Anyons in a tight wave-guide and the Tonks-Girardeau gas

Nicolas Rougerie ${ }^{1 \star}$ and Qiyun Yang ${ }^{2 \dagger}$
1 Ecole Normale Supérieure de Lyon \& CNRS, UMPA (UMR 5669)
2 Ecole Normale Supérieure de Lyon, UMPA (UMR 5669)
^ nicolas.rougerie@ens-lyon.fr, † qiyun.yang@ens-lyon.fr

Abstract

We consider a many-body system of 2D anyons, free quantum particles with general statistics parameter $\alpha \in] 0,2$. In the magnetic gauge picture they are described as bosons attached to Aharonov-Bohm fluxes of intensity $2 \pi \alpha$, generating long-range magnetic forces. A dimensional reduction to 1D is obtained by imposing a strongly anisotropic trapping potential. This freezes the motion in the direction of strong trapping, leading to 1 D physics along the weak direction. The latter is governed to leading order by the Tonks-Girardeau model of impenetrable bosons, independently of α.

Copyright N. Rougerie and Q. Yang.
This work is licensed under the Creative Commons Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 21-03-2023
Accepted 04-10-2023
Published 15-11-2023
doi:10.21468/SciPostPhysCore.6.4.079

Contents

1 Models and main result 2
2 A case for the Calogero-Sutherland model 4
3 Argument for the main result 5
4 Conclusions 8
References 8

Quasi-particle excitations of many-body systems confined to reduced dimensionalities are not in principle constrained by the symmetry dichotomy which sorts all fundamental particles into bosons and fermions [1-3,5]. In 2D, many-body quantum wave-functions may be classified by the phase picked upon exchanging/braiding two particles. It is of the form $e^{\mathrm{i} \pi \alpha}$ for $\alpha \in[0,2[$, the standard cases of bosons and fermions being recovered for $\alpha=0,1$ respectively. Equivalently one may think of these so-called anyons in terms of standard bosons (or fermions), coupled to infinitely thin magnetic flux tubes of strength $2 \pi \alpha$ (or $2 \pi(\alpha-1)$). This point of view is referred to as the magnetic gauge picture [4,6-11,64]. In 1D there does not seem to be a unique agreed-upon model for anyonic exchange statistics. Depending on how one proceeds to quantization, they have historically been described [1,12-14,64] as ordinary
particles with either contact interactions (Lieb-Liniger model) or inverse-square interactions (Calogero-Sutherland model) but other formalisms exist [15-18]. In particular, the chiral BF/Kundu model [19-22] and the anyon-Hubbard model [23-25] have attracted attention recently. Our main purpose here is to ask which one, if any, of the different theoretically possible descriptions of 1D anyons, is singled out as the dimensional reduction of the 2D theory.

The main candidates for real-world implementation of 2 D anyon statistics remain the charge carriers of fractional quantum Hall systems [26-29] or their counterparts e.g. in cold atom emulations [30-35]. See [36-39] for reviews and [40, 41] for experimental evidence. Said charge carriers are 2D objects described in the bulk via the usual, aforementioned, anyon model [28, 29]. Much of fractional quantum Hall physics is however probed via the transport of charge carriers along 1D edge channels, which connects to our main question.

In another direction, the coupling of cold atoms to optical fields can lead, in the adiabatic limit, to the effective implementation of density-dependent gauge fields [30, 32, 42]. Key proposals in this direction have recently been experimentally realized [31, 43, 44]. In particular, signatures of the chiral BF model, connected to 1D Kundu anyons, have been observed $[43,45]$ by generating a magnetic-like vector potential proportional to matter density. On the other hand, the magnetic gauge picture of 2D anyons corresponds to a magnetic-like field proportional to matter density.

Indeed, in this note we explain (full mathematical details will be provided elsewhere) that the magnetic-gauge picture Hamiltonian for 2D anyons of statistical parameter $\alpha \in] 0,2[$ converges, in the limit of a tight confinement along one spatial dimension, to the impenetrable boson model of the Tonks-Girardeau gas, soluble by Bose-Fermi mapping [46-48]. Thus, at leading order, the physics does not depend on α and is given by an extreme case of the LiebLiniger [49,50] model. The behavior is always essentially fermionic [51].

These results might be interpreted in light of the enhanced effect of interactions in reduced dimensionalities. However, it is remarkable that the long-range magnetic interactions of the original model result in a limiting purely local theory. This finding is consistent with [52,53] although our approach differs and seems more systematic. In particular it clarifies the vanishing of the long-range magnetic interaction. A particular, discontinuous, phase is acquired by the 2 D wave-functions, gauging the interaction away when particles are aligned.

1 Models and main result

Consider a (multi-valued) wave function $\Psi:\left(\mathbb{R}^{2}\right)^{N} \rightarrow \mathbb{C}$ with anyonic exchange behavior, i.e.

$$
\begin{equation*}
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{j}, \ldots, \mathbf{x}_{k}, \ldots, \mathbf{x}_{N}\right)=e^{\mathrm{i} \alpha \pi} \Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, \ldots, \mathbf{x}_{j}, \ldots, \mathbf{x}_{N}\right) \tag{1}
\end{equation*}
$$

with $\alpha \in] 0,1$] (by periodicity and complex conjugation, considering this range is sufficient). It is convenient to perform a singular gauge transformation

$$
\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\prod_{j<k} e^{\mathrm{i} \alpha \phi_{j k}} \Phi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right), \quad \text { with } \quad \phi_{j k}=\arg \frac{\mathbf{x}_{j}-\mathbf{x}_{k}}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|}
$$

with Φ a bosonic wave function, symmetric under particle exchange. We have denoted $\arg ($. the angle of a planar vector with the horizontal axis. Applying this transformation, one finds

$$
\langle\Psi|\left(-\mathrm{i} \nabla_{\mathbf{x}_{j}}\right)^{2}|\Psi\rangle=\langle\Phi| D_{\mathbf{x}_{j}}^{2}|\Phi\rangle,
$$

where the momentum operator for particle j has changed as

$$
\begin{equation*}
-\mathrm{i} \nabla_{\mathbf{x}_{j}} \leadsto D_{\mathbf{x}_{j}}:=-\mathrm{i} \nabla_{\mathbf{x}_{j}}+\alpha \mathbf{A}\left(\mathbf{x}_{j}\right), \tag{2}
\end{equation*}
$$

with, denoting $(x, y)^{\perp}=(-y, x) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\mathrm{A}\left(\mathbf{x}_{j}\right):=\sum_{k \neq j} \frac{\left(\mathbf{x}_{j}-\mathrm{x}_{k}\right)^{\perp}}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{2}} . \tag{3}
\end{equation*}
$$

In this picture we have traded the non-trivial exchange symmetry of wave-functions for a density-dependent magnetic field. Particle j sees all the others as carrying an Aharonov-Bohm flux, leading to the magnetic field

$$
B\left(\mathbf{x}_{j}\right)=\operatorname{curl}_{\mathbf{x}_{j}} \mathbf{A}\left(\mathbf{x}_{j}\right)=2 \pi \alpha \sum_{k \neq j} \delta_{\mathbf{x}_{j}=\mathbf{x}_{k}}
$$

We adopt this point of view throughout the note, using (the Friedrichs extension [54-59] of)

$$
\begin{equation*}
H_{\varepsilon}^{2 \mathrm{D}}:=\sum_{j=1}^{N}\left(D_{\mathbf{x}_{j}}^{2}+V_{\varepsilon}\left(\mathbf{x}_{j}\right)\right) \tag{4}
\end{equation*}
$$

acting on bosonic wave-functions as our starting point, where

$$
\begin{equation*}
V_{\varepsilon}(\mathbf{x})=V_{\varepsilon}(x, y)=x^{2}+\frac{y^{2}}{\varepsilon^{2}} \tag{5}
\end{equation*}
$$

is a convenient way of enforcing 1D behavior along the horizontal axis in the limit $\varepsilon \rightarrow 0$. This is arguably a crude description (but, perhaps, also an instructive toy model) if one has a fractional quantum Hall edge in mind. There is however no difficulty in imposing such a potential on emerging anyons in cold atoms systems. The choice of a harmonic trapping is only out of convenience. Our results remain true with different choices, but the harmonic trapping has the virtue of leading to exactly soluble limit models.

We denote

$$
\begin{equation*}
\lambda_{k}^{2 \mathrm{D}}=\min _{\substack{V_{k} \subset L^{2}\left(\mathbb{R}^{2 N}\right) \\ \operatorname{dim} V_{k}=k}} \max _{\Psi \in V_{k},\|\Psi\|_{L^{2}}=1}\langle\Psi| H_{\varepsilon}^{2 \mathrm{D}}|\Psi\rangle \tag{6}
\end{equation*}
$$

the eigenvalues of (4), defined by standard Courrant-Fisher min-max formulae. Let Ψ_{k} be associated eigenfunctions, i.e.

$$
H_{\varepsilon}^{2 \mathrm{D}} \Psi_{k}=\lambda_{k}^{2 \mathrm{D}} \Psi_{k}
$$

There can be degeneracies, in which case we count eigenvalues with their multiplicities.
For small $\varepsilon>0$ one expects the motion in the two spatial directions to decouple (which is true only to some extent in this particular case, see below). The motion in the y direction will be frozen in the ground state of the harmonic oscillator

$$
\begin{equation*}
H_{\varepsilon}^{\mathrm{HO}}:=-\partial_{y}^{2}+\frac{y^{2}}{\varepsilon^{2}} \tag{7}
\end{equation*}
$$

It turns out that the motion in the x direction reduces to the free Hamiltonian

$$
\begin{equation*}
H^{1 \mathrm{D}}:=\sum_{j=1}^{N}-\partial_{x_{j}}^{2}+x_{j}^{2}, \tag{8}
\end{equation*}
$$

but acting on the domain (of the Friedrichs extension)

$$
\begin{equation*}
\mathcal{D}^{1 \mathrm{D}}:=\left\{\psi \in H^{2}\left(\mathbb{R}^{N}\right), \psi\left(x_{j}=x_{k}\right) \equiv 0, \text { for all } j \neq k\right\} \tag{9}
\end{equation*}
$$

This restriction is equivalent to the addition of a delta pair-potential of infinite strength to (8). It is well-known that this impenetrable boson model can be mapped to a free fermionic one [46-

48]. In turn, this leads to an exact solution in the particular case above. However, our approach does not rely on this exact solution, and we could in fact have added extra interactions to our model. For simplicity, we do not consider this explicitly.

Let e_{ε} and u_{ε} be respectively the lowest eigenvalue and eigenfunction of (7). Let $\left(\lambda_{k}^{1 \mathrm{D}}\right)_{k \in \mathbb{N}}$ be the eigenvalues of (8), with associated eigenfunctions $\psi_{k}, k=1,2 \ldots$. In the model above, $\lambda_{k}^{1 D}$ is a sum of eigenvalues of the harmonic oscillator $-\partial_{x}+x^{2}$ and

$$
\psi_{k}=c_{k} \prod_{i<j} \operatorname{sgn}\left(x_{i}-x_{j}\right) \operatorname{det}_{i, j}\left(v_{i}\left(x_{j}\right)\right)
$$

where v_{i} are the associated one-particle eigenfunctions and c_{k} is a normalization constant.
We state our main finding as a theorem.

Theorem 1 (Dimensional reduction for anyons).

For all $k \in \mathbb{N}$, in the limit $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
\lambda_{k}^{2 \mathrm{D}}=N e_{\varepsilon}+\lambda_{k}^{1 \mathrm{D}}+o(1) \tag{10}
\end{equation*}
$$

Moreover, one can choose the $2 D$ and $1 D$ eigenbases $\left(\Psi_{k}\right)_{k}$ and $\left(\psi_{k}\right)_{k}$ in such a way that

$$
\begin{equation*}
\int_{\mathbb{R}^{2 N}}\left|\Psi_{k}-\psi_{k}\left(x_{1}, \ldots, x_{N}\right) \prod_{j=1}^{N} u_{\varepsilon}\left(y_{j}\right)\right|^{2} \underset{\varepsilon \rightarrow 0}{\rightarrow} 0 \tag{11}
\end{equation*}
$$

Although it seems from (11) that a standard decoupling between the two space directions takes place, the actual ansatz for the eigenfunctions Ψ_{k} leading to the correct energy are more subtle. Essentially they are of the form

$$
\begin{equation*}
\psi_{k}\left(x_{1}, \ldots, x_{N}\right) \prod_{j=1}^{N} u_{\varepsilon}\left(y_{j}\right) \prod_{j<k} e^{-\mathrm{i} \alpha S\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)}, \tag{12}
\end{equation*}
$$

where we denote

$$
\begin{equation*}
S(\mathbf{x})=S(x, y)=\arctan \left(\frac{y}{x}\right) \tag{13}
\end{equation*}
$$

The above trial states have the correct bosonic symmetry because $S(\mathbf{x})=S(-\mathbf{x})$, but they are not of the form "function of x times function of y " that is more common in dimensional reductions. Note that $S(\mathbf{x})$ has a discontinuity along the line $x=0$, so that it is crucial for (12) to be well-defined that $\psi_{k}\left(x_{1}, \ldots, x_{N}\right)$ vanishes whenever $x_{j}=x_{k}, j \neq k$.

The phase factors $e^{-\mathrm{i} \alpha S\left(\mathrm{x}_{j}-\mathrm{x}_{k}\right)}$ modify the energy dramatically, gauging away the original magnetic interaction (see below). For this effect it is crucial to take advantage of the finite, albeit small, extension of our wave-guide, as shown by the discussion below.

2 A case for the Calogero-Sutherland model

Before we sketch the proof of the above, it is instructive to examine an argument that would rather point in the direction of the Calogero model with inverse square interactions (which is also a proposed model for 1D anyons) as effective description. This will emphasize two things: - That quantization and dimensional reduction do not commute in this particular case. Classical particles with the above magnetic interactions would experience Calogero-like interactions if confined on a line.

- The role of the phase factors $e^{-\mathrm{i} \alpha S\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)}$ in the main result. Indeed, if one chooses a simpler ansatz of the form

$$
\psi_{k}=\phi\left(x_{1}, \ldots, x_{N}\right) \prod_{j=1}^{N} u_{\varepsilon}\left(y_{j}\right)
$$

the 1D function ϕ indeed experiences a Calogero-type Hamiltonian.
The possible connections between 2D anyons and Calogero-like models have already been pointed out in a similar context [60,61]. It also arises for lowest Landau level anyons [52,6267] via very different mechanisms.

Consider N classical particles with magnetic interactions akin to those of (4). We constrain them to move on the line $y=0$, like pearls on a necklace. Expanding the square in (4), the Hamilton function for this system is

$$
\begin{aligned}
H\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; \mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)= & \sum_{j=1}^{N}\left(\left|\mathbf{p}_{j}\right|^{2}+x_{j}^{2}\right) \\
& +2 \alpha \sum_{j \neq k} \mathbf{p}_{j} \cdot \frac{\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)^{\perp}}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{2}} \\
& +\alpha^{2} \sum_{j \neq k \neq \ell} \frac{\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)^{\perp}}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{2}} \cdot \frac{\left(\mathbf{x}_{j}-\mathbf{x}_{\ell}\right)^{\perp}}{\left|\mathbf{x}_{j}-\mathbf{x}_{\ell}\right|^{2}} \\
& +\alpha^{2} \sum_{j \neq k} \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{2}}
\end{aligned}
$$

where $\mathbf{p}_{j}=\left(p_{j}, 0\right)$ and $\mathbf{x}_{j}=\left(x_{j}, 0\right)$ are momenta and positions, respectively. The cross-term on the second line is clearly null. The term on the third line is null as well, as follows from grouping terms as in [68, Lemma 3.2]

$$
\sum_{\text {cyclic in } 1,2,3} \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{\perp}}{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}} \cdot \frac{\left(\mathbf{x}_{1}-\mathbf{x}_{3}\right)^{\perp}}{\left|\mathbf{x}_{1}-\mathbf{x}_{3}\right|^{2}}=\frac{1}{2 \mathcal{R}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)^{2}}
$$

with $\mathcal{R}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$ the circumradius of the triangle with summits $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$. This is the radius of the circle on which the three points lie, which is infinite for aligned points. Hence the Hamilton function boils down to

$$
\sum_{j=1}^{N}\left(p_{j}^{2}+x_{j}^{2}\right)+\alpha^{2} \sum_{j \neq k} \frac{1}{\left(x_{j}-x_{k}\right)^{2}}
$$

which, once quantized, gives a Calogero Hamiltonian, albeit not with the expected $\alpha(\alpha-1)$ coefficient $[12,13,62]$ in front of the two-body term for particles of statistics parameter α. Note that this reduction could in any case not be correct for all α because the 2D anyon energy is periodic in α, but the Calogero energy is not [62,69-71].

3 Argument for the main result

We turn to sketching the main insights of the proof of Theorem 1. Turning them into a rigorous mathematical proof is somewhat lengthy, and will be done elsewhere [72].

The crucial observation is that for particles close to the line $y=0$, the vector potential of the Aharonov-Bohm fluxes in (4) can be gauged away. The vector potential

$$
\mathbf{A}_{0}(\mathbf{x})=\frac{\mathbf{x}^{\perp}}{|\mathbf{x}|^{2}}=\binom{-y}{x} \frac{1}{x^{2}+y^{2}}
$$

for a unit Aharonov-Bohm flux at the origin has a non-zero curl and thus cannot be written as the gradient of a regular function globally. But, with S defined as in (13)

$$
\nabla S(\mathbf{x})=\mathbf{A}_{0}(\mathbf{x})-\binom{\pi \delta_{x=0} \operatorname{sgn}(y)}{0}
$$

Hence, for any continuous function $\Psi(\mathbf{x})$ of finite kinetic energy vanishing on the line $x=0$

$$
\int_{\mathbb{R}^{2}}\left|\left(-\mathrm{i} \nabla_{\mathbf{x}}+\alpha \mathbf{A}_{0}(\mathbf{x})\right)\left(\Psi(\mathbf{x}) e^{-\mathrm{i} \alpha S(\mathrm{x})}\right)\right|^{2} d \mathbf{x}=\int_{\mathbb{R}^{2}}|\nabla \Psi|^{2}
$$

and this will be our model calculation (here performed in the relative coordinate of a particle pair).

The main point of our argument is the behavior

$$
S(\mathbf{x}) \simeq_{|y| \ll|x|} \frac{y}{x}
$$

Indeed if one sets instead

$$
\widetilde{S}(\mathbf{x}):=\frac{y}{x}
$$

one finds

$$
\nabla \widetilde{S}(\mathbf{x})=\binom{-y / x^{2}}{1 / x} \underset{|y| \ll|x|}{\simeq} \mathbf{A}_{0}(\mathbf{x})
$$

and more precisely

$$
\begin{equation*}
\left|\nabla \widetilde{S}-\mathbf{A}_{0}\right| \leq C \frac{|y|}{x^{2}} \tag{14}
\end{equation*}
$$

The singularity around $x=0$ of the right-hand side would have to be tamed if we used \widetilde{S} instead of S in our trial state. Hence the latter choice is actually simpler, and we stick to it in the sequel.

Consider now a trial state Ψ for (4) and write it as

$$
\begin{align*}
& \Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=U_{\varepsilon} \prod_{j<k} e^{-\alpha \mathrm{i} S\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)} \Phi \tag{15}\\
& U_{\varepsilon}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\prod_{j=1}^{N} u_{\varepsilon}\left(y_{j}\right)
\end{align*}
$$

with a new, continuous, unknown function Φ vanishing whenever $x_{j}=x_{k}, j \neq k$. A direct calculation yields

$$
\begin{equation*}
\langle\Psi| H_{\varepsilon}^{2 \mathrm{D}}|\Psi\rangle=N e_{\varepsilon}+\sum_{j}^{N} \int_{\mathbb{R}^{2 N}} U_{\varepsilon}^{2} x_{j}^{2}|\Phi|^{2}+\sum_{j}^{N} \int_{\mathbb{R}^{2 N}} U_{\varepsilon}^{2}\left|\nabla_{\mathbf{x}_{j}} \Phi\right|^{2} \tag{16}
\end{equation*}
$$

and we now seek critical points of this functional of Φ. For energy upper bounds it will clearly be favorable for Φ not to depend on y_{1}, \ldots, y_{N} and we then recognize the energy functional corresponding to (8).

We then need to prove a lower bound of the correct form for the energy of a true eigenstate Ψ of the 2D model. We do not know a priori that the corresponding Φ vanishes when $x_{j}=x_{k}, j \neq k$, but (16) can in this case be replaced by

$$
\begin{equation*}
\langle\Psi| H_{\varepsilon}^{2 \mathrm{D}}|\Psi\rangle \geq N e_{\varepsilon}+\sum_{j}^{N} \int_{\Lambda_{\eta}} U_{\varepsilon}^{2} x_{j}^{2}|\Phi|^{2}+\sum_{j}^{N} \int_{\Lambda_{\eta}} U_{\varepsilon}^{2}\left|\nabla_{\mathbf{x}_{j}} \Phi\right|^{2} \tag{17}
\end{equation*}
$$

where

$$
\Lambda_{\eta}=\left\{\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) \in \mathbb{R}^{2 N},\left|x_{j}-x_{k}\right|>\eta, \forall j \neq k\right\}
$$

Extracting the singular phase is unproblematic on the latter set, and we can then pass to the limit in the above, $\varepsilon \rightarrow 0$ and $\eta \rightarrow 0$, obtaining an energy lower bound essentially of the desired form. More precisely, in [72, Proposition 4.3] we prove the following:

Lemma 2. Let

$$
\begin{equation*}
\phi\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right):=\Phi\left(x_{1}, \sqrt{\varepsilon} y_{1}, \ldots, x_{N}, \sqrt{\varepsilon} y_{N}\right) \tag{18}
\end{equation*}
$$

After possibly extracting a subsequence,

$$
\phi \underset{\varepsilon \rightarrow 0}{\rightarrow} \psi_{0}
$$

where the limit ψ_{0} has no dependence on the y-coordinates, and satisfies

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0}\left(\langle\Psi| H_{\varepsilon}^{2 \mathrm{D}}|\Psi\rangle-N e_{\varepsilon}\right) \geq \sum_{j=1}^{N}\left(\int_{\mathbb{R}^{N}}\left|\partial_{x_{j}} \psi_{0}\right|^{2}+\int_{\mathbb{R}^{N}}\left|x_{j}\right|^{2}\left|\psi_{0}\right|^{2}\right) \tag{19}
\end{equation*}
$$

The main difficulty is now to ensure some form of vanishing around particle encounters for our limit model to indeed be set on (9), i.e. that the 1D function obtained by passing to the limit has finite kinetic energy over the whole space (including across diagonals). To this end we use the following Hardy-like inequality: For any Ψ, with the modified momentum as in (2)

$$
\begin{equation*}
\sum_{j=1}^{N}\langle\Psi|\left(D_{\mathbf{x}_{j}}\right)^{2}|\Psi\rangle \geq c_{\alpha, N} \int_{\mathbb{R}^{2 N}} \sum_{j<k} \frac{1}{\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{2}}\left|\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)\right|^{2} \tag{20}
\end{equation*}
$$

where the best possible constant $c_{\alpha, N}$ depends only on α and N. Such an inequality originates from [55, 56, 68, 73] (see also [74] for review and generalizations) where it is proved in particular that

- $c_{\alpha, N} \geq c N^{-1}$ with a universal $c>0$ if α is an odd-numerator fraction.
- $c_{\alpha, 2}>0$ for any $\alpha \neq 0$.

We improve these bounds by proving that there exists a universal constant $c^{\prime}>0$ such that

$$
c_{\alpha, N} \geq c^{\prime} N^{-2}, \quad \text { for any } \quad \alpha \neq 0
$$

which leads to our main result by providing the desired vanishing in the whole parameter range. One can understand heuristically why by considering the contribution of the set where $\left|x_{j}-x_{k}\right| \lesssim \sqrt{\varepsilon}$ and $\left|y_{\ell}\right| \lesssim \sqrt{\varepsilon}$ for $\ell=1 \ldots N$ to the right-hand side of (20). One has $\left|\mathbf{x}_{j}-\mathbf{x}_{k}\right|^{2} \lesssim \varepsilon$ on this set. If the limiting 1D function does not vanish for $x_{j} \sim x_{k}$, then $|\Psi|^{2} \propto U_{\varepsilon}^{2} \propto \varepsilon^{-N / 2}$. The total contribution (volume times typical value of the integrand) would thus be of order $\varepsilon^{-1 / 2}$, much larger than the expected energies, of order unity after removal of the contribution of $N e_{\varepsilon}$ as in (10). More precisely this leads us to (see Lemma 4.8 in [72])

Lemma 3. Let

$$
\begin{equation*}
\psi\left(x_{1}, \ldots, x_{N}\right):=\int_{\mathbb{R}^{N}} \mathrm{~d} y_{1} \cdots \mathrm{~d} y_{N}\left|\phi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)\right| U_{1}^{2}\left(y_{1}, \ldots, y_{N}\right) \mathbb{1}_{\left|y_{1}\right| \leq 1 / 4} \ldots \mathbb{1}_{\left|y_{N}\right| \leq 1 / 4}, \tag{21}
\end{equation*}
$$

and K be a bounded open subset in \mathbb{R}^{N-1}. For a constant $\gamma \geq 0$, we define

$$
K_{\gamma}:=\left\{\left(x_{2}, x_{3}, \ldots, x_{N}\right) \in K:\left|x_{2}-x_{j}\right|>\sqrt{\gamma} / 2, \forall j \geq 3\right\} .
$$

Then when $\gamma \geq \varepsilon$, we have

$$
\int_{K_{\gamma}}\left|\psi\left(x_{2}, x_{2}, x_{3}, \ldots, x_{N}\right)\right|^{2} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{N} \leq C_{K} \varepsilon^{\frac{s}{2}}
$$

for some constants $C_{K}>0$ and $s \in(0,1)$ both independent of ε.
The above will, after passing to the limit, guarantee that ψ_{0} vanishes when two arguments come close, the others being at least at a distance $\sqrt{\gamma} / 2$. One can finally pass to the limit $\gamma \rightarrow 0$ to deduce that $\psi_{0}\left(x_{j}=x_{k}\right) \equiv 0$ for any $k \neq j$. Hence indeed the energy bounds force the limiting 1D function to vanish upon particle encounters, as desired.

4 Conclusions

We have studied 2D anyons of statistics parameter α in the magnetic gauge picture, i.e. seeing them as bosons in a varying magnetic field proportional to matter density. In a cold atoms context this corresponds to proposals made e.g. in [32]. We imposed a dimensional reduction by ways of a strongly anisotropic trap, as in recent cold-atoms experiments probing densitydependent gauge theories [31, 43, 44].

In the 1D limit we found that a suitable choice of gauge removes long-range magnetic interactions. Their only remnant is a hard-core condition upon particle encounters, leading to the Girardeau-Tonks model of 1D bosons for any $\alpha \neq 0$. Non-trivial dependence on α might survive at sub-leading order, in which case it could be determined by perturbation theory around Girardeau's solution of the impenetrable 1D Bose gas.

Acknowledgments

We had interesting discussions with Douglas Lundholm, Michele Correggi, Per Moosavi and Nikolaj Thomas Zinner.

Funding information Funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant agreement CORFRONMAT No 758620) is gratefully acknowledged.

References

[1] J. M. Leinaas and J. Myrheim, On the theory of identical particles, Nuovo Cimento B 37, 1 (1977), doi:10.1007/BF02727953.
[2] G. A. Goldin, R. Menikoff and D. H. Sharp, Representations of a local current algebra in nonsimply connected space and the Aharonov-Bohm effect, J. Math. Phys. 22, 1664 (1981), doi:10.1063/1.525110.
[3] F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48, 1144 (1982), doi:10.1103/PhysRevLett.48.1144.
[4] F. Wilczek, Fractional statistics and anyon superconductivity, World Scientific, Singapore, ISBN 9789810200480 (1990), doi:10.1142/0961.
[5] J. Myrheim, Anyons, in Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems, Springer, Berlin, Heidelberg, Germany, ISBN 9783540466376 (1999), doi:10.1007/3-540-46637-1.
[6] J. Fröhlich, Statistics of fields, the Yang-Baxter equation, and the theory of knots and links, in Nonperturbative quantum field theory, Springer, Boston, USA, ISBN 9781461280538 (1988), doi:10.1007/978-1-4613-0729-7_4.
[7] J. Fröhlich, Quantum statistics and locality, in Proceedings of the Gibbs Symposium, American Mathematical Society, Providence, USA, ISBN 9780821896716 (1990).
[8] A. Lerda, Anyons, Springer, Berlin, Heidelberg, Germany, ISBN 9783540474661 (1992), doi:10.1007/978-3-540-47466-1.
[9] R. Iengo, Anyon quantum mechanics and Chern-Simons theory, Phys. Rep. 213, 179 (1992), doi:10.1016/0370-1573(92)90039-3.
[10] S. Forte, Quantum mechanics and field theory with fractional spin and statistics, Rev. Mod. Phys. 64, 193 (1992), doi:10.1103/RevModPhys.64.193.
[11] A. Khare, Fractional statistics and quantum theory, World Scientific, Singapore, ISBN 9789812561602 (2005), doi:10.1142/5752.
[12] J. M. Leinaas and J. Myrheim, Intermediate statistics for vortices in superfluid films, Phys. Rev. B 37, 9286 (1988), doi:10.1103/PhysRevB.37.9286.
[13] A. P. Polychronakos, Non-relativistic bosonization and fractional statistics, Nucl. Phys. B 324, 597 (1989), doi:10.1016/0550-3213(89)90522-1.
[14] T. Posske, B. Trauzettel and M. Thorwart, Second quantization of Leinaas-Myrheim anyons in one dimension and their relation to the Lieb-Liniger model, Phys. Rev. B 96, 195422 (2017), doi:10.1103/PhysRevB.96.195422.
[15] M. D. Girardeau, Anyon-fermion mapping and applications to ultracold gases in tight waveguides, Phys. Rev. Lett. 97, 100402 (2006), doi:10.1103/PhysRevLett.97.100402.
[16] I. Andrić, V. Bardek and L. Jonke, Quantum fluctuations of the Chern-Simons theory and dynamical dimensional reduction, Phys. Rev. D 59, 107702 (1999), doi:10.1103/PhysRevD.59.107702.
[17] L. Fresta and P. Moosavi, Approaching off-diagonal long-range order for $1+1$-dimensional relativistic anyons, Phys. Rev. B 103, 085140 (2021), doi:10.1103/PhysRevB.103.085140.
[18] P. Moosavi, Exact Dirac-Bogoliubov-de Gennes dynamics for inhomogeneous quantum liquids, Phys. Rev. Lett. 131, 100401 (2023), doi:10.1103/PhysRevLett.131.100401.
[19] S. J. Benetton Rabello, 1D generalized statistics gas: A gauge theory approach, Phys. Rev. Lett. 76, 4007 (1996), doi:10.1103/PhysRevLett.76.4007.
[20] U. Aglietti, L. Griguolo, R. Jackiw, S.-Y. Pi and D. Seminara, Anyons and chiral solitons on a line, Phys. Rev. Lett. 77, 4406 (1996), doi:10.1103/PhysRevLett.77.4406.
[21] A. Kundu, Exact solution of double δ function Bose gas through an interacting anyon gas, Phys. Rev. Lett. 83, 1275 (1999), doi:10.1103/PhysRevLett.83.1275.
[22] M. T. Batchelor, X.-W. Guan and N. Oelkers, One-dimensional interacting anyon gas: Lowenergy properties and haldane exclusion statistics, Phys. Rev. Lett. 96, 210402 (2006), doi:10.1103/PhysRevLett.96.210402.
[23] S. Greschner and L. Santos, Anyon Hubbard model in one-dimensional optical lattices, Phys. Rev. Lett. 115, 053002 (2015), doi:10.1103/PhysRevLett.115.053002.
[24] G. Tang, S. Eggert and A. Pelster, Ground-state properties of anyons in a one-dimensional lattice, New J. Phys. 17, 123016 (2015), doi:10.1088/1367-2630/17/12/123016.
[25] M. Bonkhoff, K. Jägering, S. Eggert, A. Pelster, M. Thorwart and T. Posske, Bosonic continuum theory of one-dimensional lattice anyons, Phys. Rev. Lett. 126, 163201 (2021), doi:10.1103/PhysRevLett.126.163201.
[26] B. I. Halperin, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett. 52, 1583 (1984), doi:10.1103/PhysRevLett.52.1583.
[27] D. Arovas, J. R. Schrieffer and F. Wilczek, Fractional statistics and the quantum Hall effect, Phys. Rev. Lett. 53, 722 (1984), doi:10.1103/PhysRevLett.53.722.
[28] D. Lundholm and N. Rougerie, Emergence of fractional statistics for tracer particles in a Laughlin liquid, Phys. Rev. Lett. 116, 170401 (2016), doi:10.1103/PhysRevLett.116.170401.
[29] G. Lambert, D. Lundholm and N. Rougerie, Quantum statistics transmutation via magnetic flux attachment, (arXiv preprint) doi:10.48550/arXiv.2201.03518.
[30] M. J. Edmonds, M. Valiente, G. Juzeliūnas, L. Santos and P. Öhberg, Simulating an interacting gauge theory with ultracold Bose gases, Phys. Rev. Lett. 110, 085301 (2013), doi:10.1103/PhysRevLett.110.085301.
[31] L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin and C. Chin, Observation of density-dependent gauge fields in a Bose-Einstein condensate based on micromotion control in a shaken two-dimensional lattice, Phys. Rev. Lett. 121, 030402 (2018), doi:10.1103/PhysRevLett.121.030402.
[32] G. Valentí-Rojas, N. Westerberg and P. Öhberg, Synthetic flux attachment, Phys. Rev. Res. 2, 033453 (2020), doi:10.1103/PhysRevResearch.2.033453.
[33] E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko and R. Seiringer, Quantum impurity model for anyons, Phys. Rev. B 102, 144109 (2020), doi:10.1103/PhysRevB.102.144109.
[34] E. Yakaboylu and M. Lemeshko, Anyonic statistics of quantum impurities in two dimensions, Phys. Rev. B 98, 045402 (2018), doi:10.1103/PhysRevB.98.045402.
[35] M. Correggi, R. Duboscq, D. Lundholm and N. Rougerie, Vortex patterns in the almost-bosonic anyon gas, Europhys. Lett. 126, 20005 (2019), doi:10.1209/02955075/126/20005.
[36] M. O. Goerbig, Quantum Hall effects, in Quantum Hall effects, World Scientific, Singapore, ISBN 9789812700322, doi:10.1142/9789812790903_0011.
[37] R. B. Laughlin, Nobel lecture: Fractional quantization, Rev. Mod. Phys. 71, 863 (1999), doi:10.1103/RevModPhys.71.863.
[38] J. K. Jain, Composite fermions, Cambridge University Press, Cambridge, UK, ISBN 9780521862325 (2007), doi:10.1017/CBO9780511607561.
[39] N. Rougerie, Some contributions to many-body quantum mathematics, Habilitation thesis, Université Grenoble-Alpes \& CNRS, Grenoble, France (2016), doi:10.48550/arXiv.1607.03833.
[40] H. Bartolomei et al., Fractional statistics in anyon collisions, Science 368, 173 (2020), doi:10.1126/science.aaz5601.
[41] J. Nakamura, S. Liang, G. C. Gardner and M. J. Manfra, Direct observation of anyonic braiding statistics, Nat. Phys. 16, 931 (2020), doi:10.1038/s41567-020-1019-1.
[42] L. Cardarelli, S. Greschner and L. Santos, Engineering interactions and anyon statistics by multicolor lattice-depth modulations, Phys. Rev. A 94, 023615 (2016), doi:10.1103/PhysRevA.94.023615.
[43] A. Frölian, C. S. Chisholm, E. Neri, C. R. Cabrera, R. Ramos, A. Celi and L. Tarruell, Realizing a 1D topological gauge theory in an optically dressed BEC, Nature 608, 293 (2022), doi:10.1038/s41586-022-04943-3.
[44] K.-X. Yao, Z. Zhang and C. Chin, Domain-wall dynamics in Bose-Einstein condensates with synthetic gauge fields, Nature 602, 68 (2022), doi:10.1038/s41586-021-04250-3.
[45] C. S. Chisholm, A. Frölian, E. Neri, R. Ramos, L. Tarruell and A. Celi, Encoding a onedimensional topological gauge theory in a Raman-coupled Bose-Einstein condensate, Phys. Rev. Res. 4, 043088 (2022), doi:10.1103/PhysRevResearch.4.043088.
[46] A. Minguzzi and P. Vignolo, Strongly interacting trapped one-dimensional quantum gases: Exact solution, AVS Quantum Sci. 4, 027102 (2022), doi:10.1116/5.0077423.
[47] M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Math. Phys. 1, 516 (1960), doi:10.1063/1.1703687.
[48] S. I. Mistakidis, A. G. Volosniev, R. E. Barfknecht, T. Fogarty, T. Busch, A. Foerster, P. Schmelcher and N. T. Zinner, Few-body Bose gases in low dimensions - A laboratory for quantum dynamics, Phys. Rep. 1042, 1 (2023), doi:10.1016/j.physrep.2023.10.004.
[49] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. 130, 1605 (1963), doi:10.1103/PhysRev.130.1605.
[50] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. 130, 1616 (1963), doi:10.1103/PhysRev.130.1616.
[51] S. Ouvry and A. P. Polychronakos, The Lieb-Liniger model in the infinite coupling constant limit, J. Phys. A: Math. Theor. 42, 275302 (2009), doi:10.1088/17518113/42/27/275302.
[52] T. H. Hansson, J. M. Leinaas and J. Myrheim, Dimensional reduction in anyon systems, Nucl. Phys. B 384, 559 (1992), doi:10.1016/0550-3213(92)90581-U.
[53] D. Sen, Dimensional reduction of two-dimensional anyons to a one-dimensional interacting Bose gas, (arXiv preprint) doi:10.48550/arXiv.cond-mat/9412013.
[54] R. Adami and A. Teta, On the Aharonov-Bohm Hamiltonian, Lett. Math. Phys. 43, 43 (1998), doi:10.1023/A:1007330512611.
[55] D. Lundholm and J. P. Solovej, Hardy and Lieb-Thirring inequalities for anyons, Commun. Math. Phys. 322, 883 (2013), doi:10.1007/s00220-013-1748-4.
[56] D. Lundholm and J. P. Solovej, Local exclusion principle for identical particles obeying intermediate and fractional statistics, Phys. Rev. A 88, 062106 (2013), doi:10.1103/PhysRevA.88.062106.
[57] D. Lundholm and J. P. Solovej, Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics, Ann. Henri Poincaré 15, 1061 (2013), doi:10.1007/s00023-013-0273-5.
[58] M. Correggi and L. Oddis, Hamiltonians for two-anyon systems, Rend. Mat. Appl. 39, 277 (2018).
[59] M. Correggi and D. Fermi, Magnetic perturbations of anyonic and Aharonov-Bohm Schrödinger operators, J. Math. Phys. 62, 032101 (2021), doi:10.1063/5.0018933.
[60] S. Li and R. K. Bhaduri, Mapping of the Sutherland Hamiltonian to anyons on a ring authors, (arXiv preprint) doi:10.48550/arXiv.cond-mat/9404068.
[61] R. Vathsan, Reduction of anyons to one dimension and Calogero-Sutherland-type models, Int. J. Mod. Phys. A 13, 4123 (1998), doi:10.1142/S0217751X98001931.
[62] L. Brink, T. H. Hansson and M. A. Vasiliev, Explicit solution to the N-body Calogero problem, Phys. Lett. B 286, 109 (1992), doi:10.1016/0370-2693(92)90166-2.
[63] S. Ouvry, On the relation between the anyon and Calogero models, Phys. Lett. B 510, 335 (2001), doi:10.1016/S0370-2693(01)00601-3.
[64] S. Ouvry, Anyons and lowest Landau level anyons, Sémin. Poincaré 11, 77 (2007).
[65] S. Ouvry and A. P. Polychronakos, Mapping the Calogero model on the anyon model, Nucl. Phys. B 936, 189 (2018), doi:10.1016/j.nuclphysb.2018.09.011.
[66] A. Dasnières de Veigy and S. Ouvry, Equation of state of an anyon gas in a strong magnetic field, Phys. Rev. Lett. 72, 600 (1994), doi:10.1103/PhysRevLett.72.600.
[67] A. Dasnières De Veigy and S. Ouvry, One-dimensional statistical mechanics for identical particles: The Calogero and anyon cases, Mod. Phys. Lett. A 10, 1 (1995), doi:10.1142/S0217732395000028.
[68] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom, Many-particle Hardy inequalities, J. Lond. Math. Soc. 77, 99 (2007), doi:10.1112/jlms/jdm091.
[69] F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12, 419 (1971), doi:10.1063/1.1665604.
[70] B. Sutherland, Quantum many-body problem in one dimension: Ground state, J. Math. Phys. 12, 246 (1971), doi:10.1063/1.1665584.
[71] B. Sutherland, Quantum many-body problem in one dimension: Thermodynamics, J. Math. Phys. 12, 251 (1971), doi:10.1063/1.1665585.
[72] N. Rougerie and Q. Yang, Dimensional reduction for a system of 2D anyons, (arXiv preprint) doi:10.48550/arXiv.2305.06670.
[73] S. Larson and D. Lundholm, Exclusion bounds for extended anyons, Arch. Rational Mech. Anal. 227, 309 (2017), doi:10.1007/s00205-017-1161-9.
[74] D. Lundholm and V. Qvarfordt, Exchange and exclusion in the non-Abelian anyon gas, (arXiv preprint) doi:10.48550/arXiv.2009.12709.

