
SciPost Phys. Core 6, 020 (2023)
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Abstract

In critical loop models, there exist diagonal fields with arbitrary conformal dimensions,
whose 3-point functions coincide with those of Liouville theory at c ≤ 1. We study their
N-point functions, which depend on the 2N−1 weights of topologically inequivalent loops
on a sphere with N punctures. Using a numerical conformal bootstrap approach, we
find that 4-point functions decompose into infinite but discrete linear combinations of
conformal blocks. We conclude that diagonal fields belong to an extension of the O(n)
model.
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1 Predictions from loop models

In two dimensions, statistical models such as the O(n) model and the Potts model can be de-
scribed using ensembles of non-intersecting loops on a lattice. These models have a critical
limit where they become conformally invariant. Although the lattice disappears in that limit, it
is still possible to make sense of the loops using conformal loop ensembles. Here we will inves-
tigate whether the critical limit can be interpreted as a conformal field theory. This would allow
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observables to be computed to high precision, or even exactly, using the conformal bootstrap
method. We will focus on correlation functions of diagonal fields, a class of observables that
are simple to define, and nevertheless encode much information through their dependence on
several continuous variables.

We focus on a loop model on a sphere with N punctures zi ∈ C ∪ {∞}, where the loops
avoid the punctures. Each loop C gives rise to a 2-partition P(C) of the punctures, i.e. a
partition into two (possibly empty) sets, for example:

z1

z2

z3

z4

z5

C
=⇒ P(C) = {123}= {45} . (1)

Since the 2-partition is a topological property of the loop, the loop’s weight can depend on the
2-partition without spoiling conformal invariance. The model’s partition function takes the
form

Z lattice
N (w, {zi}) =

∑

E∈E

∏

C∈E

w(P(C)) , (2)

where E is an ensemble of configurations of non-intersecting loops, and the loop weight
w ∈ C2N−1

is a function on the set of 2-partitions.
In the critical limit, we would like to interpret the partition function as a correlation func-

tion of N primary fields,

lim
critical

Z lattice
N (w, {zi}) =

® N
∏

i=1

V∆i
(zi)

¸

. (3)

Here V∆(z) is a diagonal primary field, whose left and right conformal dimensions are both∆.
The central charge and conformal dimensions are related to loop weights by [1]

w(;) = −2 cos(πβ2) with c = 13− 6β2 − 6β−2 , (4)

w({i}) = 2 cos(2πβPi) with ∆i =
c − 1
24

+ P2
i . (5)

For N = 1 we have w(;) = w({1}) and for N = 2 we have w({1}) = w({2}): these constraints
are compatible with constraints on ∆i from conformal symmetry, respectively ∆1 = 0 and
∆1 = ∆2. For N = 3, the 4 possible loop weights match the 4 parameters c,∆1,∆2,∆3, and
the critical limit of the lattice partition function was found to agree with a three-point function
in Liouville theory with c ≤ 1 [1], which also agrees with a three-point function in a conformal
loop ensemble [2]:

lim
critical

Z lattice
3 (w, {zi}) =

® 3
∏

i=1

V∆i
(zi)

¸

c≤1 Liouville theory

= ZCLEc
3 (∆i , zi) . (6)

For N = 4, the 8 possible loop weights correspond to the 5 parameters c,∆1,∆2,∆3,∆4, plus
the three weights w({12}), w({14}), w({13}). We call Ps, Pt , Pu mod β−1Z the corresponding
momentums via Eq. (5), for example w({12}) = 2 cos(2πβPs). We write
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Z4(Ps, Pt , Pu) = limcritical Z lattice
4 (w, {zi}) our four-point function. Since the loops are non-

intersecting, loops with P(C) = {12} cannot coexist with loops with P(C) = {13} or P(C) = {14}:

z1

z2 z3

z4

{12}
{13}

{14}

. (7)

Therefore, the ensemble E of loop configurations splits into four subsets, depending on the
existence of such loops:

E = E{12} ⊔ E{13} ⊔ E{14} ⊔
¦

E ∈ E
�

�

�P(E) ⊂ {;, {1}, {2}, {3}, {4}}
©

, (8)

where E{12} =
�

E ∈ E
�

�{12} ∈ P(E)
	

. The lattice sum (2) therefore splits into four terms, and
the sum over E{12} is the only term that depends on w({12}). In the critical limit, the four-point
function Z4(Ps, Pt , Pu) therefore obeys linear relations of the type ∂Ps

∂Pt
Z4 = 0, or equivalently

Z4(Ps, Pt , Pu) + Z4(P
′
s , P ′t , Pu) = Z4(P

′
s , Pt , Pu) + Z4(Ps, P ′t , Pu) , (9)

for any choice of Ps, Pt , Pu, P ′s , P ′t .
It is already clear that Z4(Ps, Pt , Pu) is not a four-point function in Liouville theory, be-

cause a Liouville four-point function would not depend on Ps, Pt , Pu. Moreover, in contrast to
three-point functions, Liouville four-point functions are not analytic as functions of the central
charge, due to non-analyticities on the half-line {c ≤ 1} [3]. But the lattice sum Z lattice

N (w, {zi})
is manifestly analytic in c, and there is no hint that the critical limit produces singularities on
the half-line {c ≤ 1} [4]. We will therefore propose a construction of the four-point function
Z4(Ps, Pt , Pu) that is not based on Liouville theory.

2 Ansatz for the four-point function

In order to compute a four-point function of the type (3) with the semi-analytic bootstrap
methods of [5], we need to specify the spectrum, i.e. the set of fields that propagate in each
channel. In the case of Z4(Ps, Pt , Pu), we make three assumptions:

1. In each channel x ∈ {s, t, u}, there are diagonal primary fields with momentums in
Px + β−1Z.

2. The rest of the primary fields are V N
(r,s) with r ∈ N∗ and s ∈ 1

rZ. Here we define V N
(r,s) to

have left and right dimensions (∆, ∆̄) = (∆(r,s), ∆̄(r,−s)), with

∆(r,s) =
1
4(rβ − sβ−1)2 − 1

4(β − β
−1)2 . (10)

3. The behaviour of structure constants under Px → Px +β−1 or s→ s+2 is determined by
the shift equations that follow from the existence of the degenerate diagonal field V〈1,3〉.

The second assumption amounts to including all fields in the O(n) model that are allowed
by fusion rules. This is reasonable because the O(n) model is the known critical limit of a
loop model, so we might as well use its space of fields [6, 7]. The O(n) model fields that are
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forbidden by fusion rules are degenerate fields, whose presence would imply relations between
P1, P2, P3, P4, and fields with r ∈ 1

2N
∗, which would violate the conservation of r mod Z, where

by convention r = 0 for a diagonal field. Nevertheless, with our third assumption, we retain
constraints that follow from the existence of correlation functions of the type




V〈1,3〉 · · ·
�

[8].
Our three assumptions lead to the following ansatz for the four-point function:

∀x ∈ {s, t, u} , Z4(Ps, Pt , Pu) = D(x)Px
G(x)Px

+
∑

r∈N∗

∑

s∈ 1
r Z

−1<s≤1

D(x)(r,s)G
(x)
(r,s) , (11)

where D(x)k are unknown structure constants (i.e. they are zi-independent), and G(x)k are
known x-channel interchiral blocks. The interchiral blocks are infinite linear combinations
of conformal blocks, obtained by summing over Px +β−1Z or s+2Z [9]. The relevant confor-
mal blocks are products of left- and right-moving Virasoro blocks, except in the case of G(x)(r,s)
with s ∈ {0,1}, which involves the non-factorizable logarithmic conformal blocks that have
been determined in [10].

3 Numerical bootstrap results

Our ansatz (11) may be viewed as a system of linear equations for the structure constants.
Building on existing bootstrap code, we have solved these equations numerically [11]. We
have found three main results:

1. After fixing the normalization by setting the value of one structure constant (say D(s)Ps
),

the solution of the system is unique. Numerically, this means that the solutions of trun-
cated systems of finitely many equations with finitely many unknowns converge when
the truncation parameter becomes large. This result shows that our ansatz does lead to
a value for Z4(Ps, Pt , Pu), which can be computed numerically to any given precision.

2. There exists a normalization such that the structure constants for the diagonal fields
factorize as

D(s)Ps
=

CP1,P2,Ps
CP3,P4,Ps

BPs

, D(t)Pt
=

CP1,P4,Pt
CP2,P3,Pt

BPt

, D(u)Pu
=

CP1,P3,Pu
CP2,P4,Pu

BPu

, (12)

where B, C are two- and three-point structure constants of Liouville theory with c ≤ 1,
analytically continued to complex values of c.

3. The resulting four-point function obeys the linear relation (9).

Let us illustrate the first two results in a numerical example. We have chosen the following
values of the parameters, with i =

p
−1:

β =
10

8+ i
, (P1, P2, P3, P4) =

1
20β

�

1+ 5i, 2+ 2i, 3+ 6i, 4+ i
�

, (13)
�

P−1
s , P−1

t , P−1
u

�

= 2β
�

3+ i, 4+ i, 5+ i
�

. (14)

The numerical calculations are performed with 32 decimal digits, and the spectrums are trun-
cated to the maximal conformal dimension ∆ + ∆̄ = 40. The structure constant D(s)Ps

is nor-
malized in terms of Liouville theory structure constants as in Eq. (12). Let us then display
the resulting values of the first few t-channel structure constants (in real part), together with
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their deviations (i.e. relative numerical accuracies):

Constant Value Deviation

D(t)Pt
1.0530408813026112244186359665327 2.4× 10−26

D(t)(1,0) −0.077726954973226305419163676742536 5.5× 10−26

D(t)(1,1) −0.02292944151804650320517424817961 1.5× 10−25

D(t)(2,0) 0.000024254640687499386811259321062107 5.1× 10−23

D(t)
(2, 1

2 )
0.000048810625175510399035535766255115 1.3× 10−22

D(t)(2,1) −0.000038875104437278386851041889030702 6.3× 10−23

D(t)
(2,− 1

2 )
0.000048810625175510399035508778511608 2.7× 10−23

D(t)(3,0) −0.00000000040673300030862373393865 4.6× 10−14

(15)

In particular, this can be compared with the analytic prediction from (12)

ℜD(t)Pt
≃ 1.0530408813026112244203458610973 . (16)

This agrees with the numerical result to 20 significant digits (underlined). The bootstrap result
itself is supposed to be accurate to about 26 digits, according to its deviation, but the calcula-
tion based on the analytic formula is a bit less accurate. If we increase the numerical cutoffs,
the agreement improves, and the deviations decrease, which signals convergence towards a
solution that obeys Eq. (12) [8].

This is strong evidence that our ansatz does describe a four-point function in the critical
limit of the loop model. In particular, the four-point structure constants D(x)Px

factorize into
three-point structure constants that were directly compared to lattice results in [1]. Of course,
it would be interesting to directly compare our four-point function with lattice sums. This could
also help explain why the lattice sums are periodic in the momentums Pi (see Eq. (5)) whereas
Z4(Ps, Pt , Pu) is not. In the case of the dependence on the central charge (4), this apparent
discrepancy is explained by the loss of criticality of the lattice model outside a restricted region
in c-space [4]: does a similar phenomenon occur for the dependence on Pi ?

4 Factorization of structure constants

In a consistent conformal field theory, the structure constants D(x)(r,s) should decompose into

two- and three-point structure constants, just like D(x)Px
. The decomposition can have several

terms, depending on the multiplicity m(r,s) of the field V N
(r,s):

D(s)(r,s)
?
=

m(r,s)
∑

k=1

C [k]P1,P2,(r,s)C
[k]
P3,P4,(r,s)

B[k](r,s)
. (17)

In the O(n) model, these multiplicities may be described in terms of representations of the
global symmetry group O(n). However, our diagonal fields do not belong to the O(n) model,
and they presumably break O(n) symmetry. At least, diagonal fields cannot be O(n) singlets,
since many fields of the type V N

(r,s) cannot transform as singlets, starting with V N
(1,0) (symmetric

two-tensor) and V N
(1,1) (antisymmetric two-tensor) [7].
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So we lack an a priori understanding of the multiplicities. Worse, we find that the structure
constants D(s)(r,s) depend on Ps, Pt , Pu. So the decomposition (17) cannot hold. Nevertheless,
from the linear equation (9), we expect that each structure constant is a sum of terms, with
each term depending on only one momentum Ps, Pt or Pu. We have numerically investigated
how the dependence in the momentums factorizes in each term. Schematically, we find

D(s)(r,s)(Ps, Pt , Pu) =
m(r,s)
∑

k=1

C [k]P1,P2,(r,s)C
[k]
P3,P4,(r,s)

 

B̃[k](r,s) +
∑

x∈{s,t,u}

B̃[k],x(r,s) (Px)

!

. (18)

In other words, the dependences on P1, P2, on P3, P4 and on Px factorize. We use the notation
B̃[k],x(r,s) (Px) rather than 1

B[k],x(r,s) (Px )
because this term vanishes in some cases, and is not really an

inverse two-point structure constant since it depends on Px . Our numerical methods actually
give us access to the first few values of (r, s), for which we find the following numbers of terms:

(r, s) (1,0) (1, 1) (2, 0) (2, 1
2) (2, 1) (3,0) (3, 1

3) (3, 2
3) (3, 1)

m(r,s) 2 2 3 2 3 4 3 3 4
. (19)

(We only display values of s in the interval 0 ≤ s ≤ 1, because m(r,s) = m(r,−s) = m(r,s+2), due
to the shift equations for structure constants.) Let us briefly indicate how we determine these
numbers. A function of two variables factorizes into m terms f (x , y) =

∑m
k=1 f [k](x)g[k](y) if

and only if for any values x1, x2, . . . , xm+1 and y1, y2, . . . , ym+1 we have
det [ f (xk, yℓ)]1≤k,ℓ≤m+1 = 0. We therefore compute our four-point structure constants

D(x)(r,s)(Ps, Pt , Pu) for various values of the momentums Pi , Px , and deduce the corresponding
determinants. Numerically, these determinants are never exactly zero, but in practice we con-

sider that det F ≃ 0 ⇐⇒ ∀k,ℓ,
�

�

�Fk,ℓF
−1
k,ℓ

�

�

�≫ 1.

5 Relations with the O(n) model and Liouville theory

Let us discuss the interpretation of the four-point functions Z4(Ps, Pt , Pu) in terms of conformal
field theory. We start with the dependence on the central charge. Actually, our four-point
functions are not functions of c, but of β2 (4), i.e. they are not invariant under β → β−1.
This is because our ansatz (11) is itself not invariant, since ∆(r,s) (10) is not. On the other
hand, Liouville theory is invariant, and so are the three-point structure constants CP1,P2,P3

. Our
four-point functions are defined over the same space {ℜβ2 > 0} as the O(n) model, which
corresponds to a double cover of the space {ℜc < 13}. Over this space, we conjecture that
our four-point functions depend analytically on c, because the conformal blocks do, and the
sum in our ansatz is discrete and convergent. (Actually, a conformal block can have a pole
for some β2 ∈ Q, but then the residue is another block, and the four-point function itself
can be smooth thanks to the cancellation of singularities between different terms [12, 13].)
Our numerical results are consistent with this conjecture: we find the that structure constants
D(x)(r,s) decrease quickly as r increases, and we do not observe numerical instabilities that would
betray the presence of singularities.

In contrast, Liouville theory is invariant under β → β−1. Moreover, Liouville four-point
functions have an essential singularity over the whole half-line {c ≤ 1}, due to the integration
over a continuous spectrum [3]. If we wanted to compute Liouville four-point functions as
sums over loops, we could certainly not use our straightforward construction with the simple
loop weights (5). A more complicated construction is known to describe four-point functions
in minimal models [14], and Liouville four-point functions on {c ≤ 1} should follow by taking
limits in the central charge and conformal dimensions.
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If our four-point functions have nothing to do with Liouville theory, why do they involve
the Liouville structure constants CP1,P2,P3

? And why do such structure constants describe three-
point functions [1]? This may be a manifestation of universality. The structure constants
CP1,P2,P3

, although they first appeared in the context of Liouville theory with c ≤ 1, are in
fact unique solutions of certain shift equations [15, 16]. Such shift equations follow from
the existence of two independent degenerate fields V〈1,2〉 and V〈2,1〉. The O(n) model has the
degenerate field V〈1,3〉, which leads to the same shift equation as V〈1,2〉 [8]. We have used these
shift equations when computing interchiral blocks in our ansatz (11). But the O(n) model
does not include V〈2,1〉, and the real problem is to understand why some structure constants
nevertheless obey the corresponding shift equations. The same problem arises in the Potts
model, where the three-point connectivity is a special case of CP1,P2,P3

[10,17]. To summarize:

Model Liouville theory with c ≤ 1 . (Extended) O(n) model.

Parameter c ∈ (−∞, 1] β2 ∈
�

ℜβ2 > 0
	

Degenerate fields V〈2,1〉 , V〈1,2〉 V〈1,3〉

Spectrum Continuous, diagonal. Discrete, non-diagonal.

. (20)

Therefore, the N -point functions ZN belong to an extension of the O(n)model. This extension
includes diagonal fields with arbitrary conformal dimensions, in the sense that their correlation

functions exist, including correlation functions
D

∏

i V∆i

∏

j V N
(r j ,s j)

E

that mix diagonal fields

with non-diagonal O(n) fields. However, the spectrum remains discrete: decompositions of
correlation functions into conformal blocks are sums, not integrals. The extension may well
be large enough for also including the Potts model, since there exist consistent four-point
functions that mix fields from the O(n) and Potts models [18]. In fact, the diagonal field with
the conformal dimension∆(0, 1

2 )
plays a special role both in the Potts model, where it describes

connectivities, and in the loop model, where the corresponding loop weight is w = 0. And in
our numerical bootstrap calculations, we find that the structure constants D(s)(r,s)(Ps, P(0, 1

2 )
, P(0, 1

2 )
)

decompose into fewer terms than in the generic case D(s)(r,s)(Ps, Pt , Pu) (19), and also fewer terms

than in the special case D(s)(r,s)(Ps, Pt , Pt). We however do not have a precise explanation for these
suggestive observations.

While we can compute its correlation functions, it is hard to make sense of our exten-
sion of the O(n) model as a consistent conformal field theory, because of the dependence
of Z4(Ps, Pt , Pu) on the momentums Ps, Pt , Pu. Due to this dependence, there is no factoriza-
tion of the type (17), and this seems to violate the existence of the operator product expansion.
Possible interpretations include:

1. We might interpret the observed factorization (18) in terms of a non-local operator prod-
uct expansion, which would depend on Ps, Pt , Pu. This would add to the difficulty of
defining and computing operator products in loop models — a tricky subject to begin
with [19].

2. We might interpret Z4(Ps, Pt , Pu) as a four-point function in the presence of three topo-
logical defects with parameters Ps, Pt , Pu. In contrast to the loops themselves, the defects
would intersect as in Figure (7). The four-point function without defects would then be
Z4(P(0, 1

2 )
, P(0, 1

2 )
, P(0, 1

2 )
).
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