
SciPost Phys. Core 6, 003 (2023)

Nonlocal field theory of quasiparticle scattering
in dipolar Bose-Einstein condensates

Caio C. Holanda Ribeiro1,2 and Uwe R. Fischer1

1 Seoul National University, Department of Physics and Astronomy,
Center for Theoretical Physics, Seoul 08826, Korea

2 International Center of Physics, Institute of Physics, University of Brasilia,
70910-900, Brasilia, Federal District, Brazil

Abstract

We consider the propagation of quasiparticle excitations in a dipolar Bose-Einstein con-
densate, and derive a nonlocal field theory of quasiparticle scattering at a stepwise in-
homogeneity of the sound speed, obtained by tuning the contact coupling part of the
interaction on one side of the barrier. To solve this problem ab initio, i.e., without prior
assumptions on the form of the solutions, we reformulate the dipolar Bogoliubov-de
Gennes equation as a singular integral equation. The latter is of a novel hypersingular
type, in having a kernel which is hypersingular at only two isolated points. Deriving its
solution, we show that the integral equation reveals a continuum of evanescent channels
at the sound barrier which is absent for a purely contact-interaction condensate. We fur-
thermore demonstrate that by performing a discrete approximation for the kernel, one
achieves an excellent solution accuracy for already a moderate number of discretization
steps. Finally, we show that the non-monotonic nature of the system dispersion, cor-
responding to the emergence of a roton minimum in the excitation spectrum, results
in peculiar features of the transmission and reflection at the sound barrier which are
nonexistent for contact interactions.
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1 Introduction

How do the excitations of a quantum field above a given vacuum, the quasiparticles, prop-
agate in a system which has nonlocal and anisotropic particle interactions? This seemingly
simple question can be connected in fact to a plethora of related issues in different branches
of physics and mathematics because of the very nature of the particle interactions. Indeed,
in early quantum field theory, nonlocal alternatives for field theories were sought by the sci-
entific community within the program of “handling divergences” [1, 2], and foundations of
such nonlocal quantum field theories were extensively studied, with particular emphasis on
S-matrix properties cf., e.g., Refs. [3–6]. However, the success and simplicity in studying low-
energy phenomena afforded by the renormalization program of local quantum field theories
eventually won as the primary paradigm. Nevertheless, instances of such nonlocal field the-
ories appear, e.g., as necessary tools in investigating electromagnetic phenomena in material
media [7–10], for studying trans-Planckian physics [11] and the universality of Hawking ra-
diation [12], and to assess the influence of boundaries [13–15].

To study such nonlocal field theories in the lab, dipolar Bose-Einstein condensates (BECs)
[16], realized in the quantum optical context of ultracold gases, cf., e.g., [17–19], offer a
rich environment [20]. For example, quantum fluctuations in dipolar condensates, which lead
to a peculiar Lee-Huang-Yang equation of state [21, 22], and the associated behavior of the
thermodynamic pressure can lead to droplet stabilization, as observed in [23] and supersolid
behavior [24], see for a review [25]. The droplet stabilization is becoming particularly intricate
in the case of quasi-one-dimensional (quasi-1D) dipolar gases cf., e.g., Refs. [26–28].

Among the signatures of the dipolar interaction of particular importance for our analysis is
the existence of rotonic excitations [29], which are caused by the anisotropy of the interaction,
which is partly positive and partly negative. Roton modes, in particular, occur when the dipolar
interaction dominates the interaction at high enough densities of the atoms or molecules. They
play a pivotal role in the description of the dynamical instability emerging in the dimensional
crossover from dynamically stable quasi-1D [30] or quasi-2D [31] condensates to 3D dipole-
dominated BECs, which are always dynamically unstable. We focus in what follows on quasi-
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1D trapping.
The appearance of a roton minimum in the dimensional crossover signals a marked depar-

ture of the standard Bogoliubov dispersion relation from its contact interaction form, which
is what is obtained in a local field theory. Together with the associated maxon maximum,
it corresponds to a non-monotonic dispersion. Indeed, examples of intriguing effects related
to rotonic excitations include the enhancement of many-body entanglement [32], of density
oscillations [33], and the occurrence of roton confinement [34]. On the experimental side,
rotons in elongated BECs have been observed, e.g., in [35–37].

We are however not aware of a solution of the Bogoliubov-de Gennes (BdG) equation de-
scribing quasiparticle propagation in dipolar Bose-Einstein condensates in an inhomogeneous
setup, e.g., presenting an interface between regions of distinct quasiparticle spectra. Find-
ing such solutions is key to provide a general answer on the apparently basic question posed
at the beginning of this Introduction, and we provide in the below an ab initio answer, in
which we put the inhomogeneous dipolar BdG equation of a quasi-1D gas into the form of an
equivalent singular integral equation, and solve this equation. To the best of our knowledge,
this singular integral equation is novel, in that it provides an extension of the well known
Cauchy-type singular kernels [38]. Specifically, the integral kernel we obtain is a combination
of Cauchy-type kernels almost everywhere, with the exception of two isolated points where the
singularity is stronger and the kernel becomes hypersingular. Our case is however different
from established textbook examples of hypersingular kernels [39], where the set of singular
points has nonzero measure. From a more practical perspective, no universally reliable nu-
merical method exists for solving singular integral equations, and each case must be treated
differently in order to avoid numerical instabilities [38]. We discuss a method suitable for the
BdG equation in its hypersingular integral form. We also provide a discretized version of the
singular integral equation for the inhomogeneous dipolar BdG equation, and demonstrate its
excellent performance for already a moderate number of discretization steps.

To give some intuition why the solution of this problem is nontrivial, note that within the
instantaneous approximation for the dipolar interactions, a signal sent towards the barrier
will interact with it before and after the signal has reached it. This is in striking contrast to
the standard contact interaction case, where the signal interacts with the barrier only locally.
Therefore, we expect nontrivial scattering phenomena to emerge. As we will show, these
nontrivial phenomena are even more pronounced when roton excitations are involved due
to the then increased number of the types of elementary excitations present in the system.
Indeed, to assume an inhomogeneous configuration (e.g., a gas containing a sound barrier),
as we will show, greatly increases the mathematical complexity of the perturbations in such
systems, which in general forbids a fully analytical treatment.

Below, we reveal in detail how quasiparticles propagate in systems containing a sound
barrier. Our results represent a major step for constructing a complete nonlocal field theory
of dipolar BECs. The particular model we study, which encapsulates all required features,
is a trapped BEC at rest with aligned magnetic or electric dipoles, which provides a sound
barrier constructed by tuning locally the contact interaction between its particles, which is
then separating the system into two regions with distinct sound velocities. Our goal is to
make solutions to the nonlocal dipolar BdG equations as analytically amenable as possible.
We show how the solutions we find can be used to build the S-matrix, which in the context
of wave scattering comprises the reflection and transmission coefficients in such a way that
unitarity is manifest. We shall see that when the dipolar interactions are present and the roton
minimum exists, the increased number of the types of elementary excitations present in the
system implies that the dimension of this matrix is larger than the 2× 2 S-matrix for the case
of contact-only interactions.

We shall discuss two methods of solving the BdG equation, one based on an approximate
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model, and the second one given in terms of special functions solutions to the novel class of
singular integral equations we put forth. The method based on approximating the model has
the advantage of allowing for analytic solutions, while the singular integral equation is treated
numerically. Our results show that whenever the barrier exists, the dipolar interactions give
rise to a continuum of evanescent channels bound to the barrier, which potentially play a role
in near-boundary physics like recently explored in the context of the analogue gravity of sonic
black holes [40]. Furthermore, novel characteristic features include a decrease in the barrier’s
transmittance when the roton minimum is about to form and the barrier’s complete trans-
mittance/reflectance for particular signals when the roton minimum exists even in the limit
of “weak” barriers. These findings represent a remarkable departure from the homogeneous
system (no barrier), where one may naively expect to see a continuous dependence of sound
propagation on barrier height. Yet, complete transmittance/reflectance is observed even for
vanishing barriers, near the roton and maxon frequencies, in marked disagreement with the
continuous dependence obtained in contact-interaction condensates.

In summary, our presentation is organized in three parts as follows.

— The complexity of the scattering problem for our sound barrier model can be traced back
to the analytical properties of the dipolar interactions in Fourier space. In section 2 we
present the interaction kernel in Fourier space for a quasi-1D dipolar condensate and
show that this kernel is always non-analytical.

— In section 3 we present our condensate configuration containing a sound barrier for its
sound waves, and solve the scattering problem. Specifically, in subsection 3.1 we write
down the BdG equation which models the propagation of small disturbances over our
condensate. In subsection 3.2 we classify all the quasiparticle excitations of our conden-
sate, from which the scattering problem is formulated in terms of waves sent towards
the barrier and the associated reflected and transmitted parts. Moreover, subsections
3.3 and 3.4 contain the methods we employ to solve the scattering problem.

— Lastly, we discuss in sections 4 and 5 the physical implications of the quasiparticles found
in section 3. We show that the scattering process is unitary, and determine in detail how
sound waves are scattered by interfaces in dipolar condensate.

Previous studies have dealt with phonon scattering and the associated S-matrix for contact
interactions, e.g. in the context of acoustic Hawking radiation [41]. Yet, to the best of our
knowledge we present the first complete ab initio nonlocal field theory of quasiparticle scat-
tering at an inhomogeneity in the presence of a Bose-Einstein condensate on top of which the
quasiparticles reside. We reveal, in particular, the impact of the anisotropy of interactions and
the existence of a roton minimum on the scattering matrix. While a recent study explored the
scattering properties of quasiparticles in polar dielectrics [42], our results are more general,
do not assume any a priori knowledge of boundary conditions imposed by the dipolar meta-
material geometry and constitution and incorporate, in distinction to [42], the existence of a
condensate. Considering a dipolar BEC with a stepwise discontinuous contact interaction, the
structure of the S-matrix is derived from first principles. Therefore, our study has, as a further
application, the potential to describe metamaterials built from dipolar BECs, by establishing
a clear recipe of how to predict scattering phenomena in such systems. It thus paves the way
towards a plethora of applications obtained by generalizations of our model. For instance,
our results can be readily applied for an inhomogeneous extension of the recent experiment
reported in [43]. In this work, the crossover regime of a dipolar condensate to a supersolid
and isolated droplet regimes was obtained by tuning the contact interaction, and studied us-
ing Bragg scattering of high energy excitations. By tuning the contact interaction locally, our
model predicts the system response at any energy scale.
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Figure 1: Schematics of the elongated dipolar condensate under consideration. The
system symmetry axis is here taken to be the x axis, and the dipoles are oriented by
an external field along the direction d, which defines the angle θ as shown.

2 Dipolar interactions in quasi-1D condensates

2.1 Interaction kernel after dimensional reduction

As explained in the introduction, dipolar condensates can be stabilized by trapping potentials,
which avoid the head-to-tail instability of bulk dipolar condensates by dimensional reduction.
In this section we discuss the trapping mechanism we adopt, for which our condensate behaves
as a quasi-1D stable condensate. We start with a strongly elongated dipolar condensate with
its dipoles oriented along a given direction d (|d| = 1), such that its particles interact via the
long-range instantaneous interaction energy

Hd =
Cdd

8π

∫

d3 xd3 x ′|Φ(t,x)|2Ud(x− x′)|Φ(t,x′)|2 , (1)

in terms of the order parameter Φ and dipolar interaction strength Cdd.1 The interaction kernel
Ud is given by

Ud(x) =
x2 − 3(x · d)2

|x|5
. (2)

Let us assume the system is subjected to a strong radially symmetric trapping potential in
such a way that the order parameter separation ansatz Φ(t,x) = φ⊥(|x⊥|)φ(t, x) holds, where
φ⊥ is normalized as

∫

d2 x⊥|φ⊥|2 = 1 , assuming the geometry presented in Fig. 1. For the
particular case of dipolar interactions, under the assumed radially symmetric trapping, it was
shown [44] that the only contribution from the interaction kernel in Eq. (1) is given by the
Fourier transform

Ud(x) =
4π

3(2π)3

�

1−
3
2

sin2 θ

�

∫

d3keik·x
�

3k2
x

k2
− 1

�

, (3)

where θ is the angle between d and the x axis, see for an illustration Fig. 1. It then follows
from the order parameter separation ansatz that (∆x = x − x ′)

Hd =
gd

2

�∫

dx |φ|4 − 3

∫

dxdx ′|φ(x)|2G(∆x)|φ(x ′)|2
�

, (4)

1Cdd = µ0d2
m for magnetic and Cdd = d2

e /ε0 for electric dipoles, with dipole moments dm and de, and where µ0

and ε0 are permeability and permittivity of the vacuum, respectively.
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where G is defined via its Fourier transform G̃ as2

G̃(ℓ⊥kx) =
ℓ2
⊥k2

x

2

∫ ∞

−∞
dk⊥

sgn(k⊥)X(ℓ2
⊥k2
⊥)

k⊥ + ikx
,

where X(ℓ2
⊥k2
⊥) :=

|ñ⊥(k⊥)|2

2πℓ2
⊥

∫

d2 x⊥|φ⊥|4
, (5)

and with ñ⊥(k⊥) =
∫

d2 x⊥ exp(−ik⊥ ·x⊥)|φ⊥(|x⊥|)|2. Here, ℓ⊥ denotes the typical length scale
of the transverse trapping. Moreover, we have set as the effective quasi-1D dipole coupling

gd = gd(θ ,ℓ⊥) = −
Cdd

3

�

1−
3
2

sin2 θ

�

∫

d2 x⊥|φ⊥|4 . (6)

We note at this point that gd > 0 is required for the system to be stable in the thermodynamic
limit and for vanishing contact interaction.

We also observe that the advantages of presenting the dipolar kernel in Fourier space
[Eq. (5)] rather than in configuration space are two-fold. Indeed, in Fourier space the double
integral appearing in the energy functional (4) becomes a single integral (by the convolution
theorem) which tends to simplify the analysis in particular when the condensate density is
constant. Moreover, as we aim to study wave scattering at sound barriers, it is necessary to
work with the interaction kernel in Fourier space, i.e., expressed in such a way that the role
played by wave vectors become manifest.

For the (commonly employed) particular case of a strong transverse harmonic trapping,
one has the Gaussian approximation |φ⊥(|x⊥|)|2 = exp(−x2

⊥/ℓ
2
⊥)/(πℓ

2
⊥), where then ℓ⊥ is

the harmonic oscillator length). For harmonic trapping, G̃(η) = (η2/2)exp(η2/2)E1(η2/2),
E1 being the first exponential integral function [44]. In our work one particular property of
this function plays an important role: it has a discontinuity branch on the imaginary axis of
the complex k plane, which (for the Gaussian transverse profile) comes from the function
E1 [45]. This feature increases the mathematical complexity of the condensate perturbations
when some form of sound barrier exists in comparison to the case of contact-only interactions,
and before we proceed to the model, let us pinpoint the origin of such a discontinuity and how
it is related to the reduction to the quasi-1D regime. It is, in particular, not a feature of the
transverse harmonic trapping per se, but occurs generically for any radial trapping, e.g., also
for cylindrical box traps.

2.2 Analyticity of the kernel

Assuming an analytical interaction kernel (in Fourier space) is a simplifying hypothesis in
nonlocal field theories [12]. Indeed, for if G̃(ℓ⊥k) is an analytical function of k, it follows that

∫

dx ′G(∆x) f (x ′) = G̃(−iℓ⊥∂x) f (x) , (7)

for any function f , which leads us to question whether this property is fulfilled by our G̃.
We note, in particular, that if Eq. (7) holds, the effect of the long-range interactions on plane
waves is “local,” and therefore the latter does not prevent the existence of plane wave so-
lutions to the field equations. For the particular case of a dipolar interaction, inspection of
Eq. (5) reveals the analytical structure of G̃ in the complex plane. It has a discontinuity
branch on the imaginary axis as can be seen from the application of the Sokhotski-Plemelj

2We note here that Ref. [44] derives an exact expression for the quasi-1D dipolar interaction kernel in real space
(for harmonic transverse trapping), whereas [30] presents an approximation.
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identity 1/(q± iε) = 1/q∓ iπδ(q) [46] as kx approaches the imaginary axis. Indeed, if iq for
real q is any point on the imaginary axis, then straightforward manipulations lead to the jump
magnitude measured by ∆G̃(iq) := limε→0[G̃(iq+ ε)− G̃(iq− ε)], which reads

∆G̃(iq) = iπq2sgn(q)X(q2) . (8)

The above equation highlights the advantage of writing the interaction kernel in the integral
form of Eq. (5), as it shows that the branch of G̃ exists for any shape of radial trapping, which
in turn determines the discontinuity branch jump through the form factor X in Eq. (8). For
the Gaussian profile, the latter reads X(q2) = exp(−q2/2), while for a cylindrical box trap, for
which |φ⊥(|x⊥|)|2 = 1/(πℓ2

⊥) for |x⊥|< ℓ⊥ and zero otherwise, we find X(q2) = 2J2
1 (|q|)/|q|

2,
where J1 is a Bessel function [45].

By tracing back from Eq. (5) to Eq. (3), we see that the existence of this discontinuity
branch comes from the poles of the dipolar interaction in Fourier space, and Eq. (8) reflects
the fact that different radial wavevectors add up to form the quasi-1D system. This is manifest
in Eq. (3), where the pole at k2 = k2

x + k2
⊥ = 0 (in Fourier space) is evident. This gives rise

to two first order poles at kx = ±ik⊥ (manifest in Eq. (5)), which upon integration produces
the discontinuity branch. In conclusion, both the dipolar interaction and the dimensional
reduction combine to give rise to the discontinuity branch.

The relevance of Eq. (8) to our model is that it greatly modifies the structure and complexity
of the perturbations in the system when a sound barrier exists, mainly because the commonly
assumed Eq. (7) does not hold. Moreover, while noting that we are ultimately interested in the
case where the kernel describes dipolar interactions, these same conclusions also hold for a
gas of charged bosons (e.g., a Cooper pair gas in a superconductor) whose pairwise interaction
follows the Coulomb law. The latter, however, which represents isotropic interactions, does
not give rise to a roton minimum. Finally, the particular details of the trapping mechanism
enter the analysis only through |φ⊥(|x⊥|)|2, which we assume henceforth to be given by the
Gaussian approximation. We shall also omit the subscript x from the momentum kx along the
weakly confining direction and denote it as k in what follows.

3 Quasiparticles in the presence of a sound barrier

3.1 Formulation of the Bogoliubov-de Gennes problem

We consider a stationary background condensate at rest given by φ =
p

n exp(−iµt) (ħh = 1),
with particle density n and chemical potential µ. In order to model a sound barrier for the
phonons in this system, we also allow the particles to interact via the Feshbach-tunable contact
term Hc = gc

∫

dx |φ|4/2, for an almost everywhere constant gc with a steplike discontinuity
at x = 0. Then, as the local sound velocity is defined as c =

p

n(gc + gd) (setting the mass
of the dipolar atoms or molecules m = 1), we see that this setup corresponds to a system in
which the sound velocity has a sudden jump — the sound barrier — at x = 0. Alternatively,
from the sound velocity definition, we see that a barrier is also created for an inhomogeneous
condensate with a particle density n jump at x = 0, for fixed gc. Bearing in mind that this sim-
plified physical system already requires a complex mathematical treatment, we shall assume
at once that the region for x < 0 is dipole-dipole dominated gc/gd ∼ 0 and for x > 0, we have
gc/gd > 0. Moreover, we shall assume for the sake of simplicity that the region x > 0 is such
that gc prevents the formation of rotonic excitations. The discussion that follows can be easily
extended to include the case in which rotonic excitations exist on both sides of the barrier, and
also to sound barriers created by a density jump.

Therefore, the dynamics of the condensate is ruled by the system total energy
H := H0 +Hc +Hd, where Hd is defined in Eq. (4),
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H0 =

∫

dxφ∗
�

−
∂ 2

x

2
+ U

�

φ , (9)

and U is the 1D external potential, that leads to the 1D nonlocal Gross-Pitaevskii equation

i∂tφ =

�

−
∂ 2

x

2
+ U + (gc + gd)|φ|2

�

φ − 3gdφ(G ∗ |φ|2) , (10)

where (G∗|φ|2)(x) =
∫

dx ′G(∆x)|φ(x ′)|2 denotes the convolution. In deducing Eq. (10), we
used that G(∆x) = G(−∆x), as follows from the 3D dipolar kernel (2). Substituting our ansatz
φ =
p

n exp(−iµt) in Eq. (10) fixes the external potential in terms of the particle density:

U = µ+
∂ 2

x
p

n

2
p

n
− n(gc + gd) + 3gdG ∗ n . (11)

We note that the term (∂ 2
x
p

n)/2
p

n vanishes for the case of a homogeneous condensate, and
equals a “delta derivative” potential for the case of a sudden varying n at x = 0. The latter
was recently explored by [40] in the context of analogue gravity in BECs.

Small disturbances in a stationary condensate are modeled by the Bogoliubov expansion
φ = exp(−iµt)(

p
n+ψ), where |ψ|2≪ n, and ψ is a solution of the BdG equation, obtained

by linearizing Eq. (10):

i∂tψ=

�

−
∂ 2

x

2
+
∂ 2

x
p

n

2
p

n

�

ψ+ n(gc + gd)(ψ+ψ
∗)

− 3
p

ngdG ∗ [
p

n(ψ+ψ∗)] . (12)

In what follows, we take n to be constant, in which case the BdG equation simplifies to

i∂tψ=−
∂ 2

x

2
ψ+ n(gc + gd)(ψ+ψ

∗)− 3ngdG ∗ (ψ+ψ∗) . (13)

We emphasize, however, that the results below can be straightforwardly extended to the more
general case of both n and gc changing at the barrier.

We scale from now on lengths with ξd =
p

1/ngd, wavevectors with 1/ξd, and frequencies
with 1/ξ2

d, assuming thereby that gd is always rendered finite and positive. When thus fixing
the scale ξd, it should be kept in mind that gd depends on both the dipole orientation angle θ
and the transverse trapping scale ℓ⊥ via Eq. (6).

Our goal in this work is to study the solutions of Eq. (13). They are more easily found
in terms of the Nambu field Ψ = (ψ,ψ∗)t, as demonstrated in detail for our type of system
in [40]. Note that because of stationarity, the quasiparticle modes still assume the general
form Ψ(t, x) = exp(−iωt)Ψω(x), and Ψω satisfies

ωσ3Ψω =

�

−
∂ 2

x

2
+
�

1+
gc

gd

�

σ4

�

Ψω − 3σ4G ∗Ψω , (14)

where σi , i = 1, 2,3 are the usual Pauli matrices, with σ4 = 1 + σ1. If Ψω is a solution for
Eq. (14), then σ1Ψ

∗
ω is also a solution with −ω∗. Accordingly, we might focus on the field

modes with ω > 0. However, the analytical properties of G̃ prevent Ψω from being a finite
combination of exponential functions when gc is discontinuous (see for details Appendix A).

Far from the interface the solutions simplify to (a combination) of plane waves of the form
Φk exp(ikx) for constant Φk, where

�

ωσ3 −
k2

2
−
�

1+
gc

gd
− 3G̃(βk)
�

σ4

�

Φk = 0 . (15)
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Here, the dimensionless parameter β = ℓ⊥/ξd =
q

ℓ2
⊥ngd(θ ,ℓ⊥) (reinstating here ξd for

clarity) measures the extent to which we are in the quasi-1D regime (in the dipole-dominated
case). The proper quasi-1D limit, with all perpendicular motion frozen out, is achieved when
β → 0.

The corresponding Bogoliubov dispersion relation is conveniently written as fω(k) = 0,
where

fω(k) =ω
2 − k2

�

1+
gc

gd
− 3G̃(βk) +

k2

4

�

= 0 , (16)

as we show in Appendices A and B.
We shall present below two routes for obtaining the solutions of Eq. (14). The solution

for this equation is demonstrated in subsection 3.3, and a model approximation in which we
discretize the integral of Eq. (5) is put forth in subsection 3.4.

3.2 Classification of quasiparticles

We can enumerate all the possible solutions of Eq. (14) as presented in Fig. 2 in which each
plane wave propagating towards the barrier corresponds to a distinct quasiparticle.

From Fig. 2, we see the characteristic roton minimum formation in the dispersion relation
caused by the dipole interactions [29–31,44,47], which singles out the spectrum subset defined
by Ω(r) < ω < Ω(m). For the sake of organization, we shall denote by k (respectively p) the
wavevector solutions at x < 0 (respectively x > 0). Note that, in contrast to the contact-
only interaction case, in each region the rotonic dispersion relation always admits 6 possible
wavevector solutions, and for the propagating ones, each corresponding group velocity sign
(graph slope) indicates if the solution represents plane waves traveling towards or away from
the interface at x = 0. Accordingly, if ω /∈ (Ω(r),Ω(m)), we have only one solution at x ≪ 0
(respectively x ≫ 0) propagating towards the interface, denoted by kin (respectively pin), and
one solution propagating away from it, k1 (respectively p1). Moreover, we also find at each
side of the boundary evanescent channels, i.e., channels that are exponentially suppressed far
from the barrier, denoted by k2, k3, p2, and p3. These channels have Im ki < 0 and Im pi > 0,
i = 2, 3.

The complementary case — ω ∈ (Ω(r),Ω(m)) — is the physically richer one. We notice
from Fig. 2 that all the six solutions at the left hand side of the barrier represent propagating
waves, with three of them, kin1 < kin2 < kin3 propagating towards the barrier. We shall label
the channels propagating away from the barrier as k1 < k2 < k3. To summarize the above
discussion, we depict in Fig. 2 lower panel the schematics of all solutions of Eq, (14), from
which we can state the main result of our work —the solution of the scattering problem —,
as follows: For each wave sent towards the barrier at x = 0, we show how to determine the
intensity of the reflected and transmitted waves.

The distinct behavior for dipolar interactions when a roton minimum is present comes
from the shaded region on the LHS of the top panel Fig. 2, where three modes kin1, kin2, and
kin3 in the band between Ω(r) and Ω(m), the roton and maxon frequencies, respectively, can
propagate towards the barrier (cf. lower panel on the left). This is in marked distinction to
the contact-dominated case on the right (x > 0) of the barrier.

We note that the existence of complex wave vector solutions to the dispersion relation is
not a peculiarity of our dipolar condensate as they are also present in inhomogeneous contact-
dominated configurations [40]. Furthermore, evanescent channels admit no physical interpre-
tation in term of quasiparticles, i.e., they, alone, do not represent solutions to the BdG equation
per se. The same, however, is not necessarily true for real wave vector solutions, for at least in
configurations similar to the one we considered in which an asymptotic regime exists (far from
the barrier), propagating channels can be directly linked to the quasiparticles of the asymp-
totic system. The interpretation of each component appearing in a quasiparticle mode is thus
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ω /∈ (Ω(r),Ω(m)) ω ∈ (Ω(r),Ω(m))

x = 0 x = 0

kin
k1
k2
k3

p1
p2
p3

pin
p1
p2
p3

k1
k2
k3

p1
p2
p3k3

k2
k1
kin

pin
p1
p2
p3

k1
k2
k3

Figure 2: Upper panel: Bogoliubov dispersion relation. Left: solutions in the region
x ≪ 0, characterized by a fully dipole dominated interaction; Ω(r) and Ω(m) are the
roton and maxon frequencies, respectively. Right: solutions for the region x ≫ 0,
where a contribution from contact interaction is present. Lower panel: Asymptotics
of all possible quasiparticle modes for the system under study. Zigzagged (respec-
tively curved) lines represent propagating (respectively evanescent) channels. We
note that kin in the right panel represents the three possible choices kin1, kin2, and
kin3. Also, arrows pointing to the right (respectively left) have Vg > 0 (respectively
Vg < 0), where Vg = dω/dk. Lower panel top part (respectively bottom part):
schematics of the modes initiating at x < 0 (respectively x > 0). The scattering
problem corresponds to a determination of how the transmission and reflection oc-
curs for each possible incoming channel kin and pin.

model dependent. In the system we considered the novelty regarding evanescent channels is
their increased number, which from a physical perspective is an indication that near the barrier
the transient regime caused by the barrier existence is distinct from the contact condensate
analogue, as expected from the non-local character of the interactions.

3.3 Singular integral equation for the dipolar Bogoliubov-de Gennes problem

The details of how to solve Eq. (14) are presented thoroughly in Appendix B, and here we syn-
thesize the main points. Following the asymptotic behavior just presented, we know that the
quasiparticle modes are labeled by each incoming signal (kin or pin), and far from the barrier
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they reduce to linear combinations of the channels shown in Fig. 2 lower panel. Our strat-
egy here can be understood in terms of the latter channels as follows. For local, contact-only
condensates, quasiparticle modes are built by combining the plane waves given by the Bo-
goliubov dispersion relation, i.e., local solutions to the BdG equation, and imposing matching
conditions at the barrier. This procedure fails in the dipolar case, as the plane waves from the
dispersion relation are not local solutions to the BdG equation. Accordingly, we shall develop a
procedure to build, from the plane waves of Fig. 2 local solutions which can then be combined
in the same fashion as for contact-interaction condensates. This “completion” procedure, per-
formed via the BdG equation, gives rise to singular integral equations and associated special
functions, but has the benefit of expressing the quasiparticle modes in a manner that leaves
manifest their asymptotic properties while allowing for an easier numerical treatment than the
direct solution of the BdG equation.

Because each field mode has a continuum of evanescent channels as imposed by the con-
volution in Eq. (14) (Appendix A), solutions can be found with the aid of the ansatz

Ψω =
∑

k

Skζk(x)Φk +
∑

p

Spζp(x)Φp , (17)

where the k′s, p′s,φk, and φp are given by Eqs. (15) and (16). The quantities ζk and ζp are
matrix-valued functions, given by

ζk(x) =

¨

i
∫∞

0 dqΛk,qe−qxΠ(q), x > 0 ,

eikx − i
∫ 0
−∞ dqΛk,qe−qxΠ(q), x < 0 ,

(18)

and

ζp(x) =

¨

−eipx + i
∫∞

0 dqΛp,qe−qxΠ(q), x > 0 ,

−i
∫ 0
−∞ dqΛk,qe−qxΠ(q), x < 0 .

(19)

with Π(q) =
�

q2/2−ωσ3

�

σ4/(q− q−)(q− q+). Furthermore, the functions Λk,q and Λp,q are
solutions of the novel singular integral equation

h(q)Λk,q

(q− q−)(q− q+)
+

3i∆G̃(iβq)
2π(q− − q+)

�

1
q− q−

∫ ∞

−∞
dq′q′2Λk,q′

�

1
q− − q′

−
1

q− q′

�

− {q−↔ q+}
�

= −
3i∆G̃(iβq)
2π(iq− k)

, (20)

where the integrals are Cauchy principal values, ∆G̃(iq) was defined in Eq. (8), and the func-
tion h(q) is defined by

h(q) =
q4

4
−ω2 − q2
�

1+
gc(q)

gd
− 3G(iβq)
�

, (21)

with G(iq) = limε→0+[G̃(iq+ ε) + G̃(iq− ε)]/2, i.e., the average of G̃ along the discontinuity
branch. Finally, the real parameters q− < 0< q+ are the two simple zeros of h: h(q±) = 0.

We stress that the ansatz (17) was constructed in such a way that each ζk(x)Φk,ζp(x)Φp is
a local solution to the BdG equation, i.e., they are built to satisfy Eq. (14) at all points except at
the barrier (x = 0). Thus, the continuum of evanescent channels in Eqs. (18) and (19) gives
a succinct representation of the fact that the Bogoliubov channels of Fig. 2 fail from being
local solutions. Moreover, a few features of the ansatz (17) are revealed by direct inspection
of Eq. (20). In general, for analytic interaction kernels, one has ∆G̃(iq) := 0, which implies
Λk,q,Λp,q := 0 for all k’s and p’s, and the ansatz (17), through Eqs. (18) and (19), reduce to a
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finite combination of the exponentials given by the Bogoliubov dispersion relation (16). This
is, in particular, the case for contact-type interactions. Furthermore, the decay of Λk,q,Λp,q as
functions of q depends on the radial trap through ∆G̃(iq). For the Gaussian approximation
adopted here, Eq. (20) shows that Λk,q,Λp,q are exponentially suppressed for large q, whereas
for the box trap profile, Λk,q,Λp,q decay with a power law [cf. Eq. (8) and the discussion after
it].

In order to find a solution in the form (17), the scattering coefficients Sk and Sp must
be uniquely fixed up to an overall phase and a normalization constant. We note first that
substitution of this ansatz into the BdG equation implies (after a lengthy calculation) that a
solution in this form exists only if

∑

k

SkΛk,q−σ4Φk +
∑

p

SpΛp,q−σ4Φp = 0 , (22)

∑

k

SkΛk,q+σ4Φk +
∑

p

SpΛp,q+σ4Φp = 0 , (23)

are satisfied, which thus fixes two of the six scattering coefficients. These equations are nec-
essary conditions for Eq. (20) to hold (details in Appendix B). The remaining boundary con-
ditions are fixed by standard wave mechanics techniques applied to Eq. (14): Ψω and ∂xΨω
are continuous at the barrier.

A few more general comments about the ansatz (17) are in order. First of all, the solution
just found is build from the solutions of the singular integral equation (20), which in fact can
be even more difficult to solve than the BdG equation itself. However, this equation can be
solved numerically to any precision by means of cubic splines [48]. Although this requires
a considerable numerical effort, the latter method has an advantage over e.g. collocation
schemes [49], as it does not rely on prior assumptions on the form of the solutions (for which
explicit examples are contained in Appendix D). The sensitivity towards choosing the appro-
priate numerical scheme additionally serves to illustrate the mathematical challenge posed by
nonlocal field theories.

Also, we see from the definitions in Eqs. (18) and (19) that in addition to the evanescent
channels coming from the dispersion relation (16), the nonlocal dipolar interactions give rise to
a continuum of evanescent channels when a sound barrier exists. This can be traced back to the
analytical properties of G̃ discussed in Sec. 2, as we see from there that if∆G̃ ̸= 0 (see Eq. (8)),
then Λk,q given by Eq. (20) is nonvanishing. Furthermore, we know that when the barrier
is absent (gc = 0), the solutions to the BdG equation are single propagating exponentials
[31, 32, 44]. The numerical implementation of the general solution (17) for this particular
case recovers this fact, as we verified when building the numerical solutions presented in
Appendix D.

We conclude this presentation of solutions to the BdG equation with a further remark
regarding the level of mathematical complexity in this system when compared with sound
propagation in contact-only interacting condensates. In the latter, the analogue situation of
a sound barrier modeled by a sudden gc jump over a homogeneous condensate results in
the quasiparticle modes being combinations of only a few simple exponentials [40]. This
inspiration, gleaned from contact interactions, motivates us to seek for a different strategy in
solving for the scattering coefficients, which consists in an approximation to the kernel (5),
such that the corresponding quasiparticle modes are also expressed as a finite combination of
exponentials.

3.4 Approximate solution

The strategy we follow in this subsection consists in finding an approximate discrete version
of the integral equation (20), in such a way that the exact quasiparticles can be recovered via
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Figure 3: Approximations for the Fourier space kernel G̃ in (5) for two sets of
{N ,∆q}. For N = 100 the approximation is indistinguishable on the scale of the
figure from the exact result.

some limiting process. It turns out that a convenient way of achieving such approximation is
to substitute the dipolar kernel integral (5) by a finite sum. Specifically, we take G̃→ G̃, where

G̃(k) = k2

∑N
j=0 j∆q2e− j2∆q2/2

N
∑

j=0

j∆q2e− j2∆q2/2

j2∆q2 + k2
, (24)

and the two parameters ∆q > 0 and the integer N are free. We note that N → ∞ and
∆q → 0 reproduces exactly Eq. (5), as depicted in Fig. 3. Furthermore, 2N is the number
of (simple) poles in this function, which are located at k = j(i∆q), for −N ≤ j ≤ N , and,
naturally, ∆q is the distance between two consecutive poles. The examples of Fig. 3 show the
accuracy potential of our approximation. In particular, we see from Fig. 3 that for N = 10
and ∆q = 1/3, i.e., the approximating G̃ containing only 20 poles, a reasonable agreement is
already obtained. Let us now build the solutions for Ψω for the model of Eq. (24).

The general asymptotic properties of the possible quasiparticles modes are the same as
presented in Fig. 2. In the absence of G̃, the dispersion relation in Eq. (16) is a degree four
polynomial equation, whose solutions are explicitly found for eachω> 0, whereas for G̃ given
in Eq. (24), in addition to these four solutions, another 2N solutions are present, one for each
pole in G̃. Furthermore, in view of the numerator of Eq. (24), no dispersion relation solution
coincides with the poles of G̃ in the complex k plane.

For the approximate model under study, the solutions for the dispersion relation can be
grouped in the single zero level set fω(k) = 0, as done in Fig. 4. As explained, in each region
of the condensate and for each ω > 0, Eq. (16) has 4+ 2N solutions, with the real solutions
depicted in Fig. 2, and the remaining being necessarily complex. We recall that when G̃ is the
exact one given in Eq. (5), the wave function presents a continuum of evanescent modes on the
imaginary axis. We thus readily see that the approximation implemented here also discretizes
this continuum, as indicated by Fig. 4, where in addition to the six channels existing when G̃
is used, we have the extra blue points on the imaginary axis. Furthermore, as N →∞ and
∆q→ 0, these poles clump together, thus recovering the continuum of the solutions (Eq. (17))
and reinforcing the validity of our approximation. We label the evanescent channels at x < 0
by k j and at x > 0 by p j . Clearly, Im k j ≤ 0 and Im p j ≥ 0.

It turns out that these exponentials, the solutions to the dispersion relation Eq. (16) of the
approximated model, can be used to construct solutions to the wave equation. Indeed, let us
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Figure 4: Zero level sets for the real and imaginary parts of Eq. (16). Blue circles are
solutions to fω = 0 for the fixed frequency ω = 0.4, i.e., they are the wave vectors
solutions to the Bogoliubov dispersion relation in the complex plane. We have chosen
N = 10 and ∆q = 1/3 in the discrete representation (24). kr and ki denote the real
and imaginary parts of k, respectively. Left: (Right:) dispersion relation at x < 0
(x > 0). The solutions on the imaginary axis tend to a continuum of evanescent
channels when N →∞ and ∆q→ 0.

look for a solution with the ansatz

Ψω =

� ∑

p SpeipxΦp, x > 0 ,
∑

k SkeikxΦk, x < 0 ,
(25)

whose relation to Eq. (17) is manifest: the integrals in Eqs. (18) and (19) are substituted by
finite sums of evanescent channels (see Fig. 4). Each incoming signal at the barrier gives rise
to a distinct solution, which is associated to reflected and evanescent channels. By carefully
counting the number of unknown coefficients Sk and Sp, we find that for a given N , we have
2+N Sk ’s and 2+N Sp ’s, leading to a total 4+2N unknown coefficients for each field mode.
If a solution exists in the form (25), then the coefficients are fixed by the BdG equation (14).
We note, however, that the application of standard wave mechanics techniques to the field
equation only produces 4 boundary conditions, namely, Ψω and ∂xΨω are continuous at the
barrier. This is caused because the convolution in Eq. (14) is always continuous (see Appendix
A).

We conclude, therefore, that 2N boundary conditions appear to be “missing,” and the
solution to this puzzle is found from the form of Eq. (25). Indeed, the convolution σ4G ∗Ψω
of Eq. (14) is conveniently written as

1
2π

∫

dkeikx G̃(βk)σ4Ψ̃ω(k), (26)

where Ψ̃ω(k) is the Fourier transform of Ψω (cf. Appendix A), and the (simple) poles of Ψ̃ω are
precisely the k’s and p’s appearing in Eq. (25). Thus, as the poles of G̃(βk) cannot coincide
with the poles of Ψ̃ω (which are given by the dispersion relation (16)), the convolution (26)
does not have evanescent channels at the poles of G̃(βk) if and only if σ4Ψ̃ω vanishes at these
poles. Therefore, as G̃(βk) has 2N poles at the imaginary axis, a solution of the form (25)
exists if and only if

σ4Ψ̃ω(i j∆q) = 0 , (27)
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for −N ≤ j ≤ N , j ̸= 0. This gives us an additional set of 2N boundary conditions, as
required.

This concludes the construction of the quasiparticle modes for the system under study.
We emphasize at this point that the approximate solutions described in the above greatly re-
duce the numerical effort necessary to simulate any observable quantity in the inhomogeneous
dipolar BEC.

4 S-matrix and unitarity

All the quasiparticle modes thus constructed admit the in/out state interpretation: For each
field mode, the incoming channel, labeled by kin’s or pin, represents a signal sent towards the
boundary at the asymptotic past which emerges at the asymptotic future propagating away
from the barrier through the various reflected/transmitted channels. This can be read off di-
rectly from the solutions in Eqs. (17) and (25), as far away from the boundary each elementary
excitation reduces to a sum of plane waves. The scattering coefficients involved in all of these
processes can be conveniently grouped into an unitary matrix — the S-matrix — which is sim-
ply an expression for the conservation of field mode normalization throughout the system’s
causal development. When only contact interactions are present, this conservation is implied
by the BdG equation to be ∂x Jω = 0, where Jω = Im (Ψ†

ω∂xΨω). The important consequence
of this equation is that the total flux in the system is conserved: Jω(∞)−Jω(−∞) = 0, giving
rise to the S-matrix conveniently defined in terms of the norm-preserving condition

∑

k prop

kΦ†
kΦk|Sk|2

contact
=
∑

p prop

pΦ†
pΦp|Sp|2 , (28)

where the sums are performed over the propagating channels only. It is to be stressed that
this conservation law is not due to the particle number conservation of the full theory im-
plied by its U(1) symmetry. It is a well known fact that the Bogoliubov expansion leads to
a theory with a spontaneously broken U(1) symmetry [50]. The conservation law we are
exploring here is, then, the time-independence of the Bogoliubov scalar product, defined as
〈Ψ,Ψ′〉 :=
∫

dxΨ†σ3Ψ
′, where Ψ = exp(−iωt)Ψω(x), Ψ′ = exp(−iω′ t)Ψω′(x) are any two

field modes. Via the BdG equation (14), the condition ∂t〈Ψ,Ψ〉= 0 can be shown to be equiv-
alent to ∂x Jω = 0 for all ω in the absence of dipolar interactions.

However, when dipolar interactions are present, Jω is no longer conserved (see for the
extended discussion in Appendix C):

∂x Jω = 6Im[(G ∗Ψ†
ω)σ4Ψω] . (29)

This should not be read as implying that there is no flux conservation, but that the quantity Jω is
no longer a bona fide representation for the system total flux. We show in detail in Appendix
C that for both families of solutions found in the previous section the dipolar analogue of
Eq. (28) acquires the form

∑

k prop

Φ†
k

�

k− 3
dG̃
dk
σ4

�

Φk|Sk|2 =
∑

p prop

Φ†
p

�

p− 3
dG̃
dp
σ4

�

Φp|Sp|2 . (30)

The meaning of this relation is more readily grasped by constructing the S-matrix. To that end,
we take the solution for Φk to be normalized as

Φk =

�

�

�

�

k2

4πVgω(ω− k2/2)2

�

�

�

�

1/2

×
�

1+ gc/gd − 3G̃
ω− k2/2− 1− gc/gd + 3G̃

�

, (31)
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where Vg = dω/dk is the group velocity.
We have presented here the flux conservation in terms of the approximated model, which

in turn implies its validity for the continuum as we take the limit of an infinite number of
discretization steps. Also, we note that the particular form of the normalization in Eq. (31) is
not relevant for the physics of the problem. However, this form is convenient for us because it
implies

Φ†
k

�

k− 3
dG̃
dk
σ4

�

Φk =
1

2π
sgn(Vg) , (32)

for propagating channels. This form of normalization is one possible choice which bounds
the scattering coefficients absolute value to unity, as we shall see now. Let us label the quasi-
particle modes according to their incoming channel by adding a superscript to the scattering
coefficients. For instance, for pin, we set Sk→ Spin

k in the general solution (25). Moreover, we

set to unity the intensity of the incoming channels, i.e., Spin
pin
= Skin

kin
= 1.

In view of the schematics displayed in Fig. 2 lower panel, Eqs. (30) and (32) simply mean
that the matrix Sω defined by

Sω =

�

Skin
k1

Skin
p1

Spin
k1

Spin
p1

�

, (33)

for ω /∈ (Ω(r),Ω(m)) and

Sω =











Skin1
k1

Skin1
k2

Skin1
k3

Skin1
p1

Skin2
k1

Skin2
k2

Skin2
k3

Skin2
p1

Skin3
k1

Skin3
k2

Skin3
k3

Skin3
p1

Spin
k1

Spin
k2

Spin
k3

Spin
p1











, (34)

in case that ω ∈ (Ω(r),Ω(m)), is unitary, i.e., S†
ωSω = SωS†

ω = 1. This “unitarity” enables us to
study quasiparticle scattering by the sound barrier as considered, because it ensures that no
signal amplitude is lost during quasiparticle propagation and scattering. Finally, a different
choice of normalization for Φk clearly does not spoil the S-matrix as it is given by Eq. (30), but
the simplified form Sω and its unitarity condition changes.

We finish this section with a disclaimer regarding the S-matrix nomenclature. Naturally,
scattering matrices appear generically in distinct branches of physics, and as such it is impor-
tant that the meaning of the notion of S-matrix be completely clear in each context. We cite,
for instance, the two works [51, 52] in which S-matrices appear within the same wave me-
chanics context as in our work. Yet, in [52] the very same mathematical object is not referred
to as an S-matrix. We should thus stress that the S-matrix in our context is not the same object
as the one occurring in particle scattering in quantum field theory, where it is just representing
the Schrödinger equation written in terms of the evolution operator [53]. Note that a proof
of the unitarity of the S-matrix in such a quantum field theory context for a nonlocal family of
scalar quantum field theories was provided in [6].

5 Transmittance and reflectance: Impact of dipolar interaction

As an application of the solutions constructed we now investigate how the sound barrier trans-
mittance/reflectance is affected by the roton minimum. Once the scattering coefficients are
known, we can study how waves sent towards the barrier get reflected and transmitted, the
dipolar condensate analogue of the scattering of light rays at interfaces in classical optics.
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Specifically, far from the barrier (|x | ≫ 1) in general we obtain from Eq. (17) or (25) that

Ψω ∼
� ∑

p prop SpeipxΦp, x > 0 ,
∑

k prop SkeikxΦk, x < 0 ,
(35)

i.e., only the propagating channels (real wave vectors) contribute. For the sake of illustration,
if we consider the case where no roton is present, the quasiparticle of frequencyω and indexed
by kin far from the barrier assumes the form

Ψkin ∼ e−iωt

¨

Skin
p1

eip1 xΦp1
, x > 0 ,

eikin xΦkin
+ Skin

k1
eik1 xΦk1

, x < 0 .
(36)

This is the solution of the BdG equation in our dipolar condensate configuration. Indeed, for
contact-only condensates the quasiparticles also assume the form in Eq. (36) far from inhomo-
geneities, and thus we conclude that the scattering coefficients encapsulate all new physical
information coming from the dipolar interactions in comparison to contact interactions. We
observe that Eq. (36) corresponds to a plane wave of “unity intensity” sent towards the bar-
rier from the asymptotic left, namely the term proportional to exp(−iωt + ikin x), which then
gives rise to a reflected wave [exp(−iωt+ ik1 x)] with intensity |Skin

k1
|2 and a transmitted wave

[exp(−iωt + ip1 x)] with intensity |Skin
p1
|2. Moreover, the unitarity of the process discussed in

the previous section shows us that the constraint |Skin
k1
|2 + |Skin

p1
|2 = 1 holds. When the roton

minimum is present, the same reasoning and interpretation holds, with the difference that
more propagating channels might be present in the quasiparticles following the scheme of
Fig. 2. We discuss in the below each of the possible cases separately.

We use in this section only the approximate model, as it allows for an easier numerical
simulation, and leave for the Appendix D some worked out examples of the singular integral
BdG equation (20). We recall from the dispersion relation (16) that the influence of the dipolar
interactions is measured by the coefficient β = ℓ⊥: As β increases, the roton minimum emerges
and the system eventually becomes dynamically unstable; when β → 0, the system is stable
under the proviso that gd > 0 . Therefore, β measures how deep into the quasi-1D regime the
system has penetrated.

Furthermore, we note from Eqs. (5) and (24) that, because of the global factor k2, the
long-range part of the dipolar interactions is suppressed in the quasi-1D limit β → 0, and
the condensate behaves no different than one with only local contact interactions, which is
modeled by g = gd for x < 0 and g = gd + gc for x > 0. Thus our model enables us to
compare results with the non-dipolar case operating near or within the quasi-1D limit. For
the sake of a clear representation, we now treat separately the cases with roton and no roton
minimum.

5.1 No roton minimum

When rotonic excitations are not present in the system, for each frequency ω in the system
spectrum there are two elementary excitations, corresponding to the signals sent towards the
barrier at each of its sides, i.e., signals kin and pin. Accordingly, the S-matrix has the form
(33) for each frequency subspace. As Sω is unitary, this means that both its row and column
vectors form orthonormal bases, which in turn implies that the absolute value of one of its
components fixes all the others. Therefore, by calculating |Skin

p1
|2 — the transmitted intensity

through the barrier from left to right — we also determine |Skin
k1
|2, |Spin

p1
|2, and |Spin

k1
|2.

We show in Fig. 5 how the barrier transmittance varies with frequency for several values of
β . The dotted-brown curve corresponds to β = 0, and it shows that the barrier with “height”
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Figure 5: Sound barrier transmittance measured by the coefficient |Skin
p1
|2 for sev-

eral values of β . Inset: positive branch of the dispersion relation for each curve,
showing how the roton minimum threshold is approached. The brown-dotted curve
corresponds to the contact-only regime (β = 0), showing that this barrier is almost
transparent for contact-only interactions. Yet, the bending of the dispersion relation
leads to a noticeable decay of the barrier transparency even in the absence of a roton
minimum, as shown by the continuous, dashed, and dot-dashed curves. Here, dis-
cretization parameters are N = 10 and ∆q = 1/3.4. For these parameters, the roton
minimum formation threshold is approximately β ∼ 0.689.

modeled by gc/gd = 0.2 is almost transparent for contact-only interactions. Yet, we note that
a noticeable decay in the transmittance is predicted to occur for an extended range of signal
frequencies even in the absence of a roton minimum when β is increased, which thus reveals
how wave propagation in this system is sensitive to inhomogeneities.

5.2 With roton minimum

When the roton minimum exists, for frequencies not in the grey band shown in the left upper
panel of Fig. 2,ω /∈ (Ω(r),Ω(m)), there are only two quasiparticle excitations for each frequency,
and the same reasoning used to interpret the case with no roton minimum present can be
repeated. We present in Fig. 6 several simulations for this regime, which supplements our
findings from Fig. (5) beyond the roton minimum formation, namely, the high energy sector
of the theory is sensitive to the bending of the dispersion relation, a feature not present when
only contact interactions exist for condensates at rest.

Furthermore, within the band ω ∈ (Ω(r),Ω(m)) (the shaded area in Fig. 6) the degeneracy
of each frequency subspace is 4 for the parameter choice we are investigating, corresponding
to the four distinct quasiparticles that can be excited: kin1, kin2, kin3, pin. We stress that this
increased degeneracy has no counterpart in condensates whose particles interact only locally.
It is instructive to analyze each quasiparticle separately.

5.2.1 ω ∈ (Ω(r),Ω(m)), kin1 excitation

We show in Fig. 7 the reflectance and transmittance coefficients of the quasiparticle branch
indexed by kin1, cf. Fig. 2. Reflectance and transmittance measure the fractions of the plane
wave signal exp(−iωt+ ikin1 x) coming towards the barrier from the left that get reflected and

18

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.003


SciPost Phys. Core 6, 003 (2023)

Figure 6: Sound barrier transmittance measured by the coefficient |Skin
p1
|2 for barrier

heights gc/gd. The shaded region correspond to the band ω ∈ (Ω(r),Ω(m)), which
cannot be characterized by the coefficient |Skin

p1
|2 alone. Here, N = 10, ∆q = 1/3.4

and β = 0.76. This implies Ω(r) ∼ 0.24 and Ω(m) ∼ 0.45 for the roton and maxon
frequencies, respectively. These curves represent supplementary data to the ones pre-
sented in Fig. 5: although those sound barriers have weak influence on the phonon
sector of the theory, the high-energy sector is sensitive to the bending of the disper-
sion relation, a feature not present in the contact-only case.

transmitted through the various available channels: k1, k2, k3, and p1. Therefore, the data in
Fig. 7 show us that the barrier is mostly opaque for these waves, as the transmittance in this
case satisfies |Skin1

p1
|2 ≪ 1. Furthermore, the signal is integrally reflected through the channel

k1 (respectively k2) for frequencies close to the roton (respectively maxon) frequency, and
this feature survives even for very small gc/gd = 0.001. It is noteworthy that in the barrier’s
absence, i.e., gc = 0, any signal of this form is clearly integrally transmitted, and thus the very
existence of the barrier leads to the total reflection of kin1 quasiparticles with frequencies near Ω(r)

and Ω(m).

5.2.2 ω ∈ (Ω(r),Ω(m)), kin2 excitation

The analysis of the remaining quasiparticle modes follows the same line of reasoning just
presented. Figure 8 presents the scattering coefficients for the kin2 quasiparticle branch.

We see from Fig. 8 that, in distinction to the kin1 quasiparticles, plane waves of the form
exp(−iωt+ikin2 x) sent towards the barrier from the left are integrally transmitted for frequen-
cies close to the roton minimum, and a transition to a completely opaque barrier is observed
as the frequency tends to Ω(m). We also observe that this opaqueness near maxon frequen-
cies survives even for very small gc/gd = 0.001, in the same way as it happens for the kin1
excitation discussed in the preceding paragraph.

5.2.3 ω ∈ (Ω(r),Ω(m)), kin3 and pin excitations

The remaining quasiparticle branches, namely, kin3 and pin are analyzed in the same fashion.
They correspond to the plane waves exp(−iωt+ikin3 x), exp(−iωt+ipin x) propagating toward
the barrier from the left and right, respectively. We see from Fig. 9 that both waves experience
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Figure 7: Scattering coefficients for the quasiparticle branch indexed by kin1 in
the frequency band ω ∈ (Ω(r),Ω(m)). Here, N = 10, ∆q = 1/3.4. This implies
Ω(r) ∼ 0.24 and Ω(m) ∼ 0.45 for the roton and maxon frequencies, respectively. We
note that the sum |Skin1

k1
|2 + |Skin1

k2
|2 + |Skin1

k3
|2 + |Skin1

p1
|2 = 1 for all ω, one of the prop-

erties of the S-matrix. For the quasiparticles, labeled by kin1, the barrier is mostly
opaque, with the incoming signal being reflected exclusively through the channel k1
for ω→ Ω(r) and through the channel k2 as ω→ Ω(m).

a partially transmitting barrier for frequencies near Ω(m), in distinction to the kin1 and kin2
excitations discussed above that experience a completely opaque barrier at these frequencies.

Furthermore, for frequencies near the roton minimum, the barrier becomes completely
opaque for the kin3 excitations and completely transparent for the pin branch.

6 Final remarks

The present study provides a systematic route to describe the scattering of quasiparticles in
inhomogeneous dipolar Bose-Einstein condensates. To this end, we have studied perturbations
in a quasi-1D dipolar condensate in which a sound interface exists, separating the condensate
in two regions possessing different sound velocities. The perturbations were built via two
distinct methods, one based on the direct simulation of the solutions and one based on a
family of approximated models. Both methods explore the fact that the long-range dipolar
interaction in Fourier space is not modeled by an analytic kernel, which gives rise to a distinct
set of evanescent channels bound to the sound barrier.

As a particular application, we have shown how sound scattering occurs as a function
of the perturbation frequency. An intricate pattern of reflectance/transmittance was shown to
emerge due to the existence of rotonic excitations, which are due to the interaction anisotropy,
which leads to a strong dependence of the barrier transmittance as function of the mode fre-
quency and “polarization.” In fact, if rotonic excitations exist, for frequencies within the ro-
ton/maxon band, the number of elementary excitations that can be scattered by the barrier is
larger than two, as happens for the case where only contact interactions are present. Each of
these correspond to a distinct system response to external excitations, and the barrier behaves
fully/partially transparent or opaque depending on the excitations.
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Figure 8: Scattering coefficients for the quasiparticle branch indexed by kin2 in the
frequency band ω ∈ (Ω(r),Ω(m)). The parameters are the same as in Fig. 7. We ob-
serve that these quasiparticles experience a transition from a completely transparent
barrier for frequencies near Ω(r) to a completely opaque one, for frequencies near
Ω(m) and with the reflection exclusive through k3. The channels k1 and k2 have neg-
ligible participation in the scattering process.

We started from a homogeneous quasi-1D dipolar condensate at rest, and asked how sound
propagates in this system if a sound barrier is constructed at which the sound speed experiences
a steplike change. As the system admits also rotonic (and maxonic) excitations when dipole-
interaction-dominated, we demonstrated that the S-matrix dimension is enlarged. It should
be emphasized that, starting from these two basic ingredients we use— dipolar condensate
at rest and a sound barrier —, that only through the exact knowledge of the quasiparticle
modes we derived it is possible to unveil the peculiar results presented for the reflectance and
transmittance of the increased number of modes available to the system. The properties of
the S-matrix we obtain clearly distinguish dipole-interaction-dominated BECs from their their
contact-interaction-dominated counterparts.

The importance of the present work thus consists in providing a recipe to build the quasi-
particle spectrum in dipolar condensates with inhomogeneous sound velocity. We should also
stress that our method is not restricted to condensates with homogeneous densities, as only a
few modifications are necessary to study configurations in which the sound interface is caused
by density jumps. Indeed, once the knowledge of how to build quasiparticle mode solutions for
this type of inhomogeneous dipolar condensates is set, it is straightforward to apply the same
technique a number of systems of interest. In particular, the application we have explored here
is far from exhausting all the features inherent in this type of system, with examples including
a roton almost touching the wavevector axis which could hybridize with low-energy phonons,
and the existence of rotonic excitations on both sides of the barrier. As a natural extension
of our results, nontrivial effects are expected if the sound barrier is taken to have a finite
size. Furthermore, we expect that selective nature of quasiparticle scattering in dipolar BECs
through the associated transmission and reflection coefficients will have significant impact on
the properties of droplets, which represent naturally emerging interfaces in the condensate
due to quantum fluctuations [23,25–28].

Our analysis indicates how intricate quasiparticle scattering in inhomogeneous dipolar
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Figure 9: Scattering coefficients in the frequency band ω ∈ (Ω(r),Ω(m)). Left panel:
quasiparticle branch indexed by kin3. Right: quasiparticle branch indexed by pin. The
parameters are the same as in Figs. 7 and 8. Both families of quasiparticles experi-
ence a partially transmitting barrier for frequencies near Ω(m), whereas for frequen-
cies near the roton minimum, the quasiparticles kin3 (respectively pin) experience a
completely opaque (respectively transmitting) barrier.

BECs with continuous variations of density and coupling will be, where in general no sim-
ple solutions to the quasiparticle modes can be found. The extension of our technique to the
case of continuous sound barriers therefore promises to reveal further features of quasiparticle
scattering in dipolar BECs over those familiar from contact interaction condensates.

The quasiparticle modes we constructed are already properly normalized according to the
Bogoliubov scalar product. Therefore, quantization of the present nonlocal field theory is a
formal step which follows straightforwardly from expanding the bosonic field operator into
this complete set of modes.

We finally note that infinitely extended (quasi-)1D Bose-Einstein condensates, according
to the Hohenberg theorem [54], do not exist,3 due to the divergence of nonlocal phase fluctua-
tions in the system. This imposes certain restrictions on the applicability of infinitely extended
systems to model experimental realizations, as we expect the phonon part of the spectrum to
be sensitive to finite size effects. This, however, should not interfere with the general proper-
ties of the scattering processes here investigated — which occur far from the long-wavelength
phonon regime — as long as the condensate is still sufficiently large along the weakly confining
direction, where the achievable length is subject to a position space version of the Hohenberg
theorem [55].
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3The Hohenberg theorem holds whenever the f -sum rule can be applied.
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A A property of the convolution with G

In this appendix we show how G ∗ f differs from G̃(−iβ∂x) f when f is given by

f (x) = Θ(x)eipx , (A.1)

for any real number p, that is why the identity (7) does not hold in our system.
For analytic kernels, G ∗ f (x) − G̃(−iβ∂x) f = 0 always holds. Because we have a

nonanalytic kernel for dipolar interactions, assessing the difference between G ∗ f and
G̃(−iβ∂x) f is of importance in our analysis. Let f̃ (k) =

∫

dx exp(−ikx) f (x) = i/(p− k+ iε)
be the Fourier transform of f (x). Then from the convolution theorem we have
G ∗ f (x) = (1/2π)

∫

dk exp(ikx)G̃(βk) f̃ (k), which can thus be straightforwardly evaluated
by means of the residue theorem. The sole extra step comes, however, from the discontinuity
branch of G̃ on the imaginary axis. We find

G ∗ f (x)−Θ(x)eipx G̃(βp) =
1

2π

¨
∫∞

0 dqe−qx∆G̃(iβq)/(iq− p), x > 0 ,

−
∫ 0
−∞ dqe−qx∆G̃(iβq)/(iq− p), x < 0 .

(A.2)

We thus see that the RHS of Eq. (A.2 ) differs from zero because G̃ is discontinuous on the
imaginary axis. Equation (A.2 ) also tells us that far from x = 0, where f is discontinuous,
G ∗ f (x)−Θ(x)eipx G̃(βp)∼ 0, as expected.

B Solution of Eq. (14)

In this appendix we present the ideas to obtain the general solution (17) of the main text.
We recall that when gc is everywhere constant in Eq. (14), its solutions assume the form
exp(ikx)Φk for all x and constant Φk. However, when gc possesses the jump-like discontinuity
we are considering in this work, the solutions obviously fail to assume these simple forms, and,
in view of the discussion in Appendix A, only asymptotically far from the barrier the solutions
are combinations of plane waves. Nevertheless, we know from Appendix A, Eq. (A.2 ) that
each plane wave excites, through the dipolar interactions, a continuum of evanescent modes
bound to the barrier. This suggests we might look for a solution of the form

Ψω =

¨
∑

k′ Sk′e
ik′xΦk′ − i
∫ 0
−∞ dqe−qxΛq, x < 0 ,

−
∑

p SpeipxΦp + i
∫∞

0 dqe−qxΛq, x > 0 ,
(B.1)

where the k′s and p′s label the asymptotic solutions, given by Eqs. (15) and (16), which are
obtained by direct substitution into Eq. (14), with the aid of Eq. (A.2 ). The function Λq is a
spinor, just like Ψω itself.

After substitution of the above ansatz in Eq. (B.1 ) into the Bogoliubov equation (14) and
a lengthy calculation with repeated use of the residue theorem, we find that

∫ ∞

0

dqe−qx

��

q2

2
+ωσ3 −
�

1+
gc(q)

gd
− 3Ḡ(iβq)
�

σ4

�

Λq+

3i∆G̃(iβq)
2π

σ4

�

∫

dq′Λq′

q′ − q
+
∑

k′

Sk′Φk′

iq− k′
+
∑

p

SpΦp

iq− p

�

�

= 0 , (B.2)

for all x > 0, and similarly for x < 0, with the q integration running from −∞ to 0. Also, the
Cauchy principal value is to be taken for the q′ integral contained inside the round brackets.
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Eq. (B.2 ) is true only if the term inside the outermost curly brackets vanishes, which then
yields a Cauchy-type singular integral equation [49].

Equation (B.2 ) can be further simplified by relating Λq to the scalar functions Λ̃k′,q and
Λ̃p,q occurring in Eqs. (18)-(20) of the main text,

Λq =

�

q2

2
−ωσ3

�

σ4

�

∑

k′
Sk′Λ̃k′,qΦk′ + {k′↔ p}

�

, (B.3)

With this relation, we find that

0=
∑

k′
Sk′σ4Φk′

�

h(q)Λ̃k′,q +
3i∆G̃(iβq)

2π

�∫

dq′q′2Λ̃k′,q′

q′ − q
+

1
iq− k′

��

+ {k′↔ p} , (B.4)

where the function h is defined in Eq. (21) of the main text.
A quick inspection of Eq. (B.4 ) suggests that we could define each function Λ̃ to be the

solution of the integral equation inside the square brackets, e.g.,

h(q)Λ̃k′,q +
3i∆G̃(iβq)

2π

�∫

dq′q′2Λ̃k′,q′

q′ − q
+

1
iq− k′

�

?
= 0 , (B.5)

in such a way that the BdG equation would be satisfied at all points except at x = 0. However,
this procedure is “partially” wrong, and the reason for this is that we must understand the
space of solutions for these integral equations first. Note that if we remove the integral part
in Eq. (B.5 ), then the function Λ̃k′,q necessarily has two poles, at q = q±, defined by the two
zeros of the function h(q±) = 0. That happens because the operator which multiplies by h(q)
is only invertible when restricted to the space of solutions that diverge at q±. Because of this
feature, we might look for solutions in the form

Λ̃k′,q =
Λk′,q

(q− q−)(q− q+)
. (B.6)

By plugging this ansatz back into Eq. (B.4 ), notice that the integral kernel becomes
∫

dq′q′2Λk′,q′

(q′ − q)(q′ − q−)(q′ − q+)
, (B.7)

which is not defined when q→ q± unless Λk′,q± = 0.
This kind of divergence is well understood and we can trace it back to the groundbreaking

work of Ugo Fano [56]. Indeed, we have

1
(q′ − q)(q′ − q−)(q′ − q+)

=
1

q− − q+

�

1
q− q−

�

1
q− − q′

−
1

q− q′

�

− {q−↔ q+}

+π2δ(q′ − q)[δ(q− q−)−δ(q− q+)]

�

, (B.8)

i.e., each double pole contains delta-contributions, leading to the divergence of the integral as
q→ q±. Now, in view of Eqs. (B.6 ) and (B.8 ), Eq. (B.4 ) becomes

∑

k′
Sk′σ4Φk′

�

h(q)Λk′,q

(q− q−)(q− q+)
+

3i∆G̃(iβq)
2π(q− − q+)

�

1
q− q−

∫

dq′q′2Λk′,q′

�

1
q′ − q

−
1

q′ − q−

�

+π2q2
−δ(q− q−)Λk′,q− − {q−↔ q+}+

q− − q+
iq− k′

��

+ {k′↔ p}= 0 . (B.9)
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We thus see that the term inside the first curly brackets in Eq. (B.9 ), apart from the delta
functions, defines the integral equation (20) of the main text. Referring back to Eq. (B.2 ),
we conclude that the ansatz (B.1 ) is a solution of the BdG equation (14) only if the two delta
functions contributions in Eq. (B.9 ) at q = q± vanish. This leads precisely to the conditions
Eqs. (22) and (23) of the main text. We can then assert that the functions Λk′,q satisfy the
integral equation (20), which can be solved numerically to any desired accuracy by means of
cubic splines [48], see Appendix D.

C Flux conservation

In this appendix we shall present a proof for the flux conservation stated in Eq. (30). Due to
the fact that G̃ tends to G̃ in the limit of a large number of discretization steps, we demonstrate
flux conservation for the discrete approximation, from which conservation for the continuum
model then follows. We shall start by taking two arbitrary solutions of the BdG equation (14),
Ψω and Ψω′ . By multiplying the equation Ψω′ on the left by Ψ†

ω, and the equation for Ψ†
ω on

the right by Ψω′ , followed by their subtraction and integration with respect to x results in

(ω′ −ω)
∫

dxΨ†
ωσ3Ψω′ = 0 , (C.1)

if the solutions are assumed to vanish at infinity. This is just the expression for the Bogoliubov
scalar product in the space of classical solutions between any two such solutions. In particular,
Eq. (C.1 ) holds as long as
∫

dx
¦1

2
∂x[Ψ

†
ω∂xΨω′ − (∂xΨ

†
ω)Ψω′] + 3[Ψ†

ωσ4G ∗Ψω′ − (G ∗Ψ†
ω)σ4Ψω′]
©

= 0 (C.2)

is fulfilled. As we show in the main text, the boundary conditions (27) for the approximated
model mean exactly that we have G ∗Ψω = G̃(−iβ∂x)Ψω at the system’s solutions. With this, it
is straightforward to perform the integral in Eq. (C.2 ):

∑

k,k′
S∗kSk′Φ

†
k

�

k∗ + k′

2
− 3σ4

G̃(βk′)− G̃(βk∗)
k′ − k∗

�

Φk′

=
∑

p,p′
S∗pSp′Φ

†
p

�

p∗ + p′

2
− 3σ4

G̃(βp′)− G̃(βp∗)
p′ − p∗

�

Φp′ , (C.3)

where k = kω, k′ = kω′ , and similarly for p, p′. Equation (C.3 ) includes the result, namely,
Eq. (30) in the main text, which we are looking for. If we let ω′→ ω, the off-diagonal terms
in Eq. (C.3 ) alongside terms involving evanescent channels vanish in view of Eq. (15), and
the remaining diagonal terms are precisely the flux conservation presented in Eq. (30) of the
main text.

D S-matrix examples from solving Eq. (20)

In this appendix, selected explicit scattering coefficients of quasiparticle modes from solving
the singular integral BdG equation (20) are worked out. As anticipated in the main text,
solutions can be built numerically to any accuracy and precision, by calculating the various
functions Λk,q and Λk,q and following the recipe developed in the main text Subsec. 3.3. In
Fig. 10, we present some examples for solutions of (20), which are used to construct the Tables
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1, 2, and 3. The method we have implemented here is based on the spline technique of [48],
which requires a higher computational effort, but on the other hand does not rely on prior
assumptions on the form of the solutions besides continuity to hold for its effectiveness.

Figure 10: Examples for solutions obtained from the integral equation (20), using
the spline method of [48].

We present in Tables 1, 2, and 3 the S-matrix coefficients of three sets of quasiparticle
modes in this system. All the matrices have been verified to satisfy the unitarity condition
(S†
ωSω = 1) numerically. For the indicated parameters, the roton minimum exists and is given

by Ω(r) ∼ 0.239701, with Ω(m) ∼ 0.438915. In particular for the quasiparticle modes in Table
3, we setω= 0.24, which is close to the roton minimum frequency. These various coefficients
give us information of how the barrier transmits and reflects for these three frequencies, as
explained in the main text Subsec. 5.2.

Table 1: S-matrix coefficients for a quasiparticle mode obtained from (20). Here we
used as parameters ω = 1, gc/gd = 0.2 and β = 0.76. For this frequency, there are
no rotonic excitations involved, and thus the S-matrix is 2× 2. The roton frequency
is Ω(r) ∼ 0.239701 and Ω(m) ∼ 0.438915.

Sk1
Sp1

kin 0.070795− 0.006271i −0.997384− 0.013169i
pin −0.997384− 0.013169i −0.070605− 0.008138i

Table 2: S-matrix coefficients for a quasiparticle mode obtained from (20). Here we
used as parameters ω = 0.4, gc/gd = 0.2 and β = 0.76. For this frequency, the
rotonic excitations are involved, and thus the S-matrix is 4× 4. The roton frequency
is Ω(r) ∼ 0.239701 and Ω(m) ∼ 0.438915.

Sk1
Sk2

Sk3
Sp1

kin1 −0.38077− 0.809387i 0.33215− 0.158392i −0.0072829+ 0.189553i −0.0899601+ 0.142897i
kin2 −0.0751446+ 0.0993218i 0.056732+ 0.0424557i 0.33215− 0.158392i −0.915897− 0.0720336i
kin3 −0.237571− 0.181709i −0.0751446+ 0.0993218i −0.38077− 0.809387i 0.0257704− 0.30704i
pin 0.0257704− 0.30704i −0.915897− 0.0720336i −0.08996+ 0.142897i −0.159433+ 0.0841153i

26

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.003


SciPost Phys. Core 6, 003 (2023)

Table 3: S-matrix coefficients for a quasiparticle mode obtained from (20). Here we
used as parameters ω = 0.24, gc/gd = 0.2 and β = 0.76. For this frequency, the
rotonic excitations are involved, and thus the S-matrix is 4× 4. The roton frequency
is Ω(r) ∼ 0.239701 and Ω(m) ∼ 0.438915.

Sk1
Sk2

Sk3
Sp1

kin1 −0.996845− 0.0690208i 0.0108627− 0.0284962i 0.012463+ 0.00584869i −0.00187421+ 0.0203174i
kin2 0.000119136+ 0.0218464i 0.0597137+ 0.017794i 0.0108626− 0.0284962i −0.997201− 0.017357i
kin3 −0.0143499+ 0.00444707i 0.00011914+ 0.0218464i −0.996845− 0.0690208i −0.00791068− 0.0277546i
pin −0.00791066− 0.0277546i −0.997201− 0.017357i −0.00187421+ 0.0203174i −0.0615123+ 0.0160217i
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