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Abstract

Strongly coupled hidden sector theories predict collider production of invisible, compos-
ite dark matter candidates mixed with standard model hadrons in the form of semivisi-
ble jets. Classical mass reconstruction techniques may not be optimal for these unusual
topologies, in which the missing transverse momentum comes from massive particles
and has a nontrivial relationship to the visible jet momentum. We apply the artificial
event variable network, a semisupervised, interpretable machine learning technique that
uses an information bottleneck, to derive superior mass reconstruction functions for sev-
eral cases of resonant semivisible jet production. We demonstrate that the technique can
extrapolate to unknown signal model parameter values. We further demonstrate the vi-
ability of conducting an actual search for new physics using this method, by applying the
learned functions to standard model background events from quantum chromodynam-
ics.
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1 Introduction

Dark matter (DM) is one of the clearest indicators of the existence of physics beyond the stan-
dard model (SM). Its gravitational interactions have been observed in numerous astrophysical
contexts, spanning rotation curves [1, 2], lensing [3], galaxy cluster collisions [4], and the
cosmic microwave background [5]. However, attempts to detect dark matter through weak
interactions with SM particles, whether via direct interactions, annihilation, or collider pro-
duction, have so far been unsuccessful.

Dark matter may still be accessible at current-generation experiments if its nature is differ-
ent from the simplest models of weakly interacting massive particles (WIMPs). In this paper,
we consider the possibility that dark matter is primarily composed of composite particles, much
like visible matter. Composite dark matter may arise from a hidden valley (HV) that communi-
cates with the SM only via weakly-interacting heavy mediator particles [6]. In particular, this
hidden valley may be a strongly coupled hidden sector with multiple species of dark quarks χ
charged under a new, confining dark force carried by dark gluons, which form dark hadrons.
The new dark force can be described as “dark QCD”, in analogy with SM quantum chromo-
dynamics. Some of the dark hadrons are stable and act as dark matter candidates, while the
unstable varieties decay to SM particles such as quark-antiquark pairs.

Such models are more discoverable at colliders than direct detection or annihilation ex-
periments. Direct detection of dark hadrons is suppressed below the neutrino floor [7], and
annihilation is expected to be rare for any form of dark matter arising from an asymmetry,
whether or not it is composite [8]. Assuming collider production of the hidden valley mediator
and prompt decays of the unstable dark hadrons, the final state may include “semivisible” jets
containing both visible SM and invisible DM particles [9]. It has been shown that the observed
dark matter relic density can be obtained from this class of models [10, 11]. Other possible
signatures, not considered here, include emerging jets, when the unstable dark hadrons are
long-lived [12], or soft unclustered energy patterns, when the ’t Hooft coupling is large and
wide-angle radiation is not suppressed [13].

The first experimental search for semivisible jets [14] by the CMS experiment at the LHC
considered s-channel production with a heavy leptophobic Z′ boson mediator, shown in Fig. 1
(left). This search placed limits on the product of the Z′ production cross section and the
branching fraction to dark quarks Z′ → χχ, which can be translated into limits on mZ′ for
specific values of the Z′ couplings to SM quarks (gq) and dark quarks (gχ). However, the
benchmark values for these couplings, and therefore the predicted cross sections and branching
fractions, are ultimately arbitrary. Hence, a Z′, or another s-channel mediator, accessible at
the LHC may still exist, just interacting too weakly to be produced in detectable quantities in
the available datasets. This search used the transverse mass MT of the dijet system and the
missing transverse momentum /pT to reconstruct the Z′. In simpler topologies, with massless
invisible particles well-separated from massive visible particles, MT is known to be optimal,
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Figure 1: Representative Feynman diagrams for leading-order production of a Z′

boson decaying to dark quarks χ (left), a single Φ boson associated with a dark quark
and decaying to an SM quark and a dark quark (center), and a pair of Φ bosons each
decaying to a dark quark and an SM quark (right).

but it is an open question if it remains optimal in more complicated topologies, such as the
semivisible jet case described here.

In addition to Z′ bosons and other s-channel mediators, another notable possibility is a
bifundamental scalar particle Φ, charged under both SM QCD and dark QCD [7, 15]. Φ has
Yukawa couplings ydark between dark quarks and SM quarks, leading to different final states
than the Z′ s-channel case. Relevant to the goal of this paper, Φ can be produced singly or in
pairs, as shown in Fig. 1 (center, right). The optimal mass reconstruction for such final states
has not been thoroughly investigated. The first experimental search for emerging jets [16],
also from CMS, considers the pair production ofΦ, but does not attempt to reconstruct its mass.
A recent search from the ATLAS experiment sets limits on certain models of non-resonant t-
channel SVJ production via Φ [17], but does not target resonant production. For other final
states with pairs of massive particles decaying to both visible and invisible particles, the MT2
variable has been shown to be useful [18], though not necessarily optimal or unique [19].

Here, we employ a new machine learning technique to derive optimal mass reconstructions
for these three final states: Z′, single Φ, and pairs of Φ. This technique, called the event
variable network (EVN), was first introduced in Ref. [20]. It uses an information bottleneck
to learn a generalized function whose output, the artificial event variable (AEV or simply V⃗ ),
maximizes the mutual information with a target parameter. Because it is only trained on signal
models, with no information provided about background processes, it is semisupervised; and
because the target parameter is a physically meaningful quantity, the output of the network
is similarly physically meaningful, leading to an interpretable result. In particular, Ref. [20]
shows that for a fully visible final state where the target parameter is the theoretical mediator
mass, the learned function is equivalent to the invariant mass calculation, and therefore we
expect the EVN to produce optimal mass estimators in semivisible final states, as well. We apply
the EVN to each final state and compare the resulting AEV with existing classical, analytical
mass reconstruction algorithms. We also demonstrate the generalization properties of the EVN
by testing it on signal models with different parameter values not used during the network
training, as well as on simulations of SM QCD, the primary background for semivisible jet
signals.

2 Models and simulation

The dark sector signal model is implemented following the CMS search [14], which was origi-
nally based on the model in Ref. [9]. The important parameter values and ranges are summa-
rized here, while more details can be found in the aforementioned references. The number of
dark colors is Ndark

c = 2 and the number of dark quark flavors is Ndark
f = 2. The dark hadron

mass is chosen to be mdark = 20GeV, and the dark quark mass is set to mχ = mdark/2. The cou-
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pling scale of the dark force is defined in terms of the dark hadron mass, Λdark = 3.2(mdark)0.8,
which is an empirical relation that approximately maximizes the dark hadron multiplicity in
the dark shower. The dark hadron mass scale does not significantly impact the event-level
kinematic quantities that are used in this paper, so we do not consider variations of it or the
parameters with related values. The invisible fraction rinv, defined as the fraction of dark
hadrons that are stable, is the most novel and impactful parameter of the signal model, and
can take any value between 0 and 1. Any unstable dark hadrons can decay to pairs of any
available species of SM quarks, where availability is defined by the condition mdark ≥ 2mq.
The unstable vector dark hadrons decay democratically, while the unstable pseudoscalar dark
hadrons decay via a mass insertion, therefore preferring the most massive available SM quarks.
The probability of producing a vector dark hadron, as opposed to a pseudoscalar, is set to 0.75.

For Z′ production, the couplings are set to gq = 0.25 and gχ = 1.0/
p

Ndark
c Ndark

f = 0.5, which
implies Bdark = 47%, consistent with the LHC DM Working Group benchmark [21]. For Φ pro-
duction, the Yukawa couplings are set to ydark = 1.0 for all species of SM quarks and dark
quarks.

The Z′ signal events are generated using PYTHIA version 8.230 [22], with the dedicated HV
module used for showering and hadronization in the dark sector. The HV module simulates the
dark sector dynamics using the Lund string model [23,24]; we use the default settings for the
empirical parameters in this model, which are the values tuned for SM QCD. Different param-
eter values, or even a different dynamical model or generator software, could change the dark
sector dynamics. However, such variations generally impact the formation and substructure of
jets, rather than their final four-momenta, and therefore are not expected to have a significant
impact on the event-level mass reconstruction pursued here. The NNPDF3.1 leading order
(LO) parton density function (PDF) [25] and the CP2 underlying event tune [26] are used.
The events are generated with mZ′ values ranging from 500 to 5000GeV in steps of 100GeV,
and rinv values of 0.1, 0.3, 0.5, and 0.7; mdark is set to 20GeV. Approximately 12000 events
per signal model are generated for the models with rinv = 0.3, while 6000 events per signal
model are generated for the models with other rinv values. The Z′ cross section is computed
at next-to-leading-order (NLO).

The Φ signal events are generated using MADGRAPH5_aMC@NLO version 2.6.5 [27] at
LO, with the new particles and couplings implemented via FEYNRULES [28] following Ref. [7].
Showering and hadronization are performed using PYTHIA version 8.240, and the MLM match-
ing procedure is employed to eliminate double counting of radiation [29]. The NNPDF3.1
next-to-next-to-leading-order (NNLO) positive-definite PDF and the CP5 tune are used. The
absolute and relative cross sections for processes involving Φ, split by the number of reso-
nant mediators nΦ, are taken from MADGRAPH5_aMC@NLO and shown in Fig. 2 for the chosen
Yukawa coupling value ydark = 1.0. Nonresonant production depends more strongly on ydark
than single production, while pair production primarily depends only on αS; therefore, the
relative fractions of the resonant production modes would increase for smaller ydark values
and decrease for larger ydark values. The events with nΦ = 1 and nΦ = 2 are generated with
mΦ values from 500 to 2000GeV in steps of 100 GeV; rinv is set to 0.3 and mdark is set to 20 GeV.
Approximately 6000 events per signal model are generated.

The QCD multijet background sample is generated with PYTHIA version 8.205, using a
biased sampling to generate a roughly flat distribution in 15 < p̂T < 7000 GeV. A weight is
subsequently applied to produce a physical distribution by inverting the sampling bias. The
NNPDF2.3 LO PDF [30] and the CUETP8M1 tune [31] are used. Approximately 10 million
QCD events are generated in the flattened p̂T space.

Given the goal of this paper to learn about fundamental kinematic relationships, no detec-
tor simulation is performed and generator-level quantities are used. Visible particles denoted
as stable by the generator are clustered into jets J using the anti-kT algorithm [32], imple-
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Figure 2: The absolute (left) and relative (right) cross sections for processes involving
Φ mediators.

mented in the FASTJET software [33]. A distance parameter of R = 0.8 is used because the
additional decay step from the dark sector to the SM leads semivisible jets to have a broader
spread in their visible constituents than SM jets. The jets are sorted by their transverse mo-
mentum. The missing transverse momentum is computed as the negative of the vector sum of
the transverse momentum vectors of all visible stable particles. Computations related to the
MT2 variable are performed using Ref. [34].

3 Architecture and training

The EVN is trained using a composite neural network; its inputs, structure, and outputs are
shown in Fig. 3. The event data are prepared for training the network by splitting the simulated
events into two classes. In class 1, the values of the theory parameters θ⃗ correspond to the
kinematic input variables x⃗ , while in class 0, the values of θ⃗ are random and do not correspond
to x⃗ . The EVN is the first component and serves as the information bottleneck. It is a fully-
connected network that takes the inputs x⃗ and produces output V⃗ , which is typically, though
not necessarily, a single value per event. The second component is a classifier, also a fully-

y→ 1 ⋯ 0 ⋯

→θ mZ′/Φ ⋯ mrand ⋯

x→ px ⋯ px ⋯
py ⋯ py ⋯
⋮ ⋮

EVN V→

Classifier

BCE
Loss

output

Figure 3: A diagram of the composite network architecture, showing the inputs, neu-
ral network blocks, output, and loss function. Example inputs are indicated for the
representative case of reconstructing a mass value using four-vector values; mrand
represents the random theory parameter values assigned for class 0 events, as de-
scribed in the text.
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Table 1: The hyperparameter values used to train the composite network.

Parameter Value
% events used for training 64
% events used for validation 16
% events used for testing 20
Batch size 5000
Epochs 100
EVN layer sizes 128, 64, 64, 64, 32
Classifier layer sizes 16, 16, 16
Learning rate 0.001

connected network, which combines the EVN output V⃗ and θ⃗ to determine the event class, with
the binary crossentropy (BCE) loss as its objective to minimize. Because the two components of
the network are jointly optimized, the EVN learns an optimal and general function to combine
the inputs into V⃗ ; this distinguishes the technique from a simple regression. In class 0 events,
θ⃗ and x⃗ are independent, so their joint distribution is simply the factorized distribution pV⃗ pθ⃗ ,
the product of their independent probabilities. In class 1 events, x⃗ arises from θ⃗ , so their
joint distribution pV⃗ ,θ⃗ depends on their conditional distribution. The classification process
maximizes the ability to distinguish between the two classes, therefore maximizing the mutual
information between θ⃗ and V⃗ , defined as I(V⃗ ; θ⃗ ) =

∫

V⃗

∫

θ⃗
pV⃗ ,θ⃗ log [pV⃗ ,θ⃗/(pV⃗ pθ⃗ )]. A more

thorough derivation of this network is given in Ref. [20].
The hyperparameters used to train the composite network are summarized in Table 1.

The datasets are split into training, validation, and testing portions; the validation portion is
used to check for overtraining by comparing the loss values, while the testing dataset is used
for calibration and statistical assessments, as described in Section 4. In addition, a second,
independent testing dataset is employed for more in-depth physical comparisons. While an
exhaustive hyperparameter scan is not performed, we note a few findings. The chosen values
for batch and layer sizes perform better than smaller values, while larger values run the risk
of memorization or overtraining. The total number of trainable parameters in the network is
20706. The chosen learning rate performs better than larger values. Extending the number
of epochs further does not improve the result. The Adam optimizer [35] is used, and ReLU
activation is applied to all internal layers of both fully-connected networks. The training takes
a few minutes on an Nvidia RTX 2080 Super, which is a typical consumer GPU.

We also note one difference with respect to Ref. [20]: in class 1 events, as described in
Section 2, mediator mass values are generated in discrete steps of 100GeV rather than contin-
uously. (The “fake” mass values assigned to class 0 events are still generated continuously.)
This performs as well as the continuous approach as long as balance is maintained between
the number of events with each discrete value in the overall dataset.

4 Z′ production

4.1 Mass variables

As discussed previously, the variable traditionally used to reconstruct the mediator mass for
Z′→ χχ is the transverse mass. This variable is defined as

M2
T =
�

ET,JJ + /ET

�2 −
�

p⃗T,JJ + /⃗pT

�2
= m2

JJ + 2
�
Ç

m2
JJ + p2

T,JJ /pT − p⃗T,JJ · /⃗pT

�

,
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Figure 4: Top: Correlations between MT, V , and mZ′ . Bottom: Correlations between
MMAOS, V , and mZ′ . The black lines show the calibrations of the reconstructed vari-
ables to the scale of mZ′ , where m is the slope of the fit x = my .

where ET,JJ =
p

m2
JJ + p2

T,JJ is the energy of the massive dijet system, with mJJ and pT,JJ the
invariant mass and transverse momentum of that system, respectively, and /ET = /pT is the
energy of the invisible system, which is assumed to be massless. However, there is actually
another classical variable that can improve on MT, using the MT2-Assisted On Shell (MAOS)
technique [36]. MAOS was originally derived for cases like H→ WW, where one resonance
decays to two resonances, each of which decays to a visible and invisible component. The
MT2 algorithm divides the missing transverse momentum into two parts, one corresponding
to each visible component of the event, pa and pb. MAOS promotes these two /⃗pT two-vectors
to four-vectors by assigning /mi = 0 and /pi

z = pi
z(/p

i
T/p

i
T), where i = a, b, and then computes

the full invariant mass of the visible and invisible components, defined as MMAOS.
As a first test, we apply the EVN to Z′ → χχ events with mdark = 20 GeV and rinv = 0.3.

The network inputs x⃗ include the leading two jet four-vectors, which are represented as
(E, px , py , pz) for each jet, and the /⃗pT two-vector, which is represented as (/px , /p y). The cor-
relations between the network output V , the two classical variables MT and MMAOS, and the
theory parameter mZ′ are shown in Fig. 4. These plots additionally display the calibration
procedure, which will be used in subsequent plots. Calibration is necessary to make direct
comparisons between the classical variables and V , because the absolute scale of V is not
fixed. For consistency, all reconstructed variables are calibrated the same way, via a linear fit
to the theory parameter. (The constant term in the linear fit is found to be very small and is
therefore neglected.) The correlation plots, and therefore the calibration procedure, use the
independent dataset composed of the 20% of events reserved for testing.

We compare the classical and learned variables using several statistics, including Kendall’s
τ and Spearman’s rank coefficient rs. V is highly correlated with, but not identical to, both
MT and MMAOS. Additionally, we introduce a new statistic called the relative skewness of the

7

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.067


SciPost Phys. Core 6, 067 (2023)

500 1000 1500 2000 2500 3000 3500 4000
mass [calibrated]

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

ar
bi

tra
ry

 u
ni

ts

1e 3
mZ′ = 1000 GeV
mZ′ = 2000 GeV
mZ′ = 3000 GeV
V
MT
MMAOS

Figure 5: The distributions of MT, MMAOS, and V for several mZ′ values, normalized
to unit area.

correlation or γrel
1 , which is defined as follows:

1. perform a linear fit Y = αX , where X and Y are two datasets, resulting in the best-fit value
α̂ for α;

2. define Ỹ = Y /α̂, so that the linear fit relationship becomes Ỹ = X + residual;
3. define the line Ỹ = X as the new independent axis, corresponding to a 45◦ rotation into

new coordinates X ′ = 1p
2
(X + Ỹ ), Y ′ = 1p

2
(Ỹ − X );

4. compute γrel
1 as the Fisher-Pearson skewness coefficient of Y ′/X ′, the relative displacement

from the X ′ axis.
The utility of the new statistic can be observed by comparing the values of the other correlation
statistics for V vs. MT and V vs. MMAOS, which are very similar. In contrast, γrel

1 is much smaller
for MMAOS than for MT. This indicates that V tends to be larger than MT, but there is little bias
in the difference between V and MMAOS.

The similarity between V and MMAOS can be further observed in Fig. 5, which compares
distributions of each variable for several mZ′ values. The second independent testing dataset
is used in this figure. As noted above, the calibrated version of each variable is used to avoid
spurious differences in scale. It can be seen that the distribution of V is similar in shape to
MMAOS and is indeed narrower than MT. Therefore, we conclude that the MMAOS procedure re-
sults in a nearly optimal reconstruction under the given assumptions. It is expected that V and
MMAOS would not be identical, because MMAOS depends on the result of the MT2 calculation,
which is not a singularity variable [19].

4.2 Discovery potential

Subsequently, we demonstrate the utility of the learned variable V for discovery of this channel
of semivisible jet production. We compare the sensitivity, defined as Q = S/

p
B where S

and B are the signal and background yields, from binned mass distributions. Examining the
strategy from Ref. [14], rejection of the major background from QCD multijets is primarily
accomplished via the “transverse ratio”, a relative variable defined by RT = /pT/M , where M
is the reconstructed mass variable. Here, we use generator-level simulations of QCD, which
lack instrumental effects such as dead calorimeter cells that induce artificial /pT. Therefore,
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we apply a selection RT > 0.1, which is looser than the experimental thresholds of 0.15–
0.25. The lower /pT values in the generator-level background imply that fewer events have
high RT values, so this looser selection provides a level of background rejection similar to the
realistic analysis. We also require pT > 200GeV for the leading two jets; all other selections
are omitted for simplicity. For each reconstructed mass variable, the selection is applied using
RT defined in terms of that variable. The resulting distributions are shown in Fig. 6, with
both the signal and background samples normalized to an integrated luminosity of 138 fb−1.
The background distributions are very similar for all three reconstructed mass variables; we
emphasize here that the EVN was trained only on signal events and has no explicit knowledge
of QCD multijet background events. The bin-by-bin significance ratios can also be examined,
noting that the bin at the peak of the distribution provides the largest contribution to the
overall sensitivity. It can be seen that the sensitivity of the artificial variable in this peak bin
is approximately 30% higher than MT and similar to MMAOS for the higher mZ′ values. The
overall significance for each signal model and mass variable can be approximated by adding
the significance of each bin in quadrature. This calculation shows that the artificial variable
has a 3–5% higher significance than MT, while MMAOS has only a ≈1% higher significance.
Because the improvements are minor, searches may still prefer to use the simpler MT variable,
but in the event of a discovery, the Z′ mass could be measured with better resolution using the
artificial variable.
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Figure 6: The distributions of each reconstructed mass variable for Z′ and QCD mul-
tijet processes. The middle pane shows the significance, and the bottom pane shows
the ratio of the significance, comparing the two classical variables to V . The distri-
butions in the bottom pane are truncated to eliminate statistical fluctuations from
limited numbers of events in the high tails of the signal mass distributions.
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4.3 Varying rinv

The rinv parameter has a large effect on the potential accuracy of the Z′ mass reconstruction,
as shown in Fig. 7 for MMAOS. To assess the generalization properties of the EVN, we train four
separate instances of the network, corresponding to distinct signal samples with rinv values of
0.1, 0.3, 0.5, and 0.7. We also train a fifth instance using a sample with all of those rinv values
mixed together. Each trained instance is then applied to samples with all four rinv values, so
each instance trained on a specific rinv value must process signal events with different rinv
values. Figure 8 shows the results, with each network’s output calibrated using the mixed rinv
sample for consistency. In general, we see that networks trained with lower values of rinv also
work well on signals with higher values of rinv. The networks trained with higher values of
rinv do not work quite as well on signals with lower values of rinv. This is expected, as some
kinematic information is lost when rinv increases; more dark hadrons are combined into the
single /⃗pT two-vector rather than contributing to the jet four-vectors. The network trained on a
mixed sample with all rinv values works well for all rinv values. This test demonstrates that the
EVN can provide good mass reconstruction even when applied to signals with notably different
parameter values than used in training, as long as the basic kinematic behavior is similar.

4.4 Out-of-band masses

A natural test of the EVN’s generalization capabilities is exposing it to mediator mass values
outside of the training dataset. To perform this test, we retrain the EVN on three subsets of
the signal samples with different requirements on the Z′ mass: mZ′ > 2500; mZ′ ≤ 1500 or
mZ′ > 3500; and mZ′ ≤ 2500GeV. Because these restrictions significantly reduce the number
of events available for training, the EVN layer sizes are reduced by a factor of 2 to 64, 32,
32, 32, 16, leading to a total of 6050 trainable parameters, and the batch size is reduced to
1000. Each trained network is calibrated using the full range of mZ′ values for consistency.
We observe in Fig. 9 that the EVN performs equally well on signals with mediator mass values
below, in between, or above the range of mass values used for training, when compared to the
EVN trained on the full range of available masses from Section 4.
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Figure 8: The distributions of the artificial variable V from networks trained and
tested on different rinv values. The subscripts in the V entries in the legend indicate
which rinv value was used for training, while the larger text at the bottom of each
legend indicates which rinv sample was used to produce the distributions.

5 Φ production

5.1 Single production

The resonant production of a single bifundamental mediator Φ leads to a final state with two
high-pT jets from the mediator decay—one SM jet and one semivisible jet—in association with
a second low-pT semivisible jet. The transverse momentum distributions for the leading three
jets in such events are shown in Fig. 10. Based on the kinematic differences between the two
semivisible jets, the missing energy in the event is expected to be associated primarily with the
higher-pT semivisible jet. Therefore, the classical approach to reconstruct the resonance mass
is to compute the transverse mass from the two leading jets and the /pT, similar to the Z′ case.
Because the other leading jet is a fully visible SM jet, there is no need to employ the MAOS
procedure to split the /pT into multiple components. However, it is possible that optimal usage
of information from the third jet might improve the mass resolution; as a semivisible jet, it
may contribute to the /pT.

Therefore, we train two versions of the EVN on singleΦ production events. The first version
uses just the two leading jet four-vectors and the /pT two-vector as input, while the second
version also includes the third jet four-vector. Because a smaller mass range is explored for
Φ events, resulting in fewer training events, we use the alternative hyperparameter settings
described in Section 4.4. The first network is compared to mΦ and MT in Fig. 11, and the
corresponding mass distributions are shown in Fig. 12 (left). It can be seen that the artificial
variable does not exactly reproduce MT but highly correlates with it. Figure 12 (right) shows
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Figure 9: The distributions of the artificial variable V from networks trained on dif-
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on the entire range of masses), while the larger text at the bottom of each legend
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Figure 10: The pT distributions of the three leading jets in single production events
with mΦ = 1000GeV.

the correlation between the first and second versions of the network, which is similarly high.
This indicates that including the third jet information does not improve the mass reconstruction
for this topology. We conclude that the transverse mass is effectively optimal here.

5.2 Pair production

The pair production of Φ results in at least four jets, two of which are semivisible, along with
missing energy. The classical approach to reconstruct the mediator mass in this final state is
MT2 or a similar variable. In this case, disambiguation must be performed, to attempt to com-
bine the four jets into two visible four-vectors in a way that correctly pairs jets from the same
mediator. Here, we use a standard method: choosing the pairing that minimizes the invari-
ant mass difference between the two pairs, ∆MJJ = |MJaJb

− MJc Jd
|. We also compare to the

variable Mgen
T2 , where the disambiguation is done correctly using generator-level information

about the mediator decays, to represent an upper bound on possible performance.
The EVN is trained with the four-vectors of the leading four jets and the /⃗pT two-vector as in-

put. As in the single production case, the alternative hyperparameter settings from Section 4.4
are used. The results are shown in Figs. 13 and 14. The artificial variable is correlated with
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Figure 11: Correlations between MT, V , and mΦ in single production events.
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Figure 12: Left: the distributions of MT and V for several mΦ values in single produc-
tion events, normalized to unit area. Right: the correlations between V using two
jets and V using three jets.

MT2, but is not identical to it. MT2 has a substantial low-mass tail, which is typically caused
by incorrect pairings from the ∆MJJ heuristic. V , while it does not achieve the resolution of
the generator-level version, largely eliminates this low-mass behavior.

To understand the impact of the apparent improvements of the artificial variable over the
classical reconstruction, we conduct a sensitivity comparison, following the procedure and se-
lection in Section 4.2. Figure 15 shows the result. We observe that, compared to MT2, the arti-
ficial variable shifts the background to lower mass values and the signal to higher values, and
both effects improve the sensitivity in the higher end of the mass distribution. The improve-
ment is especially pronounced for higher mΦ values, which are more challenging to discover
in the LHC dataset because of their small cross sections. Computing the approximate overall
significance shows that the artificial variable improves on MT2 by 17% for mΦ = 1000 GeV
and 81% for mΦ = 2000GeV. This again demonstrates the power of the semisupervised ap-
proach; the EVN, by learning an optimal generalized function for the signal topology, pushes
the background away from resonant signal distributions without being trained on background
kinematic distributions.
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Figure 13: Correlations between MT2, V , and mΦ in pair production events.
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T2 , and V for several mΦ values in pair pro-

duction events, normalized to unit area.

6 Conclusion

Semivisible jets are a novel phenomenological signature of strongly coupled dark matter, corre-
sponding to stable dark hadrons that arise, along with unstable dark hadrons, from a hidden
sector with a new, confining force. We apply the artificial event variable network (EVN) to
achieve optimal mediator mass reconstruction for several resonant production channels: a Z′

boson, a single bifundamental scalar Φ, or a pair of Φ. This network uses an information bot-
tleneck to produce interpretable output that is directly correlated with a given parameter, here
the mediator mass. The EVN is trained with a semisupervised approach that uses only signal
events, without any knowledge of standard model background processes.

In the Z′ case, we show that the learned artificial variable is superior to the transverse mass
MT and similar to the MT2-Assisted On Shell (MAOS) scheme. Using the artificial variable
results in a moderate improvement, compared to the classical variables, in the sensitivity of
a simplified search for this process. For this result, we compare signal events to quantum
chromodynamics (QCD) multijet background events, for which the EVN produces a steeply
falling mass distribution despite never being exposed to such events during training. We also
use the Z′ case to further demonstrate the generalization capabilities of the EVN, showing that
its performance generalizes to signal models with mediator mass values or invisible fractions
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Figure 15: The distributions of each reconstructed mass variable for Φ pair produc-
tion and QCD multijet samples. The middle pane shows the significance, and the
bottom pane shows the ratio of the significance, comparing MT2 to V . The distri-
butions in the bottom pane are truncated to eliminate noisy values from statistical
fluctuations in the high tails of the signal mass distributions.

(the proportion of dark hadrons that are stable) that differ from the training data.
We investigate the phenomenological behavior of single and pair production ofΦmediators

for the first time. We show with the EVN that MT is approximately optimal for the single
production case. In the pair production case, we find that the artificial variable significantly
improves over the classical MT2 and offers strong potential to improve the collider discovery
reach for this process.

Overall, the artificial event variable network offers a promising avenue to improve event
reconstruction in an interpretable and generalized way, by learning a function that correlates
with physical information. It can be applied to improve sensitivity, increase discovery potential,
and provide phenomenological knowledge even for complicated signals such as semivisible jet
production.
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a mix of rinv values in Z′ production.
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A Additional information

A.1 Code availability

The code used to train the neural network and produce the figures in this paper can be found
at https://github.com/kpedro88/evn_svj_public. The MADGRAPH and PYTHIA settings used to
generate the signal and background events can also be found there.

A.2 Supporting distributions

A.2.1 Z′ production

Figure 16 shows correlations between artificial variables trained using signals with different
rinv values. High correlations with the artificial variable trained on all rinv values are observed.
The relative skewness γrel

1 shows that variables trained on low rinv have moderate biases to-
ward high values compared to the mixed training case and variables trained on high rinv have
moderate biases toward low values, as expected.

Figure 17 shows correlations between artificial variables trained using different ranges
of mZ′ values. High correlations with the artificial variable trained on the full range of mZ′

values are observed. The relative skewness γrel
1 shows that the variable trained on low mZ′ has

moderate bias toward low values compared to the full range case and the variable trained on
high mZ′ has moderate bias toward high values, as expected.

A.2.2 Φ production

Figure 18 shows the distribution of MT and the artificial variable trained using three jet four-
vectors and the /⃗pT two-vector, rather than the default two jet four-vectors and /⃗pT, in single Φ
production events. The distribution is very similar to the variable using the default inputs in
Fig. 12.
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Figure 17: Correlations between V trained on different ranges of mZ′ values and V
trained on a the full range of mZ′ values.
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Figure 18: The distributions of MT and V trained with three jets for several mΦ values
in single production events, normalized to unit area.
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