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Abstract

We study the speed of sound in strong-interaction matter at zero temperature and
in density regimes which are expected to be governed by the presence of a color-
superconducting gap. At (very) high densities, our analysis indicates that the speed
of sound approaches its asymptotic value associated with the non-interacting quark gas
from below, in agreement with first-principles studies which do not take the presence of
a color-superconducting gap into account. Towards lower densities, however, the pres-
ence of a gap induces an increase of the speed of sound above its asymptotic value.
Importantly, even if gap-induced corrections to the pressure may appear small, we find
that derivatives of the gap with respect to the chemical potential can still be sizeable
and lead to a qualitative change of the density dependence of the speed of sound. Tak-
ing into account constraints on the density dependence of the speed of sound at low
densities, our general considerations suggest the existence of a maximum in the speed
of sound. Interestingly, we also observe that specific properties of the gap can be related
to characteristic properties of the speed of sound which are indirectly constrained by
observations.
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1 Introduction

The impressive progress made in the observation of neutron-star mergers via gravitational-
wave signals [1, 2] together with the advances made in direct measurements of the radius
and the mass of heavy neutron stars [3–12] challenges our understanding of the properties
of dense strong-interaction matter. For example, constraints from neutron-star masses sug-
gest the existence of a maximum in the speed of sound in dense matter which exceeds the
asymptotic value of a non-interacting quarks gas [13–19], preferably at densities n/n0 ≲ 10
(where n0 is the nuclear saturation density).

In the present work, we shall only consider the zero-temperature limit where the speed of
sound cs can be written as a ratio of derivatives of the pressure P with respect to the chemical
potential µ:

cs =
1
p
µ

�

∂ P
∂ µ

�
1
2
�

∂ 2P
∂ µ∂ µ

�− 1
2

. (1)

From this equation, it becomes apparent that this quantity is a sensitive probe for the analysis
of the density dependence of the pressure of strong-interaction matter. Indeed, this expres-
sion suggests that seemingly small contributions to the equation of state may already lead to
significant changes in the density dependence of the speed of sound, depending on the scaling
of these contributions with the density. Therefore, already a qualitatively correct description
of the density dependence of the speed of sound in strong-interaction matter requires a de-
tailed understanding of the relevant degrees of freedom at work at different densities and their
dynamics.

In the low-density regime, where the dynamics is governed by spontaneous chiral sym-
metry breaking with nucleons and pions as effective degrees of freedom, chiral effective field
theory (EFT) provides a framework to describe nuclear matter in a systematic fashion [20].
In particular, it opens up the opportunity to constrain properties of nuclear matter at low den-
sities [21]. Specifically for the speed of sound, studies based on chiral EFT predict a rapid
increase with the density [22,23].

Considering the high-density regime, we first note that the chiral symmetry of the theory of
the strong interaction (Quantum Chromodynamics, QCD) is expected to be at least effectively
restored. However, the ground state is still nontrivial. In fact, already early ground-breaking
studies of the theory of the strong interaction, ranging from low-energy model studies [24–
27] to first-principles studies in the weak-coupling limit [28–34], pointed out that strong-
interaction matter at sufficiently low temperatures and high densities is a color superconduc-
tor, due to the presence of a Bardeen-Cooper-Schrieffer-type instability, see Refs. [35–46] for
reviews. In recent studies based on the functional renormalization group (fRG) approach, it
has then been found that the presence of a color-superconducting gap in the excitation spec-
trum of the quarks gives rise to a maximum in the speed of sound [23, 47, 48]. Notably, in
accordance with constraints from nuclear physics and observations [13–19], this maximum
exceeds the asymptotic value associated with the non-interacting quark gas, for both isospin-
symmetric matter and neutron-star matter.

Finally, at very high densities and under the assumption that the color-superconducting
gap does not contribute significantly to the equation of state, perturbative calculations suggest
that the speed of sound eventually approaches its asymptotic value from below [49–58], see
also Ref. [23] for a discussion.

With the present work, we aim at an analysis of the density dependence of the speed
of sound and the identification of mechanisms underlying qualitatively different scenarios. In
particular, our analysis allows to relate the size of the color-superconducting gap to the specific
value of the density at which the speed of sound exceeds its asymptotic value when the density
is decreased starting from asymptotically high densities. To this end, we first discuss the form
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of the equation of state in the presence of a color-superconducting gap in Sec. 2. In Sec. 3, we
then analyze the speed of sound in detail for the case of two massless quark flavors coming in
three colors. A generalization of our considerations to the phenomenologically most relevant
case of (2+1) flavors is in principle possible but is beyond the scope of this work. Nevertheless,
we believe that our present study already provides valuable information on general properties
of dense strong-interaction matter. A brief discussion of this aspect can be found in Sec. 4
together with our conclusions.

2 Equation of state

Throughout this work, we shall restrict ourselves to the isospin-symmetric limit at zero tem-
perature in density regimes which are governed by the presence of a color-superconducting
gap.

Our analysis of the density dependence of the speed of sound in Sec. 3 builds on an expan-
sion of the equation of state in the presence of a color-superconducting gap. In this section,
we therefore discuss this expansion on general grounds. To be more specific, in Subsec. 2.1,
we first consider the expansion of the pressure in the case where the gauge coupling is treated
as a fixed “external” parameter. In Subsec. 2.2, we then give a brief discussion in the context
of fully non-perturbative calculations.

2.1 Expansion of the equation of state

Let us start our discussion by considering the pressure in the non-interacting limit:

P = PSB =
µ4

2π2
, (2)

where µ is the quark chemical potential. Turning on the strong coupling g, a color-super-
conducting gap |∆0| is generated in the excitation spectrum of the quarks, even for infinitesi-
mally small values of g because of a Bardeen-Cooper-Schrieffer-type instability in the system
(see, e.g., Refs. [36–41,59] for detailed discussions of this aspect). Since the strong coupling
is dimensionless and we assume it to be a constant parameter for the time being, the chemical
potential is the only scale in the problem. Thus, we have |∆0| = |∆0(µ, g)| = µ f∆(g). The
dimensionless function f∆(g) depends only on the coupling g.

In the weak-coupling limit at high densities, the gap can be computed analytically. For
example, for the chirally symmetric gap (with J P = 0+) associated with pairing of the two-
flavor color-superconductor (2SC) type, it was found that [28–31,34]

|∆0| ∼ µg−5 exp

�

−
3π2

p
2g

�

. (3)

With respect to the dependence of the gap to the coupling, it should be added that Bardeen-
Cooper-Schrieffer-type gaps in the fermion spectrum are in general expected to be non-analytic
smooth functions of the coupling g. In particular, an approximation of the gap in terms of a
Taylor series about g = 0 does not exist, see, e.g., Refs. [39, 41] for reviews. Note also that
the gap is directly related to the expectation value of a quark bilinear. For the gap in Eq. (3),
for example, we have

∆a
0 ∼ 〈ψ

T
bCγ5τ2εabcψc〉 , (4)

where C is the charge-conjugation operator, τ2 is the second Pauli matrix, and, in color space,
it is summed over the totally antisymmetric tensor εabc . Note that |∆0|2 :=

∑

a |∆
a
0|

2 is a
gauge-invariant quantity.
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The gap as given in Eq. (3) only exhibits a trivial dependence on the chemical potential
which arises from the fact that µ is the only dimensionful quantity if the coupling g is treated
as a constant “external” parameter. In a non-perturbative computation which takes the scale
dependence of the coupling into account, however, the gap may acquire a non-trivial depen-
dence on the chemical potential µ since the chemical potential then has to be measured in units
of the scale set by the running of the coupling, which is ΛQCD. The latter scale is also present
in the vacuum limit. We shall come back to this below but focus on a constant coupling g for
the moment.

In a computation of the pressure (which is essentially given by the quantum effective ac-
tion Γ evaluated at its minimum), one has to take into account that the quark and gluon prop-
agators are potentially altered in the presence of a gap. However, not all gluons and quarks
are directly affected by the gap. For example, because of the underlying Anderson-Higgs-
type mechanism [60–64] associated with the symmetry-breaking pattern SU(3) → SU(2) in
color space, only five of the eight gluons effectively acquire an effective mass ∼∆0, see, e.g.,
Refs. [39, 41] for a review. This suggests that the pressure is a function of the coupling g
and the gap, P = P(g, |∆0|2). Employing now dimensional and symmetry arguments, we ar-
rive at the following expansion of the pressure in terms of the dimensionless gauge-invariant
quantity |∆̄0|2 = |∆0/µ|2:1

P = PSB

�

γ0(g) + γ1(g)|∆̄0|2 +
1
2
γ2(g)|∆̄0|4 + . . .

�

, (5)

where ∆0 is assumed to be homogeneous and

γi(g) =
µ2i

PSB

∂ i P(g, |∆0|2)
(∂ |∆0|2)i

�

�

�

�

|∆0|=0

. (6)

The dependence on the chemical potential is fully determined by the non-interacting quark
gas since the coupling is still considered to be a constant and µ-independent parameter. Note
that we assume that the pressure is an analytic function of the gap which should be the case
away from a phase transition.

The first term in the expansion (5) is the pressure in the absence of a gap. Thus, we have

γ0(g) = 1+O(g2) . (7)

The g-dependent corrections can be extracted from perturbative calculations [49–58], pro-
vided that the gauge coupling is sufficiently small.

Since the pressure is related to the effective action, the functions γi can be extracted from
correlation functions evaluated at vanishing gap. For example, γ1 can be related to the diquark
propagator and therefore to a four-quark correlation function of the following form:




(ψ̄bτ2εabcγ5Cψ̄T
c )(ψ

T
d Cγ5τ2εadeψe)

�

�

�

�

|∆0|=0
. (8)

For example, non-perturbative methods may be employed to compute γ1, see, e.g., Ref. [47].
From this study, we deduce that

γ1(g) = 2+O(g2) . (9)

1Here, we exploit the fact that we can at least formally compute the quantum effective action Γ in the presence of
an auxiliary field (e.g., associated with a quark bilinear). In the underlying path integral, this requires to introduce
a suitably chosen source term. In any case, for our present purposes, one has to choose an auxiliary field which
agrees identically with the gap at the minimum of the corresponding effective action. The effective action can then
be written as a power series of this auxiliary field. The functions γi are therefore related to correlation functions,
see below. Note that the pressure and the effective action are related: P = −Γ0/V4, where Γ0 is the effective action
evaluated at its physical minimum and V4 is the spacetime volume.
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Note that we expand the pressure in powers of |∆0|2 and not in the condensate. Therefore, γ1
is finite for g → 0. For |∆0|2, however, we have |∆0|2→ 0 for g → 0.

A computation of g-dependent corrections to the function γ1(g) is beyond the scope of the
present work. However, we can make a general statement about this function by exploiting the
fact that the ground state of strong-interaction matter is expected to be a color superconductor
at sufficiently high densities. In fact, this implies that the pressure in this density regime
should be greater than the pressure in the absence of a gap. If this was not the case at some
(high) density, then the system would undergo a phase transition to an ungapped phase (as
the ground state is associated with the phase with lowest Gibbs energy, i.e., highest pressure).
Therefore, we conclude that γ1(g) > 0 for sufficiently high densities, where ∆̄0 is small and
therefore terms of the order ∼∆̄4

0 and higher can be dropped in Eq. (5).
In general, the coefficient functions γ j in Eq. (5) are associated with correlation functions

of 4 j quarks. For example, eight-quark correlation functions are required to compute the
function γ2(g). With respect to the relevance of terms with j > 1, we note that such terms have
been observed to be subleading over a wide density range in a non-perturbative computation
of the speed of sound [47]. Of course, the relevance of these terms ultimately depends on the
density and the details of the gap (such as its size and density dependence).

We would like to add that, for γ0=1, γ1=2 and γi=0 (i > 1), we recover the approxima-
tion of the pressure which has already been used in early studies of dense strong-interaction
matter, see, e.g., Refs. [36, 65, 66]. Generally speaking, the g-independent contributions to
the γi-functions can be extracted from a one-loop approximation of the effective action of
QCD which only takes the quark loop in the presence of a gap into account, see Refs. [47,67]
for a discussion in the context of renormalization-group studies. Terms depending on the cou-
pling g are generated by, e.g., quantum corrections to the gluon polarization tensor. However,
we emphasize that a computation of the γi-functions does not necessarily require to specify the
functional form of the gap. Indeed, for the expansion (5), we have only assumed the existence
of a gap.

Let us finally comment on the dependence of the expansion (5) on the chemical potential.
Up to this point, the chemical potential is the only dimensionful scale in our analysis since we
have assumed that the coupling g is a constant parameter. Therefore, the gap must be pro-
portional to µ and the pressure (5) must be proportional to µ4, i.e., we have P/PSB = fP(g)
with a dimensionless function fP depending only on g but not on µ. A non-trivial depen-
dence on the chemical potential can be introduced by taking into account that the coupling
carries an implicit dependence on the chemical potential. For example, this may be esti-
mated by evaluating the coupling in a one-loop approximation at the chemical potential µ:
g2(µ/ΛQCD) = 1/(b0 ln(µ/ΛQCD)). From a phenomenological standpoint, this corresponds to
assuming that the typical momentum transfer in interaction processes is of the order of the
chemical potential µ. In any case, by using g2(µ/ΛQCD) in Eq. (5), we effectively replace the
“parameter” g with the dimensionless quantity µ/ΛQCD:

P = PSB

�

γ0(g(µ/ΛQCD)) + γ1(g(µ/ΛQCD))|∆̄0|2 + . . .
�

, (10)

where ∆̄0 = ∆̄0(µ, g(µ/ΛQCD)). In this way, the pressure acquires a non-trivial dependence
on the chemical potential. With respect to a computation of the speed of sound cs, we note
that the dependence on µ/ΛQCD is essential. In fact, we only have cs = 1/

p
3 (i.e., the value of

the non-interacting quark gas), if the coupling g is assumed to be independent of the chemical
potential.

2.2 Expansion of the equation of state and non-perturbative approaches

In a fully non-perturbative study, the scale dependence of the coupling is explicitly taken into
account in the computation of correlation functions. The scale in such a study is set by fix-
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ing the value of the strong coupling at a given scale which can then be translated into the
scale ΛQCD. At finite chemical potential, this implies that corrections to the equation of state
of the non-interacting quark gas in general depend on µ/ΛQCD. For the gap, which can be
computed as the expectation value of a quark bilinear, we therefore have

∆a
0 =∆

a
0(µ,µ/ΛQCD)∼ 〈ψT

bCγ5τ2εabcψc〉 . (11)

The functional form of |∆0|2 =
∑

a |∆
a
0|

2 is in general non-trivial and, at lower densities, it may
even deviate from the one resulting from Eq. (3) with the coupling g replaced by g(µ/ΛQCD),
see, e.g., Refs. [23, 26, 28, 30, 31, 39, 41, 47, 68–70] for corresponding discussions. Indeed,
towards lower densities, strong-interaction matter is effectively probed at smaller and smaller
momentum scales and therefore corrections beyond the weak-coupling limit may become rel-
evant.

With the gap at hand for a given value of the chemical potential, we can formally write the
pressure again as a power series in the gauge-invariant quantity |∆̄0|2:

P = PSB

�

γ̃0(µ/ΛQCD) + γ̃1(µ/ΛQCD)|∆̄0|2 + . . .
�

, (12)

which corresponds to Eq. (10). Again, since the ground state is expected to be a color super-
conductor, we have γ̃1 > 0, at least at sufficiently high densities where higher orders in |∆̄0|
can be dropped, see our discussion in the previous subsection. Of course, in a fully non-
perturbative study, such an expansion may be of limited interest since the pressure may be
available numerically as a function of the chemical potential µ. Still, our considerations can
be useful to analyze properties of dense strong-interaction matter, as we shall see next.

3 Speed of sound

We now employ the expansion (10) for a qualitative analysis of the density dependence of the
speed of sound. Throughout this section, we shall set γi = 0 for i > 1. This leaves us with

P ≈ PSB

�

γ0 + γ1|∆̄0|2
�

. (13)

For our qualitative study, we expect that this is sufficient. Indeed, it has been observed in
Ref. [47] that terms of order ∼ |∆̄0|4 and higher do not alter the qualitative behavior of the
speed of sound over a wide density range.

Let us now start by considering the case where the γi-functions are assumed to be inde-
pendent of g. To be specific, we use γ0(g) = 1 and γ1(g) = 2 as discussed in the previous
section. Assuming that |∆0|/µ→ 0 for µ→∞, it has been pointed out in Ref. [48] that the
speed of sound approaches its asymptotic value from above for µ →∞ (i.e., in the limit of
infinite density n). Note that these assumptions about the gap are consistent with the expected
behavior of the gap as a function of the chemical potential, at least for (very) large chemical
potentials, see, e.g., Refs. [23, 26, 28, 30, 31, 36–41, 47, 68, 69]. In any case, away from the
high-density regime, it has been found before that the gap induces an increase of the speed of
sound above the value associated with the non-interacting quark gas [23,47,48].

Next, we consider the case with γi = 0 (for i > 0), i.e., all gap-induced corrections to the
pressure are dropped. For γ0, we choose

γ0(g) = 1−
g2

2π2
+O(g3) . (14)

This leads us to the perturbative result for the pressure at leading order in the coupling g, see
Refs. [49–52]. For the coupling, we now employ the standard one-loop result evaluated at the
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Figure 1: Color-superconducting |∆0| (top panel) and |∆0|/µ (bottom panel) as a
function of the chemical potential µ as obtained from a study in the weak-coupling
limit [28, 30, 31, 39], see Eq. (16), and a recent fRG study at low and intermediate
densities [47]. The (blue) band is associated with the fRG data and results from a
variation of the regularization scheme and the experimental uncertainty in the strong
coupling.

scale set by the chemical potential:2

g2(µ/ΛQCD) =
1

b0 ln(µ/ΛQCD)
. (15)

Here, ΛQCD = Λ0 exp(−1/(b0 g2
0)) with b0 = 29/(24π2) and g0 is the value of the strong

coupling at the scale Λ0.3 Using now Eq. (1), we find that the speed of sound is smaller than
its asymptotic value for all densities considered in this work. Moreover, we observe that the
speed of sound approaches its asymptotic value from below for n→∞, see also our discussion
below. Note that this remains unchanged, even if higher-order corrections in γ0 are taken into
account [23,56–58].

For small |∆0|/µ, it may be tempting to drop corrections associated with the gap in the
expansion (10), such that the pressure is given by the pressure of the ungapped system (as
described by γ0). In fact, the gap-induced corrections vanish identically for µ→∞, provided
that ∆0/µ → 0 for µ →∞. At least at first glance, it may therefore be reasonable to drop
gap-induced corrections in a computation of the pressure. For the speed of sound, however,
the situation may be different since it is essentially given by the ratio of the first and second
derivative of the pressure with respect to the chemical potential, see Eq. (1). Even if the
gap-induced terms to the pressure may appear small, their derivatives may still yield sizeable
contributions to the speed of sound. To analyze this aspect, we choose γ0 as given in Eq. (14)
and γ1 = 2. This corresponds to combining the two cases discussed above. Moreover, we now

2Of course, this is not fully consistent since the correction ∼ g2 in Eq. (14) is generated by a two-loop diagram.
For our qualitative analysis of the speed of sound, however, this is of no relevance.

3In our numerical calculations, we choose g2
0/(4π) ≈ 0.179 and Λ0 = 10 GeV [71]. This yields

ΛQCD ≈ 0.265GeV. In order to avoid that our analysis is spoilt by the Landau pole associated with the scale ΛQCD,
we ensure that the chemical potential is (sufficiently) greater than the scale ΛQCD in our computations.
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Figure 2: Speed of sound (squared) as a function of the baryon density n
in units of the nuclear saturation density n0 for different values ∆⋆ of the gap
at n/n0 = 10, ∆⋆ = |∆0(n/n0 = 10)|. For comparison, it has been found
that |∆0| ≈ 0.07 . . . 0.16 GeV at n/n0 ≈ 5 in an early low-energy model study [24].
Note that the gap in this type of model studies increases with increasing densities.
The dashed horizontal line corresponds to the speed of sound squared of the non-
interacting quark gas. The blue dashed line (perturbative QCD, pQCD) is the speed
of sound as obtained by choosing γ0 as given in Eq. (14) and setting γi = 0 for i > 0.
Top panel: Speed of sound (squared) as obtained by using a gap with a functional
form as found in the weak-coupling limit, see Eq. (16). The parameter s0 has been
tuned such that ∆⋆ = 0.02 GeV,0.16 GeV,0.21 GeV,0.30 GeV (∆⋆ = 0.02GeV corre-
sponds to s0 = 1). Bottom panel: Speed of sound (squared) as obtained by employing
a gap with a functional form as found in a recent fRG calculation [47]. To obtain the
different values for ∆⋆, we have simply rescaled the gap, as also done for the gap in
the weak-coupling limit.
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have to specify the functional form of the gap in Eq. (13). Since the precise functional form
of the gap over a wide density range is still unknown, we employ the results for the gap from
two different calculations: the gap from a calculation in the weak-coupling limit [30, 31, 39]
and the gap from a recent fRG study at low and intermediate densities [47], where strong-
interaction matter is expected to enter the strong-coupling regime. With these results for the
gap at hand, we can then gain a better understanding of how the size of the gap and its density
dependence affects the speed of sound.

In the weak-coupling limit, the gap can be computed analytically [30,31,39]:

|∆0|= sµg−5 exp

�

−
3π2

p
2g

�

, (16)

where s=512π4 exp(−(4+π2)/8)s0. Here, we have introduced a dimensionless parameter s0
which allows us to vary the size of the gap. For s0 = 1, we recover the gap found in Refs. [30,
31,39]. Note that a variation of s0 only slightly affects the density dependence of the gap.

The results for the gap from the aforementioned fRG study are only available in numerical
form [47]. In Fig. 1, we show the fRG results for the gap as a function of the chemical potential
together with the results in the weak-coupling limit.4 Note that, at low densities, the gaps
found in recent fRG studies are consistent with those found in conventional low-energy model
studies [23, 24, 47]. Still, in our computations below, we shall also vary the size of the gap
computed in Ref. [47] by simply rescaling it with a constant prefactor in order to analyze how
the size of the gap affects the speed of sound in this case.

In Fig. 2, we present our results for the speed of sound (squared) as a function of the baryon
density n = (∂ P/∂ µ)/3 as obtained from choosing γ0 as given in Eq. (14) and γ1 = 2. The
results from a calculation with the gap (16) is shown in the top panel of this figure whereas
the results from a calculation based on the gap from a recent fRG study can be found in the
bottom panel. We observe that the qualitative behavior of the speed of sound as a function of
the density is the same in both cases. Indeed, the speed of sound approaches its asymptotic
value associated with the non-interacting quark gas from below for n→∞. Moreover, starting
at (very) high densities, we find that the speed of sound first decreases in both cases when the
density is lowered and remains close to the speed of sound as obtained from a computation
in the absence of a gap (associated with γ2 = 0). Importantly, we also observe that the effect
of a color-superconducting gap on the speed of sound becomes continuously stronger with
decreasing density and eventually leads to the emergence of a local minimum in the speed of
sound at n= nmin.

4From Fig. 1 we deduce that the gap obtained in the weak-coupling limit, see Eq. (16), and the one obtained
from the fRG study presented in Ref. [47] do not agree as a function of the chemical potential. This difference can
be traced back to the mechanisms which underly the generation of the gap in the weak-coupling calculation and
the ones which are at work in the fRG study. To be specific, the weak-coupling calculation relies on the assumptions
that the coupling is a constant parameter and that the strength of the coupling is small such that the formation
of the gap is not triggered by gluon-induced quark interactions. The presence of a Cooper instability and the
associated BCS (Bardeen-Cooper-Schrieffer) mechanism are therefore essential and underlie the formation of the
gap in this case. However, the assumptions entering the weak-coupling calculation are effectively only realized at
(very) high densities, i.e., for µ≫ ΛQCD. Here, ΛQCD only serves as a rough estimate for the scale at which the gauge
coupling becomes strong. In the fRG study presented in Ref. [47], the dynamics is driven by the fact that, especially
towards the lower end of the density range considered in this work, the gauge coupling can already become strong
enough in the RG flow to trigger the formation of a gap in the quark excitation spectrum by itself. This is similar to
the case of chiral symmetry breaking at zero density which is trigged by the gauge coupling becoming sufficiently
strong, see, e.g., Ref. [72] for a review. Of course, because of the Cooper instability, the BCS mechanism is also
present in the fRG study but is not the only driving “force” over a significant density range. A detailed discussion
of the competition of these two mechanisms for the generation of the gap and the consequences for its density
dependence will be presented elsewhere. Note that our analytic study of the density dependence of the speed of
sound presented below does not rely on these details underlying the scaling behavior of the gap.
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Figure 3: Crossing density n∗cs

(density at which the speed of sound crosses the line
associated with the speed of sound of the non-interacting quark gas) as a function
of |∆0(n∗cs

)| (value of the gap at the crossing density). The red line is associated with
the calculation employing a functional form of the gap as found in the weak-coupling
limit, whereas the blue dashed line corresponds to the calculations employing a gap
with a functional form as found in a recent fRG calculation, see main text for details.
The dots are associated with the dashed vertical lines in Fig. 2.

In the spirit of our present study, this minimum may be used to divide strong-interaction
matter into different regimes. For n > nmin, we find that gap-induced corrections become
subleading and may be dropped, not only in computations of the pressure but also in com-
putations of the speed of sound. However, for n < nmin, the gap leaves a clear imprint in the
speed of sound. In fact, below nmin, we find that gap-induced corrections lead to a qualitative
change of the density dependence of the speed of sound.5 To be more specific, we observe
an increase of the speed of sound towards lower densities such that it eventually exceeds its
asymptotic value at the “crossing density” n∗cs

, i.e., the density at which the speed of sound
crosses the line associated with the speed of sound of the non-interacting quark gas, see dots
and vertical lines in Fig. 2. However, the actual value of this characteristic quantity depends
on the density dependence of the gap and its size as measured by the parameter ∆⋆, which is
defined to be the size of the gap at n/n0 = 10, ∆⋆ = |∆0(n/n0=10)|. In our calculations, we
vary ∆⋆ by a simple global rescaling of the gap with a constant parameter, see, e.g., Eq. (16).

In Fig. 3, we show the crossing density n∗cs
as a function of |∆0(n∗cs

)| which is the value of
the gap at n = n∗cs

. Loosely speaking, we observe that a larger value of the crossing density
n∗cs

comes along with a larger value of the gap at the crossing density. Thus, for a large color-
superconducting gap, we expect the speed of sound to exceed its asymptotic limit already at
high densities. Interestingly, the crossing density n∗cs

is not only sensitive to the size of the
gap. Our results suggest that this quantity is also (very) sensitive to the functional form of the

5The scale nmin only represents a rough estimate for the lower bound of the actual density above which gap-
induced effects may be safely neglected in calculations of the speed of sound. It is not a rigorous scale on the basis
of which the relevance of gap effects can be estimated in terms of power-counting arguments in the spirit of, e.g.,
effective field theories. Indeed, coming from high densities, gap effects can already be sizeable at n = nmin (see
Fig. 2) but they have not yet changed the slope of the speed of sound as a function of the density.
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Figure 4: Size of the leading-order gap-induced correction to the pressure relative
to the size of the leading-order perturbative correction. The solid lines are associ-
ated with calculations employing the functional form of the gap found in the weak-
coupling limit whereas the dashed lines are associated with calculations employing
the functional form of the gap found in a recent fRG study. As discussed in the main
text, the gaps have been rescaled to estimate the effect of the size of the gap which
as parametrized by the parameter ∆⋆ (size of the gap at n/n0 = 10).

gap, i.e., its density dependence. This can be deduced from a comparison of our results for
a gap with a functional form as found in the weak-coupling limit with those for a gap with a
functional form as found in a recent fRG study, see Figs. 2 and 3.

The existence of the crossing density can indeed be related to the properties of the color-
superconducting gap, such as its size and its dependence on the chemical potential (or density).
At least qualitatively, this can be seen by inserting the expansion (10) into the definition of the
speed of sound, see Eq. (1). Taking into account only terms up to order ∼ |∆̄0|2, we find

c2
s =

1
3
+
π2

6µ3

∂

∂ µ
PSB

�

γ0 − 1+ γ1|∆̄0|2
�

+ . . . (17)

Here, we have assumed that corrections to the non-interacting quark gas are sufficiently small
such that the denominator in Eq. (1) can be approximated by the expression for the non-
interacting quark gas. From Eq. (17), we can read off that the speed of sound exceeds its
asymptotic value, provided that

∂

∂ µ
PSBγ1|∆̄0|2 >

∂

∂ µ
PSB (1− γ0) . (18)

For γ0 = 1, it immediately follows that c2
s > 1/3, provided that PSBγ1|∆̄0|2 increases with the

chemical potential, see our discussion above and Ref. [48]. Using the result for γ0 at leading
order in the strong coupling, see Eq. (14), we find that

PSB (1− γ0)∼
µ4

ln(µ/ΛQCD)
, (19)

11

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.015


SciPost Phys. Core 7, 015 (2024)

which determines the µ-dependence of the right-hand side of Eq. (18). The dependence of
the left-hand side of Eq. (18) on the chemical potential depends on the µ-dependence of
the gap. In order to quantify the latter within the considered range of chemical potentials
(0.5 GeV ≲ µ ≲ 1.5GeV), we assign an effective scaling exponent σ to the gap, |∆0| ∼ µσ.
This leads us to

PSBγ1|∆̄0|2 ∼ µ2(1+σ) . (20)

A fit to the numerical data yieldsσ ≈ −0.19 for the gap obtained in the weak-coupling limit and
σ ≈ 0.16 for the gap computed in the fRG study. From Eq. (17), we can now in principle obtain
an estimate for µ∗cs

, i.e., the value of the chemical potential at which the speed of sound exceeds

its asymptotic value.6 In any case, these simple considerations already illustrate that µ∗cs
(and

therefore also the crossing density n∗cs
) depends significantly on two properties of the color-

superconducting gap: the functional form of the µ-dependence of the gap as measured by its
first derivative with respect to µ and the size of the gap which effectively appears as a constant
of proportionality on the right-hand side of Eq. (20).

In Fig. 3, we indeed observe that the functional form of the gap clearly affects the value of
the crossing density n∗cs

. To be specific, for a given value of the crossing density n∗cs
, the value of

the gap at the crossing density is found to be (significantly) smaller in the calculations employ-
ing the functional form of the gap found in the weak-coupling limit than in the calculations
employing the functional form of the gap found in the fRG study, at least for n∗cs

≲ 40. How-
ever, we also observe that the functional form of the gap becomes less relevant in “scenarios”
with large gaps.

The relevance of the functional form of the gap can also be illustrated by considering the
pressure, see Eq. (12). To this end, we compare the leading-order gap-induced correction to
the pressure of the non-interacting quark gas with the leading-order perturbative correction
to the pressure of the non-interacting quark gas, see Fig. 4. Of course, the relevance of the
gap-induced corrections to the pressure increases trivially with the size of the gap. However,
in general, this does not necessarily entail a qualitative change of the density scaling of the
speed of sound compared to calculations where gap-induced corrections are not taken into
account. Also, comparatively small gap-induced corrections to the pressure may still lead to
a qualitative change of the speed of sound as a function of the density, depending on the
functional form of the gap. To be concrete, let us consider the green line associated with the
crossing density n∗cs

≈ 8 and |∆0(n∗cs
)| ≈ 0.16GeV in Fig. 3. For this green line, which has

been computed by employing the functional form of the gap found in the weak-coupling limit,
we find that the gap-induced corrections to the pressure are smaller than the perturbative
corrections by a factor of four for n ≈ n∗cs

. At n/n0 ≈ 28 (where the corresponding speed of
sound assumes a local minimum, see green line in the top panel of Fig. 2), the gap-induced
corrections to the pressure are already smaller than the perturbative corrections by a factor
of six.7 Nevertheless, the gap-induced corrections lead to a qualitative change of the density

6Our considerations can also be used to obtain a simple estimate for the scaling behavior of the speed of sound
above the crossing density (in a regime where the scaling of the gap can be described by the exponent σ). Indeed,
assuming µ∼ n1/3, we find

c2
s =

1
3
+ c̄0(1+σ)n

2(σ−1)
3 −

c̄1

ln(c̄2n
1
3 )

,

where c̄0, c̄1, c̄2 are positive constants and c̄2n
1
3 > 1 within the validity range of this estimate. This “scaling law”

illustrates the importance of the functional form of the gap (as measured by the exponent σ). Note that σ < −1
disfavors the emergence of a local minimum in the speed of sound as well as the appearance of a maximum with
c2

s > 1/3 towards lower densities, at least at this order of the expansion. Moreover, by requiring that |∆0|/µ→ 0
for µ→∞, it follows that σ < 1. We add that gap-induced corrections to the equation of state may potentially
also exhibit a logarithmic scaling. For example, we may have |∆0| ∼ µσ̄ lnµ (σ̄ < 1). Then, the power-law scaling
of the gap-induced term in the expression for c2

s is altered by a logarithmic correction.
7Note that, at such high densities, the perturbative correction ∼ g2 corresponds to ∼ 30% of the pressure of the
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dependence of the speed of sound. Thus, even if the gap-induced corrections to the pressure
appear small, derivatives of the gap with respect to the chemical potential µ (as they enter the
speed of sound) can still be sizeable because of its nontrivial dependence on µ.

In this work, we restrict ourselves to densities where the ground state is not governed by
spontaneous chiral symmetry breaking and the quarks remain massless. However, in princi-
ple, the quarks come with a finite current quark mass which we have also not included in
our analysis. In addition to quark masses, which break the chiral symmetry, there are also
dynamically generated in-medium self-energy corrections to the quarks, which do not break
the chiral symmetry and come with a prefactor ∼ g2µ2 (at leading order in the coupling), see,
e.g., Refs. [49–52]. Such self-energy corrections appear in the coefficients γi of our expan-
sion (10) of the equation of state. For example, quark self-energy corrections are taken into
account in the perturbative two-loop result for the pressure which is included in the coeffi-
cient γ0, see Eq. (14). The corresponding g2-correction in the coefficient γ1 will be presented
elsewhere [73]. With respect to the relevance of our analysis for astrophysical applications, we
also would like to briefly comment on the effect of a finite (constant) current quark mass mq.
First of all, we note that an inclusion of such a mass in our analysis would generate new terms
in the expansion (10) of the equation of state. Indeed, the presence of a current quark mass
potentially gives rise to terms ∼ m2

qµ
2 and ∼ m2

q|∆0|2 in this expansion, which correspond

to the gap-induced term ∼ µ2|∆0|2. Here, we ignore higher-order terms in mq as we also
dropped the corresponding higher-order terms in |∆0| in our considerations above. Assum-
ing now that mq is small compared to the chemical potential and also small compared to the
gap, we expect that mq-induced corrections do not alter our general observations regarding
the relevance of gap-induced corrections in the speed of sound, at least in the density range
considered in this work.

We close by adding that our observations are in accordance with a non-perturbative study
of the thermodynamics of dense strong-interaction matter as presented in Ref. [23], where RG
flows starting from the QCD action are considered. There, the pressure computed in the pres-
ence of a gap at high densities is found to be consistent with the one from calculations which
do not take into account a color-superconducting gap. However, towards lower densities, the
presence of a gap has also been found to make a significant difference and eventually leads
to an emergence of a maximum in the speed of sound which exceeds its asymptotic value.
Interestingly, in that work, it was also observed that results from nonperturbative RG calcu-
lations, where the color-superconducting gap in the quark excitation spectrum has not been
taken into account, do not exhibit an increase of the speed of sound above its value in the non-
interacting limit when the density is decreased starting from (very) high densities. We close
by noting that the existence of an increase of the speed of sound above the value associated
with the non-interacting quark gas has also been observed in low-energy models, where QCD
matter is studied coming from low densities (see, e.g., Refs. [74–78]) rather than from high
densities as done in our work.

4 Conclusions

Our analysis of the speed of sound in dense strong-interaction matter with two massless quark
flavors builds on an expansion of the equation of state in terms of the color-superconducting
gap. We have discussed this expansion in detail. For example, we have pointed out that the
zeroth-order term of this expansion can be directly related to the pressure as, e.g., computed
in perturbative studies of dense strong-interaction matter. The first gap-induced term in this

non-interacting quarks. Since the gap-induced correction corresponds to∼ 16% of the perturbative correction, the
gap-induced correction to the pressure corresponds to only ∼ 5% of the pressure of the non-interacting quark gas.
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expansion can be constrained by the fact that strong-interaction matter is expected to be a
superconductor at sufficiently high densities. Gap-induced corrections of even higher order in
this expansion appear to be parametrically suppressed at high densities.

Starting in the infinite-density limit, our analysis based on the aforementioned expan-
sion of the pressure shows that the speed of sound first decreases, even in the presence of a
color-superconducting gap. This observation is in agreement with first-principles studies of
dense strong-interaction matter where such a gap in the excitation spectrum of the quarks
has not been taken into account, see, e.g., Refs. [23, 53–58]. However, towards lower den-
sities, the gap-induced corrections become increasingly important and lead to the emergence
of a local minimum in the speed of sound at high densities. Above the density associated
with this minimum, gap-induced corrections are small and our analysis even suggests that
the corresponding contributions to the equation of state may be safely neglected in studies of
thermodynamic properties of dense strong-interaction matter. Below the density associated
with this minimum, gap-induced corrections to the equation of state become significant. In
fact, these corrections induce an increase of the speed of sound when the density is further
decreased such that the speed of sound eventually crosses the line associated with the speed
of sound of the non-interacting quark gas. Taking into account results from studies based on
chiral EFT interactions at low densities [22, 23], the existence of such a “crossing density”
suggests the existence of a maximum in the speed of sound, in accordance with Ref. [23]. Of
course, a quantitative determination of the position of this maximum is very challenging as the
dynamics for n/n0 < 10 is expected to be governed by a huge variety of interaction channels
(including vector channels), which become equally relevant towards the nucleonic low-density
regime [23], see also Refs. [74, 75, 79–86]. With respect to our expansion of the equation of
state, we note that higher-order corrections become relevant in this low-density regime. In
particular, the computation of the coefficients γi may require non-perturbative methods.

Interestingly, we have found that the actual values of the crossing density and the density
associated with the aforementioned local minimum in the speed of sound are not predomi-
nantly determined by the size of the gap but depend also significantly on the functional form
of the gap (i.e., its dependence on the chemical potential). In particular, the value of the
crossing density can be analytically related to the first derivative of the gap with respect to
the chemical potential. Thus, even if the gap-induced contributions to the pressure may ap-
pear small, derivatives of the gap with respect to the chemical potential may be sizeable and
therefore significantly affect the density dependence of the speed of sound. This observation
is confirmed by our numerical studies.

With respect to astrophysical applications, it should be added that strange quarks may
become relevant in the density regime considered in this work. In this regard, we would
like to add that the mechanism, which pushes the speed of sound above its value in the non-
interacting limit when the density is decreased, may be very general and not only a special
feature of color superconductivity of the 2SC type discussed here. The same mechanism may
also be at work if the gap in the quark excitation spectrum is of another type, such as the
color-flavor locking (CFL) type in QCD with 2+ 1 quark flavors. In fact, the expansion (5) of
the pressure should assume the same functional form at least at leading order, i.e., the leading
order gap-dependent correction should be also of the form ∼ µ2|∆0|2, where |∆0| now refers
to, e.g., the CFL gap.8 If the chemical potential dependence of this gap is similar to the one of
the 2SC gap considered here, then also this gap potentially leads to an increase of the speed
of sound above its value in the non-interacting limit, see also the discussion in the appendix
of Ref. [48].

8From a thermodynamic standpoint, searching for the ground state corresponds to searching for the phase with
highest pressure. Thus, if the ground state is governed by the presence of a gap, then the gap induces an increase
of the pressure relative to the pressure in the absence of the gap.
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With respect to the maximum in the speed of sound, we add that constraints from neutron-
star masses also strongly support the existence of a global maximum in the speed of sound in
neutron-rich matter [13–19]. In particular, the existence of such a maximum in the speed of
sound and a local minimum at high densities has already been discussed in an analysis of con-
straints from astrophysical observations in Ref. [13]. It is also interesting to speculate whether
it is possible to use constraints on the speed of sound from nuclear physics and observations
to constrain the properties of color-superconducting matter. To be more specific, constraints
on the speed of sound from observations provide estimates for lower bounds of the crossing
density [17–19]. Since our present study suggests that this density can be related to the size
of the gap, constraints on the crossing density allow to draw conclusions on the size of the
gap in dense strong-interaction matter, see Fig. 3. For example, according to our present anal-
ysis, a crossing density of 8n0 requires that the color-superconducting gap assumes values of
about 160 MeV in this density regime.

Of course, a quantitative computation of, e.g., the crossing density and the associated size
of the gap requires the inclusion of higher-order corrections in our expansion of the pressure.
However, this is beyond the scope of this work. Our present study rather aims at a better
understanding of the mechanisms determining the density dependence of the speed of sound
in dense strong-interaction matter. Still, we believe that our present analysis already adds to
our understanding of the dynamics underlying strong-interaction matter at high densities.
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