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Polynomial computational complexity of matrix elements
of finite-rank-generated single-particle operators

in products of finite bosonic states
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Abstract

It is known that computing the permanent of the matrix 1+ A, where A is a finite-rank
matrix, requires a number of operations polynomial in the matrix size. Motivated by
the boson-sampling proposal of restricted quantum computation, I extend this result to
a generalization of the matrix permanent: An expectation value in a product of a large
number of identical bosonic states with a bounded number of bosons. This result com-
plements earlier studies on the computational complexity in boson sampling and related
setups. The proposed technique based on the Gaussian averaging is equally applicable
to bosonic and fermionic systems. This also allows us to improve an earlier polynomial
complexity estimate for the fermionic version of the same problem.
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1 Introduction

Potential implications for quantum computing motivated an interest in computational com-
plexity of quantum-mechanical amplitudes in many-particle systems. The best known exam-
ple is the boson-sampling proposal in Refs. [1,2]: since the multi-particle amplitudes for non-
interacting bosons are given by permanents, which are presumably hard to compute [3], it
was conjectured that boson-sampling experiments are hard to model on classical computers
(the connection between the two complexities is not straightforward though, since sampling
is not equivalent to computing probabilities).

The boson-sampling proposal raised two interesting questions of general relevance to quan-
tum information theory. The first one was the origin of computational complexity in appar-
ently simple non-interacting quantum mechanics. The second one was an apparent asymmetry
between bosons and fermions (for which a similar setup produced an easily computable de-
terminant).

Those questions were addressed and mainly answered in Refs. [4,5]. There, we extended
the boson-sampling construction to a wider class of multi-particle product states, either bosonic
or fermionic. We further analyzed the computational complexity of matrix elements of a gen-
eral non-interacting evolution in such product states. The examples considered in those works
suggest that the #P complexity class of computing a matrix permanent may also be the general
complexity class for this problem, except in very special cases (e.g., for Gaussian states). In
other words, the source of computational complexity is the quantum (non-Gaussian) nature
of the underlying states. In this respect, bosons and fermions behave similarly in terms of
computational complexity.

It was also shown in Ref. [5] that, for generating computational complexity, the noninter-
acting evolution must be sufficiently complex, involving a large number of degrees of freedom.
In contrast, a finite-rank evolution (defined as evolution operators of the form 1+A, where A is
a finite-rank matrix) does not generate amplitudes of high computational complexity. Instead,
such operators only have matrix elements (between multi-particle product states) computable
in polynomial time. As a particular case, the lemma about the polynomial computability of
the permanent Per(1+ A) with a finite-rank matrix A was proven [2,5].

The results of Ref. [5] on the finite-rank evolution missed however one case: that of a
general bosonic product state. In this paper, I rectify this omission and prove the polynomial
computability of the expectation value of the non-interacting multiplicative extension of the
operator 1+A with a finite-rank matrix A in any “finite” bosonic product state (a “finite” state
means here that each of the factors has a bounded number of particles). The number of
operations required for such a computation is estimated as O(N2k+1), where k is the rank of
A. This estimate coincides with the particular case of the permanent proven in Ref. [5].

The proof generalizes that in Ref. [5] by explicitly introducing Gaussian averaging of aux-
iliary polynomials. This way it can also be viewed as a generalization of the “permanent as an
inner product” construction of Refs. [6,7].

The proof may be performed in parallel for bosons and fermions. As a byproduct, it also
allows us to improve the polynomial estimate for the fermionic case. In Ref. [5], the calculation
of the finite-rank-evolution matrix elements was estimated to require O(N2k) operations, and
now we replace this estimate by O(N) (independent of the rank k, assuming k being a finite
number which does not grow with N).

The paper is organized as follows. In Section 2, I formulate and prove the main results. In
Section 3, I comment on the application of the method to the simplest examples: the matrix
permanent in the bosonic case and the determinant in the fermionic case. Finally, Section 4
contains concluding remarks and comments.
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2 Construction and results

2.1 Definition: A multiplicative extension of a single-particle operator

Let U be a single-particle operator. We denote by P(U) its multiplicative extension in the bosonic
(or fermionic) Fock space. It is defined by its action on the standard basis in the Fock space:

P(U)a†
j1

. . . a†
jk
|⋆〉=

∑

i1...ik

Ui1, j1 . . . Uik , jk a†
i1

. . . a†
ik
|⋆〉 , (1)

where |⋆〉 is the vacuum (zero-particle) state and a†
i are the bosonic (or fermionic, respectively)

creation operators.

2.2 Multiplicative extension as an evolution operator

One can easily prove the following property: if U is invertible, then

P(U) = exp

 

∑

i j

a†
i (ln U)i ja j

!

. (2)

This relation is not used in our contruction below, but it explains the physical meaning of
the multiplicative extension P(U): if U is a single-particle evolution operator, then P(U) is
the corresponding noninteracting evolution of the multi-particle states. It is valid equally for
bosons and fermions and can be proven by directly commuting the right-hand side of Eq. (2)
with the creation operators in the definition (1).

2.3 Lemma: Multiplicative extension as a normal-ordered exponent

P(1+ A) =: exp
�

∑

i j

a†
i Ai ja j

�

: , (3)

where :: is the normal ordering: All the creation operators are on the left and all the annihi-
lation operators on the right. This relation is also equally valid for bosons and fermions and
can be proven by directly verifying the definition (1).

2.4 Definition: Gaussian averaging of a polynomial

For any polynomial f (z1, . . . , zk, z∗1, . . . , z∗k) define its Gaussian average as

S( f ) =

∫

� k
∏

i=1

e−ziz
∗
i dzi dz∗i

�

f (z1, . . . , zk, z∗1, . . . , z∗k) , (4)

where the integration measure dzi dz∗i over the complex conjugate variables is normalized so
that

∫

e−zz∗dz dz∗ zm(z∗)n = δm,nm! . (5)

This construction will be used in relation to the bosonic case below. For the fermionic case,
exactly the same construction will be applied with the independent Grassmann (anticommut-
ing) variables zi and z∗i assuming the standard rules of the Grassmann-variable calculus (with
n and m limited to be either 0 or 1) [8].
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2.5 Lemma: Finite-rank evolution as a Gaussian average

Let A be a matrix of rank k,

Ai j =
k
∑

α=1

uiαvα j . (6)

Then
P(1+ A) = S

�

e
∑

α,i zαuiαa†
i e
∑

α, j z∗αvα j a j
�

. (7)

It can be proven either by comparing the expansions of Eqs. (7) and (3) term by term or,
more elegantly, by decoupling the product uv in the exponent of the right-hand side of Eq. (3)
by Gaussian integration (known to physicists as Hubbard-Stratonovich transformation). This
statement, similarly to the previous lemmas, holds for both bosonic and fermionic cases, with
the only difference that the variables zi and z∗i are commuting in the bosonic case and anti-
commuting (Grassmann) in the fermionic case.

2.6 Definition: Finite bosonic and fermionic states

We call a bosonic or fermionic state finite, if (A) it is a state in a Fock space built on a finite
number of single-particle states and (B) in the bosonic case, the total number of particles
in this state is bounded. A finite state has only a finite number of nonzero components in
the standard basis [used, e.g., in Eq.(1)]. The condition (B) only makes sense for bosonic
states: Any fermionic state built on a finite-number of single-particle states automatically has
a bounded number of particles because of the Pauli principle (not more than one particle per
single-particle state).

2.7 Lemma: Expectation value of a finite-rank evolution matrix in a product
state via Gaussian averaging of auxiliary polynomials

Consider a d-dimensional single-particle space L1 (d is finite). Let us denote the correspond-
ing bosonic or fermionic Fock (multi-particle) space F1. Let Ψ1 ∈ F1 be a finite state (it is
automatically finite in the fermionic case). Now take N identical copies of L1. Then we can
consider the (Nd)-dimensional single-particle space

L = L1 ⊕ . . .⊕ LN , (8)

where each Lµ in the sum is identical to L1. The corresponding Fock space is the product

F = F1 ⊗ . . .⊗ FN , (9)

of N identical factors. The state Ψ1 may also be replicated into the product state in F ,

Ψ = Ψ1 ⊗ . . .⊗ΨN , (10)

again with N identical states in the Fock spaces Fµ.
Let A be a square matrix of size Nd of finite rank k and let uiα and vα j be defined via its de-

composition (6). Introduce the decomposition of the corresponding creation and annihilation
operators in the spaces Lµ,

û†
α =

Nd
∑

i=1

uiαa†
i =

N
∑

µ=1

û†
µα ,

v̂α =
Nd
∑

j=1

vα ja j =
N
∑

µ=1

v̂µα ,

(11)

4

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.022


SciPost Phys. Core 7, 022 (2024)

which defines operators û†
µα and v̂µα acting in the corresponding spaces Lµ.

Then we have the following result for the expectation value

〈Ψ| P(1+ A) |Ψ〉= S

 

N
∏

µ=1

fµ(z1, . . . , zk, z∗1, . . . , z∗k)

!

, (12)

where

fµ(z1, . . . , zk, z∗1, . . . , z∗k) =



Ψµ
�

�exp

� k
∑

α=1

û†
µαzα

�

exp

� k
∑

α=1

v̂µαz∗α

�

�

�Ψµ
�

. (13)

As in the previous Lemma, the variables zi and z∗i are taken to be commuting in the bosonic
case and anticommuting (Grassmann) in the fermionic case.

Proof: A direct consequence of the previous Lemma.

2.8 Main result: Polynomial complexity for finite-rank evolution, bosonic case

The expectation value (12) in the above Lemma, in the bosonic case, is computable in O(N2k+1)
elementary operations.

Proof:
(1) The number of particles in each of the states

�

�Ψµ
�

is bounded by a small number
independent of N , therefore Eq. (13) gives a polynomial of small degree for each µ (only
a small number of terms in the expansion of the exponents need to be taken into account).
This polynomial is computable in a finite number of operations for each µ, therefore the total
number of operations for computing all the polynomials (13) is O(N) and may be neglected
in the total complexity estimate.

(2) Computing the expectation value (12) involves multiplying all the polynomials (13)
and taking the “diagonal” coefficients of the result [with matching degrees of zα and z∗α, ac-
cording to Eq. (5)]. The degree of the product polynomial in Eq. (12) is bounded by the total
number of particles and is therefore O(N). The number of the coefficients of such a polyno-
mial is O(N2k). For each of the N multiplications, we need to update each of those coefficients,
which gives the total estimate on the number of operations O(N2k+1).

2.9 Polynomial complexity for finite-rank evolution, fermionic case

The expectation value (12) in the above Lemma, in the fermionic case, is computable in O(N)
elementary operations.

The proof proceeds exactly as in the bosonic case, with the only difference that the degree
of the product polynomial in Eq. (12) is bounded by 2k, because it can be at most of degree
one in each of the anticommuting variables zα and z∗α. This number does not grow with N and
therefore scales as O(1). Thus the calculation of the product of N terms in Eq. (12) can be
done in O(N) operations.

3 Examples: Permanent and determinant

The simplest cases where our construction is applicable are permanent (for bosons) and de-
terminant (for fermions).

3.1 Bosonic case: Permanent

In Ref. [5], we considered the single-boson state (with d = 1)

|Ψ1〉= a†|⋆〉 . (14)
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The corresponding expectation value is the permanent,

〈Ψ|P(1+ A)|Ψ〉= Per(1+ A) . (15)

In this case, Eq. (13) gives

fµ(z1, . . . , zk, z∗1, . . . , z∗k) = 1+

� k
∑

α=1

uµαzα

�� k
∑

α=1

vαµz
∗
α

�

, (16)

which reproduces the formula in Ref. [5].

3.2 Fermionic case: Determinant

In the case of determinant (the simplest example in the fermionic case), our complexity esti-
mate is consistent with the so-called Sylvester’s determinant theorem:

det(1+ UV ) = det(1+ V U) . (17)

While the left-hand side is a determinant of size N , the right-hand side only has size k, the rank
of the matrix A = UV . Therefore, the calculation only requires O(N) operations to compute
the matrix in the right-hand side (assuming k is small and does not grow with N).

4 Conclusion

To summarize, this paper proves the polynomial complexity of the expectation value
〈Ψ|P(1 + A)|Ψ〉 for a finite-rank matrix A and a finite product state |Ψ〉. It completes and
elucidates the analysis of Ref. [5], further illustrating the origin of computational complexity
in quantum systems.

The reasoning of the bosonic theorem from Section 2.8 fully parallels that of Ref. [5] for
the case of the matrix permanent and results in the same complexity estimate O(N2k+1) for a
wider class of bosonic states. In Ref. [5], the Gaussian-average construction was not spelled
out, but could only be guessed from the formulas. Now we could use it explicitly and extend
it to a wider class of states. It can also be viewed as a generalization of the inner-product
formula for the permanent of a matrix product known from Refs. [6, 7]: if we only take the
higher-order terms in u and v from Eq. (16), then we reproduce the inner-product formulas
from those works.

In the fermionic case, the new calculation algorithm gives a significant speed up as com-
pared to Ref. [5]: O(N) versus O(N2k) operations, which also marks a difference between
the bosonic and fermionic calculations. This difference can, however, be easily understood on
physical grounds. Calculating the matrix elements in our finite-rank problem involves keeping
track of multi-particle states in the basis defined by the coefficients u and v. For fermions, it
amounts to manipulating k fermionic levels, which gives rise to 2k multi-particle states (which
is O(1) in terms of growing with N). For bosons, the the same k single-particle levels may
be occupied with different numbers of particles, and the number of states grows as N k, hence
one needs a larger number of operations to keep track of those states. Nevertheless, we can
still speak of a certain symmetry between bosonic and fermionic problems, since both of them
lead to a polynomial computational complexity.

Finally, we considered identical factor states in Eq. (10) for simplicity only. The results
of the paper trivially extend to the case of product states with different factors in Eqs. (8)–
(10), provided the number of particles in each of them is bounded uniformly and indepen-
dently of N . An extension to the case of different bra- and ket-states (to matrix elements
〈Ψ(a)|P(1+ A)|Ψ(b)〉) is equally trivial, under the same condition.
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