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Abstract

In lattice field theory, Monte Carlo simulation algorithms get highly affected by criti-
cal slowing down in the critical region, where autocorrelation time increases rapidly.
Hence the cost of generation of lattice configurations near the critical region increases
sharply. In this paper, we use a Conditional Generative Adversarial Network (C-GAN) for
sampling lattice configurations. We train the C-GAN on the dataset consisting of Hybrid
Monte Carlo (HMC) samples in regions away from the critical region, i.e., in the regions
where the HMC simulation cost is not so high. Then we use the trained C-GAN model to
generate independent samples in the critical region. We perform both interpolation and
extrapolation to the critical region. Thus, the overall computational cost is reduced. We
test our approach for Gross-Neveu model in 1+1 dimension. We find that the observable
distributions obtained from the proposed C-GAN model match with those obtained from
HMC simulations, while circumventing the problem of critical slowing down.
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1 Introduction

Lattice field theory is the most reliable and well established technique to solve quantum field
theories nonperturbatively. In this approach the theory is formulated on a discrete space-time
lattice to solve numerically. In Monte Carlo(MC) simulation of lattice field theory the efficiency
of simulation depends on the algorithm used. Algorithm like Hybrid Monte Carlo (HMC) [1]
works well away from the critical points of the lattice theory but when one approaches the
critical region the simulation algorithm suffers severe critical slowing down [2, 3]. Near the
critical point the autocorrelation time increases dramatically and can become larger than the
total simulation run time. Therefore we have no control over the statistical uncertainties of
calculated observable on the simulated lattice configurations. As an example, in lattice QCD
as we approach the continuum limit a→ 0 for a fixed physical volume, the computational cost
of HMC scales approximately as a−z with z > 6 [3]. Several methods in gauge theories has
been developed [4–6] to improve the MC simulations on lattice. Machine Learning(ML), in
the mean time has made tremendous advancements and found application in many branches
in physics. ML has been applied extensively in many condense matter and statistical physics
problems [7–10]. In [11], supervised learning has been adopted to accelerate the MC simula-
tions for statistical physics problems, a self learning MC has been proposed in [12] to reduce
the autocorrelation time specially near the critical region by learning an effective Hamilto-
nian. In recent times some machine learning approaches [13–20] are used to circumvent the
problem of diverging autocorrelation time in lattice filed theory and XY model [21] as well.
Machine Learning(ML) has been also applied to circumvent the problem of critical slowing
down in U(1) gauge theory [17] and parameter regression task in [15]. In this work we ex-
plore a system with fermions viz. the Gross-Neveu model [22]. In this work, following the ML
approach we have used Generative Adversarial Network (GAN) [23] conditioned on parame-
ter of the theory to efficiently generate lattice field configurations near critical point. ML based
generative models generates uncorrelated samples which is one of the reason for using it as a
replacement of MCMC simulation. To the best of our knowledge, GANs have not been applied
to any fermionic system. However, normalizing flows have been used for Yukawa model [14].
In [21], C-GANs have been found to be effective for studying phase transitions in XY model.

The critical point of a lattice theory corresponds to a particular value of the parameters (λ)
of the theory. Our target is to generate uncorrelated samples from a probability distribution
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of kind: P(Φ|λcri t) =
1
Z e−S(Φ,λcri t ) where Φ is lattice field, S is the action and Z is the partition

function of the theory. The basic idea of our method consists of the following three steps:

1. Generate samples using HMC for λ away from critical region of the lattice theory:
Φ∼ p(Φ|λnoncri t).

2. Train the GAN models conditioned on the parameter λ using the data from step 1, i.e.,
learn the distribution p(Φ|λ).

3. Interpolate the trained generator model near the critical point and generate samples
from the C-GAN model.

To implement the above ideas we have used a simple field theory in lattice - the Gross-
Neveu model(GN model) in 1+1 dimensions [22]. GN model possesses many properties sim-
ilar to QCD. It is an asymptotically free theory and re-normalizable in 1+1 dimension. GN
model undergoes a spontaneous chiral phase transition and is extensively used in the litera-
ture as a toy model for QCD. With Wilson fermion, a parity broken phase (Aoki phase) emerges
on a finite lattice [24]. The Aoki phase structure of GN model with Wilson fermion and stag-
gered fermion with flavored mass term has been investigated in strong coupling limit in [25].
The chiral phase transition of the GN model with minimally doubled Borici-Creutz fermion
has been investigated in detail in [26]. The mass spectrum of GN model has been studied
in [27,28].

To check the validity of the generative model, we evaluate it in the critical region. For eval-
uation, we compare the observables calculated from the samples generated by the proposed
C-GAN with those from the samples generated by HMC simulations. Since proposed C-GAN
model’s samples are independent, given λ, it alleviates the critical slowing down problem.
Since the lattice constant a changes with parameter of the theory, we must choose the lattice
size accordingly so that at critical region we get a lattice of desired physical volume.

2 Gross-Neveu Model in 1+1 Dimension

2.1 Continuum Theory

The Euclidean Lagrangian of GN model in 1+1 dimension is [22]:

L =
N f
∑

f=1

ψ f (x)(6∂ )ψ f (x)−
g2

2

�

N f
∑

f=1

ψ f (x)ψ f (x)
�2

. (1)

With the help of so called Hubbard-Stratonovich(HS) transformation we can reduce the four
fermion part to a term quadratic in the fermion fields and an additional auxiliary bosonic field.
The transformation is basically a shifted Gaussian integral.

exp(−
∫

d2 x[
g2

2
(ψ f (x)ψ f (x))

2]

=N [
∫

Dσ(x)ex p(−
∫

d2 x[
N f

2λ̃
σ2(x) +ψ f (x)σ(x)ψ(x)] ,

(2)

where λ̃= g2N f .

The partition function becomes

Z =

∫

DψDψDσe−Sσ[ψ,ψ,σ] . (3)
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The action is given by

Sσ[ψ,ψ,σ] =

∫

d2 x[
N f

2λ̃
σ2(x) +ψ f DGN (x)ψ f (x)] , (4)

where, DGN = 6∂ +σ(x).
One can show that the σ field and condensate field ψψ are linked via

〈ψ(x)ψ(x)〉=
−N f

λ̃
〈σ(x)〉 . (5)

Therefore, the average of auxiliary field 〈σ(x)〉 can be referred to as the Chiral Condensate.
This 〈σ(x)〉 can be used as an order parameter to study spontaneously chiral symmetry break-
ing of the GN model. GN model is analytically solvable in the infinite flavor limit:N f →∞. Its
phase structure has been studied extensively in this limit [29, 30]. Inhomogeneous phases of
GN model in lattice are also studied for finite number of flavors with proper continuum limit
in [31,32].

2.2 Lattice Theory

The action of lattice GN model in the staggered formalism [33] is generally written as

S =
∑

x ,y

[
λN f

2
σ2(x) +

f=N f
∑

f=1

χ f (x)D(x , y)χ f (y)] , (6)

where the coupling constant is inverted to λ = 1/λ̃ for simulation purpose and D = D1 + Σ
with

D1(x , y) =
1
2
[δx ,y+1̂ −δx ,y−1̂] +

1
2
[δx ,y+2̂ −δx ,y−2̂] , (7)

Σx y =
1
4
δx y[σ(x) +σ(x − 1̂) +σ(x − 2̂) +σ(x − 1̂− 2̂)] , (8)

where 1̂ and 2̂ are unit vectors in the two directions in 2D.
This theory has discrete chiral symmetry:

χ → (−1)x1+x2χ , χ →−(−1)x1+x2χ , σ(x) = −σ(x) . (9)

Higher N f value is necessary to match continuum (N f −→∞) results but N f = 2 will serve
our purpose in this work. After introducing pseudofermionic [34] method(for N f = 2 ) action
become non-local:

S[σ,φ,λ] =
∑

x ,y

[
λ

4
σ2(x) +φ†(x)(M−1)φ(y)] , (10)

where M = D†D and φ are pseudofermionic complex field.
Partition function can be written as-

Z =

∫

DσDφ†Dφe−S[φ,φ†,σ] . (11)

With the action given in Equation (10) we perform our HMC simulations. In this work
we have used the staggered fermion(for details about staggered fermion, see [35]) for lattice
simulation.
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3 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GANs) can be trained to generate samples from a high
dimensional probability distribution. A GAN [23] basically consist of two neural networks,
namely, the generator and the discriminator, where the generator’s prime job is to generate
realistic samples from a noise vector and discriminator is a binary classifier whose output is
either 1 or 0. Notably, GAN learns from the samples from the true distribution, without using
the true distribution explicitly. Likewise, it generates samples and does not explicitly tell the
probability density.

The Generative model G, parameterized by Θ is a map from a random noise z ∼ pz(z) to
x ∼ pg(G(z,Θ)). The training dataset is from a true distribution x ∼ preal(x). The discrimi-
nator D(x ,Φ) predict whether it is coming from pg or preal . After completion of the training
we expect pg to be as close as possible to preal . The training process is a two players min-max
game where discriminator improves its ability to distinguish generator’s fake samples and gen-
erator also improves its ability to produce more realistic samples to fool the discriminator as
the training continues. In the training process both the generator and discriminator’s weights
are updated in tandem.

The objective function of GAN is:

min
G

max
D

V (G, D) = Ex∼preal (x)[logD(x ,Φ)]

+ Ez∼pg (z)[log(1− D(G(z,Θ),Φ))] . (12)

Conditional-GAN: If the true dataset has categories or classes, then the original GAN approach
has no control over the type or class of output generated by the generator as output depends
only on the random noise. But in many situations it become necessary to generate data of a
particular type or class. So we want to train a GAN so that it can learn a conditional probability
distribution.

In C-GAN [36] we append the random noise with additional information λ, which could
be attributes or class labels to produce output G(λ, z,Θ), which is conditioned on λ. We also
append λ to the input of discriminator.

The Objective function of C-GAN is:

min
G

max
D

V (λ, G, D) = Ex∼preal (x)[logD(λ, x ,Φ)]

+ Ez∼pg (z)[log(1− D(λ, G(λ, z,Θ),Φ))] . (13)

4 HMC Simulation

4.1 HMC Algorithm

HMC algorithm can be use to produce a Markov Chain whose stationary distribution is:

P(σ,φ|λ) =
1
Z

e−S(σ,φ|λ) , (14)

where S(σ,φ) is the lattice action and Z is the partition function defined in Equations (10)
and (11) respectively. However, this partition function does not represent a classical Hamilto-
nian system. We can transform it by introducing a canonically conjugate momentum variable
π(x) into the system. Then it become a Hamiltonian system, where Hamiltonian can be writ-
ten as:

H(σ,π,φ) =
1
2

∑

x

π2(x) + S[σ,φ] . (15)
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In HMC algorithm we solve the Hamiltonian equation in discrete time for σ(x) and π(x). We
can sample pseudofermionic variable φ easily by sampling complex vector ξ from ex p(−ξ†ξ)
and setting φ = D†ξ. This ensures that φ can be sampled according to the distribution Equa-
tion (14) for a givenσ. For details of HMC for psedofermion action refer to [35]. The common
steps one follows in HMC simulation are:

1. Choose σ0 configuration from cold-start or hot-start.

2. Choose π from random Gaussian distribution.

3. Choose ξ as Gaussian noise and Evaluate:
φ = D†ξ.

4. MD steps to update σ and π keeping φ as background field: Solve Hamiltonian differ-
ential equations for some discrete time step τ.

d
dτ
σx(τ) =

∂

∂ πx
H(π(τ),σ(τ),φ) ,

d
dτ
πx(τ) = −

∂

∂ σx
H(π(τ),σ(τ),φ) .

It will generate new configurations (σnew,πnew) as the next proposal.

5. Do Metropolis test to accept or reject the new configuration.

6. Return to step 2.
In this way we can generate ensemble of (σ,φ) configurations according to the distri-
bution (14).

4.2 HMC Simulation and Observables

In this work, we simulate for N f = 2, with lattice size=32× 32. During HMC simulation, we
adjust the MD step-size to keep acceptance rate around∼ 80% with legitimate autocorrelation
time. In this work we set MD step size to 0.1 and trajectory lenght to 1. We left first 500 lattice
configurations for thermalization. At each λ values in the range [0.6 - 2.5], we generate 4000
lattice configurations for training dataset and baseline for evaluation of our proposed C-GAN,
which is discussed further in section VI.

The quantity: σ̄ = 1
N

∑

x σ(x), which is measured in a single lattice configuration can
be use to study the phase transition as it’s ensemble average has direct relation to Chiral
Condensate 〈ψψ〉. However, there is a problem with quantity σ̄ as its ensemble average 〈σ̄〉
vanishes even for λ ¯ λcri t i.e. even for broken phase close to the critical point. This can
be seen from Figure 1 which is calculated near critical point where configurations fluctuates
between two minimum and hence average 〈σ̄〉 nearly vanishes. This is due to the ability of
configurations to make tunnel from one minimum to the other. So instead of using 〈σ̄〉, we
choose 〈|σ̄|〉 as our order parameter which is a suitable observable to study phase transition.
One more observable of importance is susceptibility. The two observables can be defined as

〈|σ̄|〉=
1
N
〈|
∑

x

σ(x)|〉 , χ = N[〈σ̄2〉 − 〈|σ̄|〉2] , (16)

where N is the lattice volume.
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Figure 1: Fluctuations of σ̄ values for lattice configurations during HMC simulation
in between two minima at λ¯ λcri t .

5 Proposed Method

In HMC simulation we sample σ,φ field according to the the distribution given in Equa-
tion (14) i.e. σ,φ ∼ P(σ,φ|λ). We want the C-GAN to learn the marginal distribution of
σ field i.e p(σ|λ). So we discard HMC generated pseudofermionic φ samples and only con-
sider σ samples which now represent the marginal distribution of σ from the joint distribution
in Equation (14). Let the samples from the C-GAN represent an implicit distribution p̂(σ|λ).
Our target is to train the C-GAN so that p̂(σ|λ) approximates the true distribution p(σ|λ). To
address the problem of critical slowing down, we train the C-GAN model for λ values sampled
in non-critical region, where the autocorrelation time is much smaller comparing to the critical
region. Hence generation of training dataset is not affected by critical slowing down. Then we
use the trained C-GAN model to generate samples near critical λ. Since C-GAN model gener-
ates independent samples, hence our method can produce uncorrelated lattice configurations
in the critical region.
Vanilla C-GAN trained over the HMC samples fails to learn the distribution reliably. The learn-
ing is made efficient as well as robust by incorporating into the C-GAN model the information
of symmetries and constraints in the theory. Also, transforming the samples so as to reduce
the imbalance in their values improves learning. We discuss these in detail in the following
subsections.

5.1 Translation Symmetry

Due to translation symmetry in GN model lattices, C-GAN generator made of dense layers fails
to learn the true distribution properly. Convolutional kernels allow translational invariance
in the lattices. Hence, using convolutional layers in the generator allows the learning to take
place efficiently.

5.2 Transformation of σ Field

Since the observables of GN model can be calculated from |σ̄|, hence for training the C-GAN
we transformed the lattice configurations such that each configuration has σ̄ > 0. This will
reduce degrees of freedom for the C-GAN model which will help in exploring the distribution
space more efficiently. For that purpose, we select a particular configuration and if found σ̄ < 0
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then we apply a transformation:

σ(x) = −σ(x) , ∀x . (17)

For training purpose of C-GAN, we apply natural log transformation to the HMC generated
samples as follows:

σ′i(x) = ln(σi(x) + c) , ∀x,i , (18)

where i represent a single lattice configuration from the ensemble and c is a constant such
that the sum inside the logarithm become positive. This transformationEquation (18) become
necessary for stable training of C-GAN as it balances data values and reduces the dynamical
range of the σ(x) field.

For efficient training we apply the Min-Max scaling to the above transformed data to bring
into a range [-1,1].

5.3 Periodic Boundary Condition

During generation of configurations by HMC, we apply periodic boundary condition i.e. we
replaceσ(i, j) byσ′(i, j) := σ((i)N , ( j)N ), where (i)N represents i modulo N . In order to learn
the periodicity by the C-GAN model we apply periodic padding to the all layers of generator
and initial two layers of discriminator.

6 Numerical Experiment & Results

6.1 Dataset

Our training dataset is consisting of 10 ensembles, each of which has 4000 lattice configu-
rations corresponding to 10 different λ values generated by HMC simulation. Λt r is the set
of λ on which we train the C-GAN model. It includes λ values away from the critical region.
Assuming λcri t ∼ 1.5, Λt r = {0.6,0.8, 1.0,1.2, 1.3,1.8, 2.0,2.2, 2.3,2.5}. For inference and
evaluation of the proposed C-GAN model we use Λts which includes λ values in the critical
region too, Λts = {0.6,0.8, 1.0,1.3, 1.5,1.6, 1.7,2.0, 2.3,2.5}.

6.2 C-GAN Model Architecture

Input to the generator model consist of a 4× 4 i.i.d Gaussian noise with zero mean and unit
variance, stacked together with 4 × 4 matrix containing all entries as λ. In generator model
three 2D Transposed convolutional layers are used for up-sampling to 32 × 32 final lattice
configuration. We use kernel of sizes (3,3) & (4,4) and strides (1,1) & (2,2) for generator
model. In discriminator the input is a grid of 32× 32 σ samples, concatenated with a 32× 32
channel with the λ value repeated in all the cells. It has three 2D convolutional layers with
Tanh activation function followed by a dense layer with Sigmoid activation. We use kernel of
sizes (4,4) and strides (2,2),(1,1) for discriminator.The detail architecture of generator and
discriminator model is given in the appendix. We add periodic padding to the all layers of
generator model and only two initial layers of discriminator model to learn the periodicity in
the lattice configuration.

Once the training of C-GAN is over, we use the generator model to generate two ensembles
each consist of 20000 configurations for Λt r and Λts respectively. In both cases we evaluate our
C-GAN model by comparing observables calculated on the above two set with those calculated
from the HMC generated ensembles. The observables used for this purpose are: 〈|σ̄|〉 and χ
as defined in Equation (16).
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6.3 C-GAN Training and Sampling Process

In the preperation of datasetfor training, we put λ label for each HMC generated configurations
which are the real data in discriminator terminolgy.

While updating the generator one batch of random noise z (with random label) is drawn
from pg(z). For updating discrimintor, a full batch of 256 configurations is used, where half
batch from x = G(z|λ), where z ∼ pg(z) and other half from x ∼ preal(x |λ). In this work we
use Adam optimizer with an initial learning rate of 0.0002 for both geneartor and discriminator
loss. Initially the C-GAN model was trained upto 200 epochs. Then we use observables errors,
δσ = 〈|σ̄|〉hmc-〈|σ̄|〉C−GAN as stoping criteria. We stopped the trainig where the error on val-
idation set is minimum and remains approximatly constant for 10 further epochs. However,
this epoch range will change as the learning rate, optimizer, batch size, number of weights
and biases, padding structure etc. in the C-GAN model changes.The loss curve is shown in
Figure 2. For sampling purpose, we choose a particular λ value of shape (4× 4) and a batch

Figure 2: C-GAN loss curve.

from z ∼ pg(z) which is then fed to the pretrained generator model. The batch size is the
number of samples required to generate which is 2000 for our case. We generate total 20000
configurations for different λ values for both phase case. For interpolation and etxrapolation
at critical λ values we use the same sampling procedure.

6.4 Results

6.4.1 Testing on Λt r Set

We do the analysis on λt r set to confirm that the C-GAN model has correctly learned the
training data distribution. In this ensemble we calculate the σ̄ for each lattice configuration
then plot the histogram of |σ̄| as shown in Figure 3. Different peaks in the histogram roughly
corresponds to different λ values. The histogram generated from the proposed C-GAN model
and HMC overlaps quite well. It indicates that our proposed distribution p̂(σ|λ) represented by
C-GAN approximates the true distribution for the λt r set. Also in Figure 4, we plot ensemble
averaged 〈|σ̄|〉 for Λt r set. Here we take ensemble average 〈|σ̄|〉 for each λ separately and
then plot 〈|σ̄|〉 vs λ. It shows that the observables are matching well for both C-GAN and HMC
ensembles for Λt r i.e. the set used during training.
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Figure 3: Histogram of |σ̄| for λt r set, estimated from samples obtained via HMC and
C-GAN.

Figure 4: Mean 〈|σ̄|〉 and standard deviation on λt r set, estimated from samples
obtained via HMC and C-GAN.

Figure 5: Susceptibility and its standard deviation on λt r set, estimated from 8000
samples with bin size of 100.
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6.4.2 Testing on Λts Set

Since our main goal is to generate lattice ensembles in the critical region we must evaluate our
C-GAN model in Λts. We asses the performance of the proposed C-GAN in terms of being able
to produce observables matching with those obtained from true distributions(i.e., generated
by HMC).

Mean〈|σ̄|〉: In Figure 6 we can observe that histogram of |σ̄| matches quite well with the
true histogram obtained via HMC samples even for Λts. Different peaks at high |σ̄| values
roughly represent different λ values. However, there are no distinct peaks visible near low
|σ̄| values as the peaks gets overlapped. We also present the histograms of |σ̄| in Figures 7
and 8 for λ ∈ {1.5,1.6} which are in the critical region where we didn’t train the model. In
Figure 9 we present the results for the mean 〈σ̄〉 in the critical region. We can see that the
phase transition behaviour is described very well by the generator model.

Susceptibility(χ): We show the susceptibility values obtained from HMC configurations
as well as those obtained from C-GAN in Figure 5 for non-critical data set. One can observe
that the peak coincides for both HMC and C-GAN. The same plot for critical dataset is shown in
Figure 10. We have found that in critical region both mean 〈σ̄〉 and susceptibility agree quite
well with the HMC results even without training in that region. This gives a good indication
that the trained model can reproduce the second order phase transition in the GN lattice model.

In Figure 11 we show the autocorrelation time generated from HMC simulation with unit
trajectory length in MD step, while keeping acceptance rate≈ 80%. We see that near the phase
transition point the the autocorrelation time increases sharply. However, during sampling from
the C-GAN model we starts with a random Gaussian noise vector to generate lattice configu-
rations. Therefore, the lattice configurations generated by the C-GAN model are independent
of each other, which will solve the critical slowing down problem. In this way we can generate
uncorrelated samples near critical region at the cost of generation of samples by HMC at the
non critical region.

Figure 6: Histogram of |σ̄| forΛts set, estimated from samples obtained via HMC and
C-GAN.
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Figure 7: Histogram of |σ̄| at λ = 1.5 ∈ Λts: HMC and C-GAN histograms overlaps
quite well.

Figure 8: Histogram of |σ̄| at λ = 1.6 ∈ Λts: HMC and C-GAN histograms overlaps
quite well.

Figure 9: Mean 〈|σ̄|〉 and standard deviation for Λts set, estimated from samples
obtained via HMC and C-GAN.
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Figure 10: Susceptibility and its standard deviation on λts set, estimated from 8000
samples with bin size of 100.

Figure 11: Integrated Autocorrelation time estimated from HMC simulation with MD
trajectory length, τ= 1.

6.5 Numerical Experiment with Data from a Single Phase

We also train the C-GAN model using HMC generated dataset consiting of λ values only from
one single phase. This experiment is necessary to check our model’s utility in latttice gauge
theory where extrapolation to critical point is necessary from one direction of parameter space.
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Figure 12: Histogram of |σ̄| forΛt r
1ph set, estimated from samples obtained via HMC

and C-GAN.

Figure 13: Mean 〈|σ̄|〉 and standard deviation for Λts
1ph set, estimated from samples

obtained via HMC and C-GAN.

The training set of λ values are λt r
1ph = {0.4, 0.6,0.7, 0.8,0.9, 1.0,1.1, 1.2,1.25, 1.3,1.35, 1.4}

taken from the broken phase and the test set of λ values are
λts

1ph = {0.7,0.9, 1.0,1.2, 1.3,1.45, 1.5,1.55, 1.6}. We extrapolate the C-GAN model to criti-
cal region of λ values 1.45, 1.5, 1.55 and 1.6.

The results are shown in Figures 12 and 16. We observe that the histogram and mean
〈σ̄〉 matches quite well with HMC results for λts

1ph, where critical points are included. Also in
Figures 13 to 15 we have shown the individual histogram of |σ̄| for λ = 1.5,1.55, 1.6. We
found that for the critical λ values observables does’t differ either we train the model with one
single phase or consider both the phases.
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Figure 14: Histogram of |σ̄| at λ= 1.5 ∈ Λts
1ph: HMC and C-GAN histograms overlaps

quite well.

Figure 15: Histogram of |σ̄| atλ= 1.55 ∈ Λts
1ph: HMC and C-GAN histograms overlaps

quite well.

Figure 16: Histogram of |σ̄| at λ= 1.6 ∈ Λts
1ph: HMC and C-GAN histograms overlaps

quite well.
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6.6 Ablation Analysis

We perform ablation analysis to see the effect of certain key component of the proposed method
on its performance.

Transformation of σ field: We find that log transformation Equation (18) is one of the
crucial component for the training of C-GAN model. On removing it, the training loss becomes
high and the observables do not agree well with the HMC observables which can be seen from
Figures 17 to 19. There is a large deviation of mean of |σ̄| compared to HMC results in both
critical and non-critical regions as shown in Figure 17. It is observed that susceptibility is too
sensitive to log transformation as shown in Figure 18. It is also seen that without Min-Max
scaling the C-GAN model is unable to learn different modes corresponding to different λ val-
ues.

Periodic Boundary Condition: We have noticed that the C-GAN performs well using pe-
riodic padding in both discriminator and generator as seen from Figures 6 to 10. But when we
remove periodicity from both discriminator and generator, C-GAN fails to reproduce the HMC
results. Figures 20 and 21 show the disagreements between C-GAN and HMC results for 〈|σ̄|〉,
susceptibility χ respectively and CrefFig16 compares the histogram of |σ̄| without periodicity
in C-GAN for λ = 1.5. Likewise, not applying periodic padding to the generator and applying
only to the discriminator, also degrades the performance.

Figure 17: Ablation for log transformation: Mean 〈|σ̄|〉 and standard deviation on Λts
set without log transformation.

Figure 18: Ablation for log transformation: Susceptibility onΛts set without log trans-
formation.
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Figure 19: Ablation for log transformation: Histogram of |σ̄| at λ =1.5 ∈ Λts set
without log transformation.

Figure 20: Ablation for periodic padding: Mean 〈|σ̄|〉 and standard deviation on Λts
set without periodic padding in both generator and discriminator.

Figure 21: Ablation for periodic padding: Susceptibility on Λts set without periodic
padding in both generator and discriminator.
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Figure 22: Ablation for periodic padding: Histogram of |σ̄| atλ=1.5∈ Λts set without
periodic padding in both generator and discriminator.

6.7 Cost Analysis

Sampling a fixed numbers of configurations via HMC algorithm depends on various parameters
like MD step size, no. of MD steps, parameter value of action and also hardware used for
simulations. Here we have used MD stepsize=0.1 and no. of MD steps=10. The hardware
used for HMC simulations is a six core i7-9700CPU CPU machine. In non-critical region we
generate around 10000 configurations per hour, leaving 10 intermidiate configurations. In
critical region, we leave 20 intermediate configurations and able to generate roughly 4000
configuration per hour.

The training of C-GAN model was done on a single GPU machine (GeForce RTX) for 2-3
hours1. Once the training is over, sampling of lattice configurations become very efficient. It
roughly takes only 2 minutes to generates 8000 lattice configurations.

These gains looks significant and we expect them to be more significant as we go to the
higher dimension where autocorrelation for HMC simulation is more severe near critical re-
gion.

7 Summary & Conclusion

MCMC methods are generally used to generate lattices as they give theoretical guarantees on
validity of samples. In this work, we use GANs which don’t give theoretical guarantees but
the empirical results show that they are able to efficiently interpolate as well as extrapolate to
critical regions. In lattice field theory, the cost of generation of lattice configurations by MCMC
methods is severely affected by critical slowing down as the lattice parameters are tuned to-
wards the critical region. At the critical point the cost of HMC simulation diverges for theories
like QCD due to the diverging autocorrelation time. Therefore, generation of configurations in
lattice field theory in the critical region is a challenging task. This paper proposes to use HMC
generated configurations for GN model away from the critical region and trained a C-GAN
to generate lattice configuration near critical point. With HMC data in non-critical region, we
train the C-GAN model conditioned with parameter λ. For evaluation of the proposed C-GAN
model at critical region we compare few observables on the samples generated from both
C-GAN and HMC. We found a good matching between the results of HMC and our C-GAN
model and also observed that phase transition can be very well reproduced by the generative

1We have used tensorflow 2.4 for our model implementation.
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approach. Since the C-GAN model in the critical region gives correct critical behaviour, we
can infer that our generative model is a good interpolator in the critical region. Since C-GAN
generates independent configurations, there is no correlation in the samples generated by the
C-GAN model, thereby avoiding the critical slowing down problem. In this work we evaluate
our proposed C-GAN model by comparing observables with HMC samples. We could also use
our C-GAN model distribution p̂(σ|λ) as proposal distribution to construct a Markov chain as
done in [13]. However, to construct such a Markov chain we must know the proposal den-
sity explicitly which is not available for GANs. Rather in this work we have accepted all the
samples generated by the C-GAN model and thus having a vanishing autocorrelation. How-
ever, we can construct a markov chain in future looking at the recent development regarding
density estimation for GAN in ML community. One such method could be the FlowGAN [37]
which explicitly estimate the densities for GAN, where generator network is replaced by an
invertible flow network. Another method could be the Round-trip method [38] which try to
estimate density approximately. There are also other ML architecture like Conditional Normal-
izing Flow which estimate densities explicitly for generated samples. These are few possibility
in ML architecture which can be use for MCMC accept/reject step and we are planing to work
in these directions.

Although the problem of critical slowing down is not as severe for GN model in 1+1 di-
mensions but building and testing the C-GAN in the GN model establishes its applicability in
the lattice formulation of fermionic system. In this work, we dealt with only fermionic fields
without any gauge interaction. Extending our work to lattice gauge theory and QCD will be
an interesting as well as challenging task.
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Appendix

Figure 23: Architecture of C-GAN models: Generator and Discriminator model.
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