
SciPost Phys. Core 6, 001 (2023)

Time-reparametrization invariances,
multithermalization and the Parisi scheme

Jorge Kurchan

Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS,
Sorbonne Université, Université de Paris, F-75005 Paris, France

Abstract

The Parisi scheme for equilibrium and the corresponding slow dynamics with multither-
malization - same temperature common to all observables, different temperatures only
possible at widely separated timescales – imply one another. Consistency requires that
two systems brought into infinitesimal coupling be able to rearrange their timescales
in order that all their temperatures match: this time reorganisation is only possible be-
cause the systems have a set of time-reparametrization invariances, that are thus seen
to be an essential component of the scenario.
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1 Introduction

A finite dimensional system whose equilibrium solution follows the Parisi scheme [1] will take
an infinite time to reach this equilibrium starting form random configuration. It may also be
driven into an out of equilibrium steady-state by an infinitesimal drive, such as shear [2,3], or
time-dependence of disorder [4]. If the relaxation times are long, or, in a steady-state, if the
drive is weak, the dynamics are slow: this is the regime we are interested in. The idea of this
paper is composed of two parts:
• The out of equilibrium dynamics under these circumstances is a very specific one [4–9].

At given times one may define a temperature with a thermodynamic meaning [10], it is the
same for all observables. Different temperatures are possible, but in diferent ‘scales’, a notion
one has to define. We refer to this situation as ‘multithermalization’ [11, 12]. Rather unex-
pectedly, the temperatures involved in the slow dynamics coincide with a series of parameters
computed for equilibrium in the Parisi scheme. This may be argued on the basis of a strategy
devised by Franz, Mézard, Parisi and Peliti (FMPP) [13, 14] years ago, in a remarkable work
to which we will refer throughout this paper.
• Consider two such systems brought into weak contact from the beginning, for example

two different lattice models, coupled locally so as to obtain a single model with two sublattices.
Assume that at the same times the separate systems have non-coincident temperatures. Does
this mean that the coupled system, for which there is no distinction between observables of
one or the other system, violates the multithermalization scenario - and, a fortiori, the Parisi
scheme? If this were so, both would be fragile to the point of irrelevance. The answer is
surprising: the timescales of the systems rearrange so that different temperatures happen at
different scales: thus, the combined system conforms to the scenario. The fact that this needs
to happen for infinitesimal coupling means that the system needs to be ‘soft’ with respect to
time-rearrangements of each temperature separately: in other words, it has to have indepen-
dent time-reparametrization invariances in the slow dynamics limit. Such invariances where
first described by Sompolinsky and Zippelius [5,6] some forty years ago, and have recently had
a crucial role in the interpretation of the SYK model [15] as a toy model of holography [16,17].

Now, it is quite natural to assume that time-reparametrization invariances, an indepen-
dent one for each temperature, will only be possible if such temperatures happen at widely
separated timescales, because then one may ‘move each timescale around’ without changing
their mutual interaction: overlapping timescales would make this invariance unlikely. This
hierarchy in times, already found in mean-field problems, seems then like a general neces-
sity for having a unique temperature for all observables at given times, and ultimately for the
correspondence between dynamics and Parisi scheme. The reader who is convinced by this
heuristic argument may skip sections III and IV. In those sections, we extend the procedure of
FMPP to confirm, within their framework, that separation of timescales indeed is necessary
for the agreement between dynamics and Parisi scheme.

Time reparametrizations and the unambiguous definition of timescales, when we are deal-
ing with observables that depend on two or more times, require some clarifying definitions, a
large part of which have been already discussed in the past. Most importantly, it is convenient
to separate those quantities that are reparametrization-invariant from the reparametrizations
themselves, a procedure that may even be implemented experimentally: see [18–23].

1.1 Equilibrium

The Parisi construction [1] involves the computation of the Boltzmann-Gibbs distribution, av-
eraged over quenched disorder. The measure is given by an infinite set of pure states, each
state α a set of configurations– just like the positive and negative magnetization distributions
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in a ferromagnet – inside which a variable si has expectation value 〈si〉α (e.g. in a ferro-
magnet, 〈si〉± = ±m). The overlap between two states is, for example for a spin system
qJ
αβ
= 1

N

∑

i〈si〉α〈si〉β , where the supraindex J signifies that we have not yet averaged over

disorder. Once we do, we obtain qαβ = qJ
αβ

. A histogram of the qJ
αβ

for a given disorder is
mostly dominated by a few spikes, while the average histogram for qαβ is the Parisi function
P(q), a direct product of the formalism. The same information is contained in the primitive
x(q), such that d x

dq = P(q). The other hallmark of the Parisi ansatz is the ‘ultrametricity’ prop-
erty: for any three states at mutual overlaps q12, q23, q31 the two smallest overlaps are equal
(all triangles are isosceles): q13 =min(q12; q23)
In fact, the ultrametric solution may be proven [24] from two hypotheses: i) stochastic sta-
bility (see Ref. [25]): the solution keeps its form under small random perturbations, and ii)
overlap equivalence [24,26]: all the mutual information about a pair of equilibrium configu-
rations is encoded in their mutual distance or overlap. In other words, we may always write
the correlation of an observable in two states as a function of that of another observable in the
same states: q̄ab = g(qab) where g is a smooth function. In what follows, when we refer to
‘Parisi scheme’, we consider it assuming these two properties.

1.2 Dynamics

In the dynamic approach we have an evolving system:

−mi s̈i −
∂ V (s)
∂ si

= Γ0ṡi −ηi
︸ ︷︷ ︸

bath

, (1)

where ηi are uncorrelated Gaussian white noises with variance 2Γ0T and Γ0 is the strength of
the coupling to the ‘white’ bath. This is guaranteed to reach eventually equilibrium, although
in the systems that concern us, in times that may diverge with N .

We are interested in various correlation CAB(t, t ′) and response functions RAB(t, t ′) (here,
and in what follows, always t ≥ t ′), the average response of A at time t to a kick of B at time
t ′. From here, we read the correlations and response functions:

Ci j(t, t ′) = 〈si(t)s j(t
′)〉 ; Ri j(t, t ′) =

�

δsi(t)
δh j(t ′)

�

, (2)

where hi is a field conjugate to si . We shall often use:

C(t, t ′) =
1
N

∑

i

Cii(t, t ′) ; R(t, t ′) =
1
N

∑

i

Rii(t, t ′) , (3)

χ(t, t ′) = θ (t − t ′)
ˆ t ′

−∞
d t ′′ R(t, t ′′) , (4)

(note that the definition with these limits of integration is rather unusual) and the symmetrized
version

χs(t, t ′) = χ(t, t ′) +χ(t ′, t) . (5)

In the spirit of the fluctuation-dissipation theorem, we will define effective temperatures
[10] as:

TAB(t, t ′)RAB(t, t ′) =
∂ CAB(t, t ′)
∂ t ′

; TAB(t, t ′) =
T

XAB(t, t ′)
. (6)

In equilibrium X = 1 and where TAB(t, t ′) = T , the bath’s temperature.
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When there is time-translational invariance (TTI),

χ(t − t ′) = χ(τ) =
ˆ ∞
τ

dτ′ R(τ′) ; R(τ) = −χ ′(τ) f or (τ > 0) (7)

and a short calculation gives for the Fourier transforms:

iωχ̂s(ω) = [R̂(ω)− R̂∗(ω)] . (8)

We may consider many different settings for dynamics, but here we shall only be concerned
with the limit of slow dynamics, which may be achieved at least in three ways:

• Aging [27]: We quench the system from a high to a low temperature, at which the
equilibration time is infinite. The system ‘ages’: it evolves slower and slower as the time
since the quench elapses. The two-point functions never fully become a function of time-
differences. The large parameter is the smallest ‘waiting’ time since the quench t ′ = tw,
that modulates the decay at τ= t − t ′. A typical example is C(t, t ′) = C

�

τ
tw

�

.

• Driven system [2,3]When the system is subjected to forces non deriving from a potential
– shear, for example – it is an experimental fact that aging is interrupted, in the sense
that all functions become time-translational invariant, but slow. Their timescale of the
decay of correlation then is controlled by the driving rate σ, the slower the weaker the
drive: C(t − t ′) = C (τσ).

• Time-dependent disorder [4]. Another way to make a system with disorder time-trans-
lational invariant is to change the disorder slowly : the small parameter is the timescale
τ0 of change of disorder: C(t, t ′) = C

�

τ
τ0

�

. The reason is simple: the system optimises
with a constantly changing target.

In the case of mean-field glasses, we know that the three situations above correspond, in the
limit of slow dynamics, to different time-reparametrizations of the same solution. We shall
discuss below the condition for this being the case in finite-dimensions. In what follows, we
will refer briefly as ‘asymptotic’ to the limit of either long waiting times, small shear strains or
slow variation of parameters, always taken after the thermodynamic limit.

2 The framework

2.1 Factoring out time - general kinematic constraints.

Although one may ask about the time-dependence of any quantity, it turns out that there is
a particularly significant sub-ensemble of dynamic quantities: those where time is factored
out [8], and are thus invariant under reparametrizations t → h(t). This is achieved, as we
shall see, by using a single correlation as a ‘clock’:

• Given any dynamic parameter X (t, t ′) define for large times
X (t, t ′) → X [C(t, t ′)] = limt ′→∞ X [C(t, t ′), t ′]. We shall focus on cases in which this
limit is non-trivial. This also implies that the integrated response becomes a function of
the correlation: χ(t, t ′)→ χ[C](t, t ′).

• given three long, successive times t1 < t2 < t3, and the corresponding correlations
C21, C32, C31, define for large times C31 = f (C21; C32) = limt1→∞ f (C21; C32, t1), a ‘trian-
gle relation’. It is easy to show that f (a, b) is an associative function of a and b (see con-
struction Fig. 1). Similarly for the remanent magnetizationsχ(C31)= f̃ [χ(C21);χ(C32)],
i.e. the triangle relations f̃ and f are isomorphic.
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1

2

3

Figure 1: The proof that C41 = f [C43, f (C32, C21)] = f [ f (C43, C32), C21]: the func-
tion f is associative.

• Given any two correlations of the system C̄(t, t ′) and C(t, t ′)we write, again in the large
times limit, C̄ → g(C) for some g.

The function f is associative and may be classified as such: a purely ‘kinematic’ construction,
independent of the dynamics. It is shown in [8] that there are ‘skeleton values’ qr of C which
delimit correlation scales SC , such that:

• If C21 and C32 are both in the same scale, then f (C21, C32) = g−1[g(C21) + g(C32)], i.e.
f is isomorphic to the sum (or the product). The function g is a different one for each
interval.

• If C21 and C32 are in the different scales, then f (C21, C32) = min[g(C21), g(C32)]. This
means that the relaxations in different scales take place in very different timescales, so
that the time for relaxing within one scale is negligible with respect to the other.

• From this it follows that there is always a time-reparametrization that makes the correla-
tion within a scale time-translational invariant, that is: C21 = C(t2− t1). For example, if
a correlation is of the form C

�

t ′
t

�

, then h(t) = ln t is such a mapping. Note that if there
is more than one scale, the times are reparametrized differently for the correlations in
each scale. (examples below).

2.2 Three examples

Two scales

This is the most usual case. An example is when the correlation 0 < C ≤ 1 and there is a
value q such that for the interval q ≤ C ≤ 1 the correlation is much faster than for the interval
0≤ C < q. We have, for example:

• For a stationary case C(t − t ′) = (1− q) Ā(t − t ′) + q B̄
�

t−t ′

H(τ0)

�

, where H is a growing
function of τ0.

• For an aging case t > t ′:
C(t, t ′) = (1− q) A(t − t ′) + q B

�

L(t ′)
L(t)

�

= (1− q) A(t − t ′) + q B
�

eh(t)−h(t ′)
�

,

where (A, B, Ā, B̄) are functions decreasing from one to zero as their argument goes from zero
to infinity. We have put h(t) = ln L(t) to emphasize that the form may be brought into a
time-translational invariant form via a reparametrization.

The stationary case has separated timescales as τ0→∞, and the aging one at long times
t. The aging form is in particular the one of domain growth, where the fast part Ā(t − t ′) is
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the relaxation within domains, and the slow part is a function of the domain length L(t). It
is easy to see that in this limit f is isomorphic to the addition within each scale (0− q) and
(q− 1), and is the function min for correlations in different scales.

Three scales

Again, the correlation 0< C ≤ 1 and there two values q0 and q1 such that for the interval
q1 ≤ C ≤ 1 the correlation is much faster than for the interval q0 ≤ C < q1, itself much faster
than 0≤ C < q0 We have, for example, for the stationary state:

• C(t − t ′) = (1− q1) Ā(t − t ′) + (q1 − q0) B̄
�

t−t ′

H(τ0)

�

+ q0
¯̄B
�

t−t ′

H̄(τ0)

�

,

where ¯̄B is also decreasing from one to zero as their argument goes from zero to infinity. The
timescales are nested as τ0→∞: H̄(τ0)≫ H(τ0)≫ 1.

The function f is the function min for correlations in any two different scales.

A continuum of scales

An important case is when there is a dense set of values of correlation in which for all
values of correlation

f (C21, C32) =min[g(C21), g(C32)] (9)

holds. An example is:

C(t, t ′) = C
�

ln(t − t ′ + t0)
lnτ0

�

, (10)

where t0 is a constant. This form satisfies (9) when τ0→∞.1 It may be viewed as an infinite
superposition of scales, e.g:

C(τ) =
ˆ

dν [τ0]
ν e−τ

−ν
0 (τ+t0) C(−ν)∝ C

�

ln(τ+ t0)
lnτ0

�

, (11)

where we have evaluated the integral by saddle-point over ν.

2.3 Time-reparametrizations

In the sections above, we have written everything using one particular correlation as a ‘clock’,
time-dependencies are mediated by that correlation. Note that this is also possible with higher
order correlations. We should now define clearly which time-reparametrizations we shall con-
sider. The answer is simple: those that preserve the triangle relations. For example, if the system
has two scales, it is easy to see that a possibility is:

{t, t ′} → {t, t ′} for q ≤ C ≤ 1 and {t, t ′} → {h(t), h(t ′)} for 0≤ C ≤ q . (12)

Note that i) we have two different reparametrizations for the two scales, and ii) we do not
reparametrize the fast (ultraviolet) scale, because it is the one for which reparametrization
invariance of the action does not hold – because time-derivatives are not negligible there.

For two or more scales, this is easily generalizable to

{t, t ′} → {hS(t), hS(t
′)} , (13)

1Note however that, confusingly, C(t, t ′) = C
�

ln t′

ln t

�

is only one scale!
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where the reparametrization depends on the scale S to which C(t, t ′) belongs.
Let us note that this may allow more freedom than reparametrizations found in in models

such as SYK, because each scale is reparametrized separately. This is most clearly seen in the
case in which there is a continuum of scales, for example Eq (10). In that case, f is invariant
with respect to reparametrization of time-differences (t − t ′) → H(t − t ′) for any smooth H,
something that does not happen for discrete scales.

An example of factoring times away:

For a triangle of correlations [C(t int , tmin), C(tmax , t int), C(tmax , tmin)], we define, asymp-
totically [8]:

C(tmax , tmin) → f [C(t int , tmin), C(tmax , t int)] , (14)

C(tmax , t int) → f̄ [C(t int , tmin), C(tmax , tmin)]≥ C(tmax , tmin) , (15)

C(t int , tmin) → ¯̄f [C(tmax , t int), C(tmax , tmin)]≥ C(tmax , tmin) , (16)

when the f =min we have:

C(tmax , t int) → C(tmax , tmin) if C(tmax , tmin)≤ C(t int , tmin) , (17)

C(t int , tmin) → C(tmax , tmin) if C(tmax ,tmin)≤ C(tmax , t int) . (18)

Let us see how we use these in an example. In computing the dynamic diagrams we will
meet later, we shall need to calculate convolutions such as:

I(t, t ′) =
ˆ t ′

−∞
C(t, t ′′)R(t ′, t ′′) d t ′′ . (19)

Introducing the definition of X :
ˆ t ′

−∞
C(t, t ′′)X (t ′, t ′′)

∂ C
∂ t ′′
(t ′, t ′′) d t ′′ . (20)

Now we may factor times away:

Ī(C) =
ˆ C

0
C ′ X ( f̄ (C ′))

d f̄ (C ′, C)
dC ′

dC ′ . (21)

It turns out that all integrals coming from diagrammatic expansions may be treated this way.

2.4 Dynamic multithermalization properties

The properties above do not really use any property of the dynamics, except that it should
have a slow regime. The one we discuss here instead implies a definite assumption on the
dynamics. It is inspired in the mean-field solution.

Thermalization as a residual symmetry

Let us construct the path-integral generator [28–30] associated to the equation of motion
(1). Introducing a Fourier variable ŝi and integrating over noise, we get:

Z =
ˆ

D[s]D[ŝ] exp

¨ˆ
d t
∑

i

ŝi

�

−mi s̈i −
∂ V (s)
∂ si
− Γ0(ṡi + T ŝi)
�

«

, (22)
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in the Ito convention, which means the determinant term is absent. From here, we read the
correlations and response functions:

Ci j(t, t ′) = 〈si(t)s j(t
′)〉 ; Ri j(t, t ′) =




si(t)ŝ j(t
′)
�

, (23)

where hi is a field conjugate to si . Detailed balance implies that the time-reversal symmetry

si(t)→ si(−t) ; ŝi(t)→ ŝi(−t) + β ṡi(−t) (24)

leaves the integral invariant up to a boundary term in time. This is the time-reversal detailed-
balance property. In particular, if the symmetry is unbroken this implies that all functions
depend on time-differences and:

CAB(t − t ′) = CBA(t − t ′) ; χAB(t − t ′) = βCAB(t − t ′)−χAB(t
′ − t) . (25)

If the bath is absent Γ = 0, and this symmetry holds for any β corresponding to the en-
ergy of the initial condition. The presence of the bath breaks the larger symmetry to a sub-
group [31, 32], given by the β of the bath. As we shall see below, this may happen spon-
taneously in each timescale, and with a different β: we know for sure that this scenario is
valid within mean-field, and we shall discuss below what are the implications of it holding for
finite-dimensional systems.

Multi-thermalization as a symmetry-breaking scheme

We have seen above that within a correlation scale, the correlation and response functions
are such that the ‘triangle relation’ is smooth, and hence isomorphic to the sum (or the product)

g(C31) = g(C32) + g(C21) ; χ(t, t ′)→ χ[C(t, t ′)] . (26)

This implies that they may be written as:

C(t, t ′)→ C[h(t)− h(t ′)] = C[h− h′] ; χ(t, t ′)→K[h(t)− h(t ′)] =K[h− h′] (27)

and similarly for all correlations and response functions of any number of times. For example,
in an aging situation, h(t)∼ ln t yields a

�

t ′
t

�

-dependence, an ansatz often made.
If a timescale is isolated we get to a point at which the ‘kinetic’ terms may be neglected.

Having assumed that within a scale all functions depend on differences of h’s, in terms of these
we have a corresponding ‘time’ reversal symmetry h→−h associated to some β̃ . This implies:

CAB(h− h′) = CAB(h
′ − h) ; KAB(h− h′) = β̃CAB(h− h′)−KAB(h

′ − h) . (28)

All in all, we have these symmetries parametrized by βS in each timescale S, and:

T (C) ̸= T (C ′) ⇒ f (C , C ′) =min(C , C ′) . (29)

In particular, when there is a continuum of timescales, there is in general a continuum of
temperatures. There is a well-defined temperature for all observables within this scale, plus
Onsager reciprocity.

This is then a symmetry breaking to a smaller group scheme [11,12], labeled by the tem-
peratures of each scale: as such it is consistent, but of course need not be the correct solution
of a given problem. The Parisi scheme for statics is also a symmetry breaking scheme into sub-
groups [1](of the permutation group of a noninteger number of elements). One might suspect
that there is a correspondence between the two schemes. Both are known to apply to mean-
field statics and dynamics. In what follows we shall argue, within the assumption of stochastic
stability [25] (w.r.t long-range perturbations), that this correspondence is a necessity in finite
dimensions.
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3 Connections between dynamic and Parisi scheme

3.1 A first, formal bridge between dynamic and static (replica) and calculations

This formal bridge has been known for a long time [33], and sometimes used for calculations.
As is well known, a path integral like (22) may be written in a compact form in therms of the
‘superspace’ variables:

si(1) = si(t) + θη̄+ θ̄η+ θ̄θ ŝ(t) , (30)

where θa, θ̄a are Grassmann variables, and we denote the full set of coordinates in a compact
form as 1 = t1θ1θ1, d1 = d t1dθ1dθ1, etc. η̄,η are fermion variables that play no role here,
and will be hence ommited. This notation brings the replica and dynamic treatment into
formally very close contact, with one-to-one (topological) correspondence between diagrams.
We write Eq (22) as: ˆ

Dsexp
§
ˆ

d1[K(s)− V (s)]
ª

, (31)

where

K(s) =
∑

i

∂ si

∂ θ

�

∂ si

∂ θ̄
− θ

∂ si

∂ t

�

−
∂ 2si

∂ t2
(32)

is a ‘kinetic’ term which contains the time-derivatives, which will be neglected in the slow-
dynamics regimes.

We encode the correlations and (causal) responses in the ‘superspace’ order parameter
(see [33]):

Q i j(1,2) = Ci j(t1, t2) + (θ̄2 − θ̄1)
�

θ2 Ri j(t1, t2)− θ1 R ji(t2, t1)
�

(33)

and similarly

Q(1,2) = C(t1, t2) + (θ̄2 − θ̄1) [θ2 R(t1, t2)− θ1 R(t2, t1)] , (34)

which corresponds to the matrix

Q(t, t ′) =

�

R(t, t ′) C(t, t ′)
0 R(t ′, t)

�

. (35)

As we shall see below, we will be led, in this notation, to topologically equal diagrams for
replicas and dynamics, with the identifications

n
∑

α=1

→
ˆ

d1 , (36)

our diagrams will have vertices at supertimes 1 = (t, θ̄ ,θ ) (replica α, respectively) and lines
given by Q(1,2) (respectively Qαβ). One of the lines will be integrated with a generating
variable d1→ d1 j(1) , (respectively

∑

α→
∑

α jα, where j are the arguments of the generating
functions:

j(α) = 1+ jδ1α→ j(1) = 1+ jδ(t1 − t0)θ̄1θ1 . (37)

We shall see a few examples of this below. The fact that the diagrams have the same form does
not automatically mean that their actual values are the same. It has been long known [33] that,
in the case in which there is a single temperature per timescale, then the results of dynamic
diagrams and Parisi-ansatz replica ones are indeed the same diagram by diagram, the question
that we shall address in what follows is whether timescale-separation is also necessary for this
to happen.
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4 Properties derived from stochastic stability

We shall assume that the properties of the system are unchanged when perturbed by random,
weak but long-range interactions: stochastic stability. Under this assumption we shall show that
the multithermalization and Parisi schemes imply one another, for finite-dimensional systems.

4.1 Same temperatures for all observables implies separation of timescales

Let us show first that the only way that such a system has the same T (t, t ′) for all observables
at the same (t, t ′) is that there is only one temperature for all (t, t ′) associated to a correlation
scale. In other words, non-constant temperature within a timescale implies that different
observables have different temperatures at the same times. Later on, we will see that this
implies that there is no overlap equivalence, at the static level.

Let us first consider a lattice system, which we divide in four sublattices. whose compo-
nents we shall call s(1)i , s(2)i and s(3)i and s(4)i . Adding to the energy a term

S =
1
2

∑

i j

�

h(1)i j

�2
+

1
2

∑

i j

�

h(2)i j

�2
+

1
2

∑

i j

�

h(3)i j

�2
+

1
2

∑

i j

�

h(4)i j

�2

+
γ

N

∑

i j

�

h(1)i j h(2)jk s(2)k s(1)i + h(2)i j h(3)jk s(2)i s(3)k + h(3)i j h(4)jk s(3)i s(4)k

�

, (38)

with the h(ℓ)i j random Gaussian variables. We wish to compute the following correlation and
its associated response:

C (4)(t, t ′) =
1

N2

∑

i jk

h(1)i j h(4)jk

¬

s(1)i (t)s
(3)
k (t

′)
¶

γ
; R(4)(t, t ′) =

1
N2

∑

i jk

h(1)i j h(4)jk

*

δs(1)i (t)

δη
(3)
k (t

′)

+

γ

.

(39)
These may be encoded in a superspace order parameter Q(4)(1,2), or in its matrix version:

Q(4)(t, t ′) =

�

R(4)(t, t ′) C (4)(t, t ′)
0 R(4)(t ′, t)

�

= γ3[Q⊗Q⊗Q⊗Q](t, t ′) , (40)

where ⊗ stands for convolution and matrix product. Or, equivalently, in superspace notation:

Q4(1,2) = γ3[Q]4(1,2) . (41)

Note that this is a convolution power. As we have seen in Section II , we may always assume, by
reparametrizing times within a timescale, that the functions are time-translational invariant,
and we may use Fourier transforms:

Q(t − t ′) =

�

R(t − t ′) C(t − t ′)
0 R(t ′ − t)

�

→ Q̂(ω) =

�

R̂(ω) Ĉ(ω)
0 R̂∗(ω)

�

. (42)

The generalization to n sublattices is obvious:

Q̂(n)(ω) =

�

R̂(n)(ω) Ĉ (n)(ω)
0 R̂(n)∗(ω)

�

. (43)

We have thus constructed a whole set of pairs a set R(n), C (n) starting from C , R: is it
possible that they are related by the same Te f f at equal times? It turns out that it is much
easier to answer this question by comparing n= 1 with large n, this result on its own will tell
us that a necessary condition is to have timescale separation.
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Figure 2: Illustration of the fact that C (n) and χ(n) become broader and broader
with n, X (n) and essentially flat. Within that range, if X (C) is not a constant, then
X (n)(t, t ′) ̸= X (t, t ′).

A short calculation gives

R̂(n) = R̂n ; Ĉ (n)(ω) =
R̂(n)(ω)− R̂(n)∗(ω)

R̂(ω)− R̂∗(ω)
Ĉ(ω) , (44)

this may also be written as:
Ĉ (n)(ω)

χ̂
(n)
s (ω)

=
Ĉ(ω)
χ̂s(ω)

. (45)

If we consider a large value of n, then Ĉ (n)(ω) and χ̂(n)s (ω) will be peaked around some value
of ω dominated by the maximum of R(ω), which for a strongly dissipative system we expect
to be zero. Then we may write:

Ĉ (n)(ω)

χ̂
(n)
s (ω)

∼
Ĉ(0)
χ̂s(0)

= T̄ . (46)

From which we immediately see that R(n)(τ), C (n)(τ) satisfy fluctuation dissipation with the
average temperature. Now, if R(τ), C(τ) do not have a single temperature, then at equal times
both pairs of observables have different temperatures, because C (n) and χ(n) become broader
and broader with n, X (n) as is depicted in Figure 2.

4.2 Relation between statics and dynamics in finite dimensions

In FMPP it is shown that, under certain assumptions, the dynamic X (C) and the equilibrium
counterpart x(q) coincide for finite-dimensional systems. This is at first sight very strange,
since it concerns a relation between two different kinds of objects that are relevant in com-
pletely different time regimes (in and out of equilibrium, respectively), and happen in different
regions of phase-space. This section is mostly a review of their results.

The Parisi scheme gives us the Parisi order parameter P(q), the probability of overlaps of
states, averaged over disorder. We shall sometimes need to distinguish the values of q where
P(q) is nonzero: we shall for brevity call them ‘skeleton’ values. This distinction becomes im-
portant when we consider the next defining feature of the Parisi construction: the structure of
triangles determined by three states (q13; q12; q23). By its very definition, this may only concern
skeleton values of the q. The natural next question is what becomes of the ultrametricity prop-
erty of statics: is there any relation between the dynamic triangle relation C13 → f (C12; C23)
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and ultrametricity of equilibrium states q13→min(q12; q23)? Clearly, the second f concerns all
values of C, while the static ones only the skeleton values, so if there is a correspondence it has to
be for the skeleton values only.

Dynamically, if we had C13 → min(C12; C23) it would mean that we have hierarchically
organized timescales. For example, if the system is TTI then one of the two time differences
t2 − t1 and t3 − t2 is negligible compared to the other, so correlations make their steps of de-
cay on widely separated times. Franz et al asked whether Parisi scheme implied the existence
of widely separated timescales. Their conclusion was that timescale separation is sufficient
for having a Parisi scheme, but, though considering it plausible, left open the question as to
whether it was also a necessary one. In this paper it is shown that their same scheme also shows
that indeed this is so: widely separated timescales are indeed implied by the Parisi scheme, at
least such as we know it (i.e. with overlap equivalence and stochastic stability). This closes
the circle: for finite dimensional systems the Parisi scheme is included in the dynamic multi-
thermalization one, and it allows to compute some of its dynamic relations for which time has
been factored away.

This connection between widely separated timescales and the Parisi scheme will lead us
to the main point of this paper, the question of time-reparametrization invariances: we shall
show that these are crucial for the consistency of the scheme, since they allow two systems
brought into contact to ‘adjust their timescales’ so that different effective temperatures match
at each scale.

The basic argument

The idea in FMPP is to compute the generalized susceptibilities defined as follows [7]: one
adds a perturbation of the form

H → H +
n γ

N (p−1)/2

∑

hi1,...,ip si1 ...sip +
∑

h2
i1,...,ip

o

, (47)

where the hi1,...,ip are gaussian iid random numbers, and computes the susceptibility

I (p) =
γ

N p

∂

∂ γ

¬∑

hi1,...,ip si1 ...sip

¶

. (48)

In equilibrium, and asymptotically for dynamics, we have

I (p)equil =
ˆ

x(q)dqp ; I (p)d yn =
ˆ

X (C)dC p . (49)

These correspond, in the notation introduced above, to:

I (p)equil =
d
d j

∑

αβ

Q•p
αβ

j(α)

�

�

�

�

�

j=0

; I (p)d yn =
d
d j

ˆ
d1 d2 Q•p(1, 2) j(1)

�

�

�

�

j=0
, (50)

where A•p is the matrix each of whose elements is the p-th power of that of the matrix A, a
Hadamard (element-by-element) power. This corresponds to the left diagram in Fig. 3. Now,
if one can argue that these susceptibilities are (to leading order in N and long times taken
after N →∞) equal for all p, then one concludes that x(q) and X (C) are the same functions.
The argument to show this is that, since these susceptibilities may be obtained from a sec-
ond derivative of a free-energy with respect to sources , equality of energy densities between
dynamics and equilibrium (again, to leading order in N and long times, and for all small
perturbations) implies equality of susceptibilities. Franz et al used the standard nucleation
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reasoning forbidding stable states with higher free-energy density, valid in finite dimensions,
to argue this. In order to complete the argument, they need to get around an obstacle: a term
like hi1,...,ip si1 ...sip is long-range, and the nucleation argument would not, in principle, apply.
Their clever trick is to consider the d-dimensional lattice and mentally fold it p − 1 times, so
as to make (i1, ..., ip) contiguous. The resulting (p − 1)-layer system is then short-range, and
we may apply the nucleation argument. This applies for a single term, and one should then
argue that it also does for the sum of them all. For this step one needs that the limit of small
perturbation and thermodynamic limit commute, and this is where some form of stochastic
stability is required.

It is easy to see that the whole argument of FMPP extends naturally to the case in which
disorder changes slowly, because by making the timescale long enough all nucleations may
take place. The same is true for the weak-shear limit.

Now, to prove the correspondence of FMPP in a compact form, we write:

Zh(γ) = Σα,i eS0+S(h,sαi ) , (51)

where

S =

(

γ

N (p−1)/2

∑

i1,...,ip

hi1,...,ip

∑

a

j(a)sa
i1

...sa
ip
+

1
2

∑

i1,...,ip

h2
i1,...,ip

)

=

(

γ

N (p−1)/2

∑

i1,...,ip

hi1,...,ip ti1,...,ip +
1
2

∑

i1,...,ip

h2
i1,...,ip

)

, (52)

where here t i1,...,ip ≡
∑

a j(a)sa
i1

...sa
ip

and j(a) = 1+ jδ(t1 − to)δab.
Similarly, dynamically we have:

Zh(γ) = Σα,i eS0+S(h,si) , (53)

where

S =

(

γ

N (p−1)/2

∑

i1,...,ip

hi1,...,ip

ˆ
d1 j(1)si1 ...sip(1) +

1
2

∑

i1,...,ip

h2
i1,...,ip

)

=

(

γ

N (p−1)/2

∑

i1,...,ip

hi1,...,ip ti1,...,ip +
1
2

∑

i1,...,ip

h2
i1,...,ip

)

, (54)

where ti1,...,ip ≡
´

d1 j(1)si1 ...sip(1) and j(1) = 1+ jδ(t1 − to)θ̄1θ1. Integrating over the h’s
we get the diagram of the left of in Fig 3.

Generator function Lego

It is natural to extend this to more general

H → H +
n γ

N (p−1)/2

∑

hi1,...,ip si1 ...sip +
∑

h2
i1,...,ip

+µV (h)
o

(55)
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and to treat this perturbatively in µ.

S =

(

γ

N (p−1)/2

∑

i1,...,ip

hi1,...,ip

ˆ
d1 j(1)si1 ...sip(1) +

1
2

∑

i1,...,ip

h2
i1,...,ip

+µV (h)

)

=

(

γ2

N (p−1)

∑

i1,...,ip

ti1,...,ip ti1,...,ip +
1
2

∑

i1,...,ip

(hi1,...,ip + ti1,...,ip)
2 +µV (h)

)

=

(

γ2N Ip +
1
2

∑

i1,...,ip

(hi1,...,ip + ti1,...,ip)
2 +µV (h)

)

=

(

γ2N Ip +
1
2

∑

i1,...,ip

(h̃i1,...,ip)
2 +µV (h̃i1,...,ip − ti1,...,ip)

)

. (56)

Expanding the exponential of V , we obtain diagrams with contractions of h̃2
i1,...,ip

, and also lines

with products of
∑

ti1,...,ip , that may be expressed in terms of Q(1, 2)’s. The same procedure,
applied with replicas, yields the same diagrams, this time in terms of Qab.

As mentioned above, the value of corresponding dynamic and replica diagrams coincide

– d
d j {diagram}
�

�

�

j=0
give the same (a reparametrization-invariant fact) – if the dynamics has

widely separated timescales, with one temperature T (t, t ′) = T/X (C) per timescale, and
X (C) = x(q). Is the situation with timescales associated to different temperatures widely
separated (a.k.a. time-ultrametricity) the only possibility for the coincidence of static and dy-
namics for diagrams? Our answer will be positive.

Equality of temperatures and overlap

In this section we shall review the argument for two sublattices si ,σi of a finite-dimensional
spin system (not playing identical roles, i.e. there is no symmetry σ↔ s ), but it is valid for
any two sets of variables such as spin and link energies. We consider the following correlations:

qss
ab =

1
N

∑

i

〈si〉a〈si〉b ; qσσab =
1
N

∑

i

〈σi〉a〈σi〉b ; qσs
ab =

1
N

∑

i

〈σi〉a〈si〉b (57)

and dynamically:

Rss(t, t ′) =
1

T ss(t, t ′)
∂

∂ t ′
C ss(t, t ′) =

X ss(t, t ′)
T

∂

∂ t ′
C ss(t, t ′) ,

Rσσ(t, t ′) =
1

Tσσ(t, t ′)
∂

∂ t ′
Cσσ(t, t ′) =

Xσσ(t, t ′)
T

∂

∂ t ′
Cσσ(t, t ′) ,

Rσs(t, t ′) =
1

Tσs(t, t ′)
∂

∂ t ′
Cσs(t, t ′) =

Xσs(t, t ′)
T

∂

∂ t ′
Cσs(t, t ′) . (58)

We now follow the same steps and apply the perturbations

S = hi1,...,ip j(1)[asi1 ...sip + bσi1 ...σip] + h2
i1,...,ip

, (59)

for all a, b and compute separately the corresponding generalized susceptibilities of each set of
variables I (p)ss =

´
X ss(C ss)[C ss](p−1)dC ss, I (p)σσ =

´
Xσσ(Cσσ)[Cσσ](p−1)dCσσ and

I (p)σs =
´

Xσs(Cσs)[Cσs](p−1)dCσs. Equality of all makes us conclude that there is a corre-
spondence between statics and dynamics at this partial level:

x ss(qss)↔ X ss(C ss) ; xσσ(qσσ)↔ Xσσ(Cσσ) ; xσs(qσs)↔ Xσs(Cσs) .
(60)
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Figure 3: Three diagrams in terms of the superspace/replica order parameters. Each
vertex stands for a superspace (or replica) index, each line for a Q(a, b), where (a, b)
are the labels of the ends of the line.

Thermalization and overlap equivalence

We now show that if C ss(t, t ′)→ g[Cσσ(t, t ′)] then qss = g[qσσ]with the same function g,
restricted to skeleton values of correlation associated with the Parisi ansatz. For non-skeleton
values there can be no correspondence because the corresponding correlations, since they are
absent from the static solution.

Construct now the susceptibilities via hi1,...,ip;ip+1
si1 ...sip(aσip+1

+ bsip+1
) (hi1,...,ip;ip+1

is not
symmetrized with respect to the last index) First, for b = 0 we get the middle diagram of
figure 3:

I (p) =
ˆ

dCσσ Xσσ(Cσσ)[C ss]p +
ˆ

X ss(C ss)Cσσd[C ss]p . (61)

Now, x ss(qss), xσσ(qσσ) are given by the statics too. They are the same if there is overlap
equivalence. If so,

I (p) =
ˆ
{dCσσ[C ss]p + d[C ss]pCσσ}X ss(C ss)

= X ss(C ss)Cσσ[C ss]p|10 −
ˆ

dX ss {[C ss]pCσσ} . (62)

This is equal to the equilibrium expression

I (p) =
ˆ
{dqσσ[qss]p + d[qss]pqσσ} x ss(qss) = x ss(qss)qσσ[qss]p|10 −

ˆ
d x ss {[qss]pqσσ}

= x ss(qss)qσσ[qss]p|10 −
ˆ

dqss d x ss

dqss
{[qss]pqσσ} . (63)

The equality of all moments proves the equality of the functions Cσσ = g[C ss] and qσσ = g[qss]
but only for the skeleton values at which d x ss

dqss ̸= 0.
Putting now b ̸= 0 the linear term in b implies:

I (p)b =
ˆ
{dCσs[C ss]pXσs(Cσs) + d[C ss]pX ss(C ss)Cσs}

= X ss(C ss)Cσs[C ss]p|10 −
ˆ

dX ss {[C ss]pCσs}

= x ss(qss)qσs[qss]p|10 −
ˆ

dqss d x ss

dqss
{[qss]pqσs} . (64)

Again, the equality of all moments proves the equality of the functions Cσs = ĝ[C ss] and
qσs = ĝ[qss] but only for the skeleton values at which d x ss

dqss ̸= 0.
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Three configurations

This calculation was hinted at in FMPP, the only thing missing was a generating function
for the diagram involved. We consider a slightly more complicated perturbation:

S =
1
2

∑

i j

�

h(1)i j

�2
+

1
2

∑

i j

�

h(2)i j

�2
+

1
2

∑

i j

�

h(3)i j

�2

+
γ

N

∑

i jk

�

h(1)i j h(2)k j + h(1)i j h(3)k j + h(2)i j h(3)k j

�

sksi , (65)

leading to:

S =
1
2

∑

i j

�

h(1)i j

�2
+

1
2

∑

i j

�

h(2)i j

�2
+

1
2

∑

i j

�

h(3)i j

�2

+
γ

N

∑

i jk

�

h(1)i j h(2)k j + h(1)i j h(3)k j + h(2)k j h(3)i j

�

tik . (66)

Integrating away the h’s, we get:

e···+γ
2N
´

d1d2 Q(1,2) j(1) j(2)+2Nγ3
´

d1d2d3 j(1) j(2) j(3)Q(1,2)Q(2,3)Q(3,1)+O(γ4) , (67)

and similarly for replicas. More generally, denoting I = i1, . . . , ip, J = j1, . . . , jr , K=k1, . . . , ks,
tI =
´

j(1)si1 . . . sip d1, and so on, we have, applying the corresponding perturbation:

S =
1
2

∑

I J

�

h(1)I J

�2
+

1
2

∑

I J

�

h(2)I J

�2
+

1
2

∑

JK

�

h(3)JK

�2

+
γ

N (3p−1)/2

∑

I JK

�

h(1)I J h(2)KJ + h(1)I J h(3)KJ + h(2)KJ h(3)I J

�

tKI , (68)

S =

γ2N
�
ˆ

d1d2 Q•p(1,2) j(1) j(2) +
ˆ

d1d2 Q•r(1,2) j(1) j(2) +
ˆ

d1d2 Q•s(1, 2) j(1) j(2)
�

+ Nγ3
ˆ

d1d2d3 j(1) j(2) j(3) (Q•p(1,2)Q(2, 3)•sQ•r(3,1) +Q•p(1, 2)Q•r(2,3)Q•s(3,1))

+O(γ4) .
(69)

And similarly, for the replica calculation. This is the diagram to the right of Figure 3 Now, the
Onsager property within a timescale implies that operators Q•r and Q•s communte, just as the
Parisi matrices do. The result of the diagram is reported in FMPP and is proportional to:

ˆ
dq12dq23dq31 P(triangle) (q12)

p(q23)
r(q31)

s . (70)

Equality of these for all p, r, s implies the equality of the probability of triangles constituted
by skeleton values of overlaps (we note again that the Parisi scheme has nothing to say about
triangles formed by intermediate values of correlations ‘within a scale’).

5 The role of reparametrization invariance(s)

As mentioned in the introduction, connecting two independent systems with a small local inter-
action
∑

i siσi , so that theσi , si become sublattices of a single system, puts the system (and us)
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in a dilemma: if the systems had different effective temperatures in a same timescale, the com-
bined system would violate the scenario we have been describing, including the Parisi scheme,
because it will have different temperatures for different observables in the same timescale.
Thus, the new coupled system will immediately fall outside the scheme. Something clearly is
amiss, because this would happen even for mean-field models, for which we know that the
scenario holds.

One possibility is that all imaginable systems that satisfy a multithermalzed/RSB scheme
have the same timescales at the same values of T for the same X . Thus, any two systems
evolving at the same temperatures would have automatically all the effective temperatures at
the same scales. There is a well-understood counterexample to this possibility: ferromagnetic
domain growth has fast timescale -relaxation within domains – and a a slow timescale, corre-
ponding to the displacements of domain walls. The effective temperature for the slow motion
is infinite [34]. Now, the slow timescale is not universal: it may be C = C

�

t ′
t

�

for a pure

ferromagnet, or C = C
�

ln t ′
ln t

�

for a ‘dirty’ one.
The other possibility, already hinted at years ago [10,31,32], is as follows: when the inter-

action is strong enough, the two systems change their temperatures so they become equal. This
requires a certain critical coupling strength. When the coupling is weaker than that, something
stranger should happen: the timescales associated with the two temperatures "push each other
apart", so the combined system has one more timescale, and the scenario is recovered. That
this should happen even with very weak interaction is only possible because the systems de-
velop independent reparametrization invariances, and coupling is always relevant. This very
surprising phenomenon ‘saves the scenario’.

In Ref. [11, 12] we have studied in detail a slightly different context in which this may
happen: instead of coupling a system to another one, we couple it to a ‘multibath’.

5.1 How do the families of reparametrization invariances come about

In mean-field models – in fact the only systems for which we know that the scenario holds,
the reparametrization invariant families come about as follows. One arrives with the usual
formalism for dynamic equations for correlations and response function, either by summing
ladder diagrams or by working taking saddle point in the dynamic path integral averaged over
disorder.

One then verifies that each scale may be treated separately, with the faster scales acting
as if they were instantaneous and the slower ones as being frozen. The first step, shared by
SYK (which has only two scales) involves separating out the fastest scale, the only one in
which time-derivatives are relevant. Then, one considers the infrared scale which will have a
reparametrization invariance in the slow-dynamics limit in which the time-derivatives may be
neglected.

In some systems the procedure stops here. However, in systems such as the Sherrington-
Kirkpatrick model, there is a ‘more infrared’ scale, which is infinitely slower than the previous
one, and may be separated likewise, and then another, and another. Each scale may be time-
reparametrized freely provided it remains separated from the previous one.

5.2 Two glasses and a wormhole

Coupling systems with reparametrization invariances is generally interesting, because the cou-
pling will almost surely be relevant, since relative reparametrizations between systems are soft.
In a series of papers [35,36], two SYK models – toy versions of Black Holes – have been cou-
pled, and the effect is a system with a combined first order transition line with hysteresis in the
temperature-coupling plane, terminating in a triple point. Let us briefly show how very much
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the same transition is expected to happen when coupling two glasses, for the same reasons. A
direct interpretation, not using reparametrization invariance, is available in the glassy case.

Let us recall a connection between stochastic and quantum dynamics that has been al-
ready used several times in the past in statistical physics, condensed matter and quantum field
theory [37–39] and which we have exploited to lay a bridge between glasses and quantum
systems with large T = 0 entropies [40]. Just as above we consider two systems N coupled
degrees of freedom si(t),σi(t) evolving by stochastic Langevin dynamics

ṡi(t) = −
∂ V
∂ si
+ηi(t) ,

σ̇i(t) = −
∂ V
∂ σi

+ η̃i(t) , (71)

and V is the interaction potential, which we shall take to be:

V =
∑

i jk

Ji jk (sis jsk +σiσ jσk) + z
�∑

σ2
i − N
�

+ z̃
�∑

s2
i − N
�

, (72)

where the J are random and fully-connected and the terms proportional to z impose a spherical
constraint
∑

i σ
2
i =
∑

i s2
i = N . This is the simplest and better understood mean-field glass,

but there are plenty of other examples in the literature, with and without disorder. Here Ts is
the (classical) temperature of the thermal bath to which the system is coupled, and ηi(t), η̃(t)
are a Gaussian white noises with covariance 〈ηi(t)ηi(t ′)〉= 2Tsδ(t − t ′).

The evolution of the probability density is generated by the Fokker–Planck operator HFP,

∂t Pt(q) =
∑

i

∂

∂ qi

�

Ts
∂

∂ qi
+
∂ V
∂ qi

�

Pt(q)≡ −HFPPt(q) , (73)

where qi = {s,σ}. Detailed balance allows us to write this in an explicitly Hermitian form [39,
41]. Rescaling time, one can define the operator

H =
Ts

2
eV/2Ts HFPe−V/2Ts =

∑

i

�

−
T2

s

2
∂ 2

∂ q2
i

+
1
8

�

∂ V
∂ qi

�2

−
Ts

4
∂ 2V
∂ q2

i

�

. (74)

H has the form of a Schrodinger operator with Ts playing the role of ħh, unit mass and potential

Veff =
1
8

�

∂ V
∂ qi

�2

−
Ts

4
∂ 2V
∂ q2

i

. (75)

The spectrum of eigenvalues λi and eigenvectors ψi of H (or HFP) have a direct relation to
metastable states of the original diffusive dynamics ( [42,43], see also [44]):

• The equilibrium state has λo = 0 and the corresponding right eigenvector of HFP is the
Boltzmann distribution associated with the energy function V .

• Given a timescale t∗, the number of eigenvectors withλi <
1
t∗ is the number of metastable

states of the diffusive model with lifetime larger than t∗. In particular, the eigenvalues
λi → 0 in the thermodynamic limit correspond to metastable states whose lifetime diverges
with N.

• Hence, the resulting object N (βq) = Tr e−βqHFP = Z(βq) counts the number of states of
the system that are stable up to a time βq or longer [44].

18

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.001


SciPost Phys. Core 6, 001 (2023)

We thus have introduced a “quantum” Hamiltonian H, which is associated with a quantum
temperature Tq = 1/βq. The original temperature Ts now plays the role of the quantum pa-
rameter, ħh. Our “quantum energy” is associated with the eigenvalues of H, which are a measure
of the lifetimes of the original classical diffusive system. We may analize this ‘quantum system’
in terms of the underlying glassy model. The extensive ‘zero temperature entropy’ is nothing
but the log of the number of metastable states, the ‘glassy’ reparametrization invariance is now
quite analogous to the one of SYK [40] We now couple the two systems through a term:

Hµ = H −µ
∑

i

σisi , (76)

which no longer corresponds to a purely stochastic evolution, but rather to the dynamic large
deviation of

´
d t
∑

i σisi , a generator function. The system will thus have larger than zero
eigenvalue ground state, the value being precisely the large-deviation function for each µ. Had
we coupled the system at the level of V , the joint system would have zero energy quantum
ground state: we know this because the system so obtained is still a glass.

The partition function of the Hamiltonian Hµ reads

Z(µ,βq) = Tr e−βqHµ = Tr e−
1
2βq[TsHFP−µ
∑

i σisi] =
ˆ

dqe−µNQ N (Q,βq) , (77)

where N (Q,βq) measures the number of pairs of metastable states at mutual distance

NβqQ =
´ βq

0 d t ′si(t ′)σi(t ′). For the two coupled systems two phenomena compete: there is
an exponential number of metastable states in each system, all of them (for large N) marginal
in the sense of having gapless vibration spectra. The metastable states of the combined system
is the set of pairs of states one in each system, and is overwhelmingly dominated by taking
different states in each subsystem – these pairs will almost all have small mutual overlap, for
entropic reasons. An attractive interaction between configurations of subsystems privileges on
the contrary choosing the same state in both subsystems. Bearing in mind that an energetic
term dominates the entropic term at lower temperatures, we get a first order mechanism, see
Figure 4.

Let us conclude this section with a remark. When we construct a ‘quantum’ Hamiltonian à
la Rokhsar-Kivelson, the usual imaginary-time partition function corresponds, as we have men-
tioned, to counting the number of metastable states; from the point of view of the stochastic
system, counting periodic stochastic trajectories. The real time evolution (with an ‘i’) does
not have any clear meaning from the stochastic point of view. Finally, the ‘aging’ solution cor-
responds to the following construction: for a general Hamiltonian H, given its ground-state
|0〉 with eigenvalue λ0, and a random initial state |init〉, one computes correlations with the
propagation

〈A〉aging(t) = eλ0 t〈0|Ae−tH |init〉/〈0|init〉; Caging(t, t ′) = eλ0 t〈0|Ae−(t−t ′)HAe−t ′H |init〉/〈0|init〉 .

In a quantum system with ground-state entropy this process only becomes stationary in times
t ′ that diverge with N .

6 Conclusion

In this paper we discuss the essential role of time-reparametrization quasi-invariances in so-
lutions of glassy dynamics and equilibrium. As an intermediate step, we have needed to com-
plete the program of Franz et al (FMPP) in establishing a direct link between Parisi scheme
and dynamic ‘multithermalization’, valid for finite-dimensional systems under the assumption
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−

Vµ

S

F

overlap

overlap

marginal at state−size and infinite T

Figure 4: The Franz-Parisi potential [45, 46]: complexity (the log number of
metastable states at a given overlap) and interaction energy, both plotted in terms
of the overlap. At the point in which the overlap coincides with the state size, the
entropy is the one of a single system, and the point is marginal. At larger over-
laps, i.e within a state, the complexity becomes negative. The dashed line represents
the correction coming from counting states with finite lifetime, as one must at fi-
nite "quantum temperature". The sum of the attraction and entropic effects yields a
first-order transition mechanism (inset).

of stochastic stability with respect to random, long range interactions. For this we had to show
that static and dynamic ultrametricties imply one another. In view of the results in mathemat-
ical physics [47, 48] systems that are stochastically stable with respect to long-range random
correlations should have static and dynamic properties corresponding to the scenario discussed
here. If a system still has a glassy phase, but does not correspond to this scenario, then it seems
one would have to conclude that symmetries are more broken (smaller residual groups), in an
at present unknown way.

An intriguing possibility concerns the quantum SYK-like systems. These have a single in-
frared timescale, which diverges as the inverse temperature. The analogy with spin-glasses
suggests that variants with nested divergent timescales should also be possible.
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