.02104] −0.0097 [−0.0198, 0.0032] −0.0101 [−0.0197,0.0022]
ξ2

H 0.01133 [−0.1498,0.1797] 0.011 [−0.002,0.024] 0.011 [0.000,0.023]
ω3

H 0.5182 [−1.213,2.309] 0.51 [0.33, 0.67] 0.51 [0.41, 0.61]
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Figure 10: Marginalized 68% and 95% CL contours from the 5-dimensional likeli-
hood of the slow-roll parameters in Eq.(14), also marginalized over the cosmological
parameters in Eq.(15). We combine the 2018 Planck results with SKA projections
assuming 10000 hrs (purple solid) and 1000 hrs (purple dashed) observation time
and overlay the Planck contours from Fig. 1

spectrum strongest far away from the pivot scale k∗, similar to the parametrization given in
Ref. 13. As the pivot scale k∗ is chosen to be the largest scale in the problem and covered by
CMB-observations (albeit with a limitation due to cosmic variance), significant improvement
is provided by the smallest scales, far away from k∗.

A non-Harrison-Zel’dovich form of the spectrum in terms of α and β can be measured with
CMB-S4 experiments, as well as precision 21cm-surveys [53]. To allow for a comparison we
present our results in terms of these parameters in Fig. 14 and Tab. 4 of the Appendix. The
mapping to slow-roll parameters is not unambiguous because of its nonlinearity, so we prefer
to work with the slow-roll parameters directly.

5 Outlook

We have presented constraints on the single-field inflationary potential in terms of the Hub-
ble slow-roll parameters from the CMB temperature and polarisation spectra combined with
the 21cm brightness fluctuations. We compute the spectrum of curvature perturbations for a
sample of initial values, parameterizing the Hubble function in terms of the scalar field am-
plitude in a truncated Taylor-expansion. The field itself, the background cosmology and the
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mode equations for perturbations are evolved together to yield a curvature perturbation spec-
trum at horizon-exit. We then evolve the modes using a Boltzmann-code and link them to
CMB temperature and polarisation anisotropies, as well as the matter power spectrum at low
redshift, from which we model the fluctuations in the 21cm spectrum. All spectra with their
instrumental noise levels and covariances form a likelihood for the slow-roll parameters, pa-
rameters of the ΛCDM background cosmology, and parameters inherent to the observational
channels such as the optical depth.

Violation of slow roll causes scale-dependent variations of the scale-invariant Harrison-
Zel’dovich spectrum. It can be described by a Taylor-expansion of the curvature perturbation
spectrum in terms of logarithmic wave number, relative to a pivot-scale close to the horizon.
Both, primary CMB spectra and 21cm intensity fluctuations probe a wide range of scales with a
linear relation between observable and fundamental field. This range is key to the sensitivity to
the inflationary potential, as the variation of the shape of the spectrum with logarithmic wave
number is generically small. In terms of the Hubble slow-roll parameters especially the SKA
limits showed strong degeneracies and increasingly loose bounds on higher-order parameters.
We recovered a hierarchy in precision, where εH and ηH are measured at a level of ∼ 10−2,
followed by ξ2

H at 10−1 and ω3
H just slightly better than order-one. The improvement of SKA

over Planck, in particular on ξ2
H and ω3

H , is driven by small scales, where deviations from the
Harrison-Zel’dovich shape far away from the pivot scale k∗ become important.

Naturally, one would like to extend the scale range to higher wave numbers and include
low-redshift probes of the cosmic large-scale structure such as weak cosmic shear or galaxy
clustering at redshifts around unity. However, on such scales nonlinear structure formation
starts to dominate. Similarly, small scales at higher redshift can be probed by Lyman-α mea-
surements, which requires a detailed understanding of baryonic dynamics. Additional con-
straints on the spectral shape on small scales will eventually come from limits on primordial
black holes. We leave these additional handles for future analyses and instead follow a very
conservative approach. Even with a limited range of scales and a narrow redshift window we
confirm that SKA will provide excellent limits on the inflationary potential, pushing precision
cosmology significantly beyond the CMB measurements by Planck.
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A Appendix

2D slices from 3D Markov Chains

The 3-dimensional Markov chains generated with the SKA likelihoods in 4 are consistent with
the two dimensional Markov chains. Fig. 11 and 12 show the comparison between fraction
of the three dimensional Markov chains and the two dimensional Markov chains. To select

16

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.037


SciPost Phys. Core 5, 037 (2022)

appropriate points from the three dimensional Markov chains one parameter is chosen and
only those points within a small region around its mean value found in 1 are taken into account
to generate the figures. For each three dimensional Markov chain three of these sliced chains
are generated. The cut chains exhibit similar mean parameter values and contours as the two
dimensional Markov chains.

Adding the Planck likelihoods to the 3-dimensional parameter estimation yields results
very similar to the 3-dimensional SKA limits alone. The marginalized likelihoods are shown
in Fig. 13. When constraining Ãs, εH and ηH at the same time the marginalized distributions
for each of the parameters become less wide. The Planck likelihood constrains the very edges
of the strongly correlated parameters, allowing for an easier numerical evaluation.

SKA with spectral index and running

The primordial power spectra PR(k) can also be parameterized by the spectral index ns and
its running α and β , which can also be constrained by 21cm cosmology. We also provide the
constraints on these parameters from SKA alone in Fig. 14 for both 10000 (red solid) and
1000 hrs (red dashed) for comparison. The corresponding mean values and 68% error bars
are given in Tab. 4. We find that our constraints are a bit stronger than that found by Ref [53]
for 1000 hrs observation time.
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Figure 11: Comparison between slices and 2D contours using the SKA projections.
Slices are taken from the 3D chains in Fig. 6.
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Figure 12: Comparison between slices and 2D contours using the SKA projections.
Slices are taken from the 3D chains in Fig. 6.
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Figure 13: Sliced 3-dimensional likelihoods for the slow-roll parameters from a com-
bination of Planck and SKA projections.
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Figure 14: The contours for SKA likelihoods (red) and overlaid SKA with lower ob-
servation time of 1000 hours (red dashed lines).

Table 4: Best fit parameter values and error bars for SKA likelihoods constructed as
in 4 for primordial spectrum computation with spectral index and its runnings.

Parameter mean 68% CL 68% CL
10000 hrs 1000 hrs

1010As 21.157 ±0.064 ±0.092
ns 0.9646 ±0.0031 ±0.0043
α −0.0080 ±0.0018 ±0.0029
β 0.00710 ±0.00083 ±0.0016
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