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Noise-induced transport in the Aubry-André-Harper model
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Abstract

We study quantum transport in a quasiperiodic Aubry-André-Harper (AAH) model in-
duced by the coupling of the system to a Markovian heat bath. We find that coupling the
heat bath locally does not affect transport in the delocalized and critical phases, while
it induces logarithmic transport in the localized phase. Increasing the number of cou-
pled sites at the central region introduces a transient diffusive regime, which crosses
over to logarithmic transport in the localized phase and in the delocalized regime to
ballistic transport. On the other hand, when the heat bath is coupled to equally spaced
sites of the system, we observe a crossover from ballistic and logarithmic transport to
diffusion in the delocalized and localized regimes, respectively. We propose a classical
master equation, which in the localized phase, captures our numerical observations for
both coupling configurations on a qualitative level and for some parameters, even on a
quantitative level. Using the classical picture, we show that the crossover to diffusion
occurs at a time that increases exponentially with the spacing between the coupled sites,
and the resulting diffusion constant decreases exponentially with the spacing.
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1 Introduction

Non-equilibrium dynamics of quantum systems has been a topic of great interest in condensed
matter and statistical physics, particularly concerning the study of quantum transport [1–8].
While transport in generic many-body systems is typically diffusive, diffusion of a quantum
particle can be suppressed by a random disordered potential due to localization of the single-
particle states. This phenomenon, dubbed Anderson localization [9], occurs for any non-zero
random disorder in one and two dimensions. At higher dimensions, all states are localized only
for sufficiently high disorder. For disorder values smaller than a critical value, only eigenstates
below a specific energy, called the mobility edge, are localized [10–12].

Localization also occurs for systems with non-random, quasi-periodic potentials. Such po-
tentials can exhibit localization to delocalization transitions and mobility edges, even in one
dimension [13–20], and are experimentally feasible [21–24]. In the quasi-periodic Aubry-
André-Harper (AAH) potential, for example, all states are localized above a critical potential
strength and delocalized otherwise, whereas the transition point features fractal states [13,14].
Transport is absent in the localized phase, ballistic in the delocalized phase, and anomalous
at the critical point due to the fractal structure of the eigenstates [25–28]. Localization is
primarily restricted to isolated set-ups. Realistic physical systems are inevitably coupled to
an environment, such as, phonons, which destroy localization and induce finite DC conduc-
tivity [29]. Therefore, it is crucial to understand the impact of the environment on quantum
transport.

Anderson localization is known to be stable to local and global periodic driving [8], as
well as local and quasi-periodic in time drives [8, 30]. However, for a random, uncorrelated
time-dependent drive coupled to all lattice sites, Anderson localization is destroyed, and dif-
fusive transport is recovered [31–33]. For correlated noise, a transient sub-diffusive regime
can emerge [34]. On the other hand, randomly driving a single-site of the system induces log-
arithmic transport [35]. A natural question, that we consider in this work, is how transport is
affected when only part of the sites of the lattice are coupled to a random drive.
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Figure 1: Schematic of the coupling of the heat bath to the system. (a) central region
of l sites is coupled (b) sites at λ distance apart are coupled.
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For a finite density of coupled sites, randomly distributed in the system, a transition from
a super-diffusive to diffusive stationary current as a function of the density of the coupled
sites was established in Refs. [36,37]. These works did not consider temporal dependence of
spreading excitations, which may have distinct behavior from the behavior of the stationary
current [25, 26]. It is, therefore, an open question if the spreading of density excitations
exhibits a single or several regimes of transport as a function of time.

Sparse coupling to a heat bath serve as useful phenomenological models to understand
the effect of the rare ergodic bubbles [35–42] in many-body localized systems. These bubbles
act as a bath, and serve as a destabilizing mechanism of many-body localization [39, 40, 43–
47]. While for disordered many-body localized models the ergodic bubbles are randomly
distributed, this is not true in quasi-periodic systems. Consequently, exploring how different
coupling configurations affect quantum transport in such scenarios is essential. Some of these
configurations have been previously studied in experiments and theory but without a direct
connection to quantum transport [39,47].

In this work, we answer the questions above by studying the temporal spreading of density
excitations at infinite temperatures for different couplings of the system to a Markovian bath.

The paper is organized as follows. We describe the model Hamiltonian and the methods
in Section 2. In Section 3 we present our results for different couplings of the model to a
Markovian heat bath. Finally, we discuss our findings in the Section 4.

2 Model and methods

We consider a system of spinless fermions in a chain of length L, which is described by the
Hamiltonian,

Ĥ = −J
L−1
∑

m=1

�

â†
m+1âm + â†

mâm+1

�

+W
L
∑

m=1

cos (2πβm+φ) n̂m , (1)

where n̂m = â†
mâm, and âm, â†

m are annihilation and creation operators of a fermion on site m,
J is the hopping strength, W is strength of the potential and β =

�p
5− 1
�

/2 is the Golden
mean. The phases are taken uniformly from φ ∈ [−π,π] . In contrast to the Anderson model,
where all the single-particle eigenstates are localized for any non-zero value of W , the AAH
model exhibits a delocalization-localization transition. For W < 2J , all the single-particle
eigenstates are extended and transport is ballistic [26], while for W > 2J , all the states are
localized. At the critical point, W = 2J , the states are multi-fractal and transport is diffusive if
characterized by the mean squared displacement [26], while a characterization based on the
stationary current suggests a sub-diffusive transport [25,26].

We couple the system to a Markovian heat bath which does not affect the number of
fermions in the system. Specifically, we assume that the density matrix of the system evolves
via the Lindblad master equation [48],

∂ ρ̂ (t)
∂ t

= −i
�

Ĥ, ρ̂ (t)
�

+
∑

i

�

L̂iρ̂ (t) L̂†
i −

1
2

�

L̂†
i L̂i , ρ̂ (t)
	

�

, (2)

where {.} is the anti-commutator, the first term represents the unitary evolution and the second
term gives the non-unitary dynamics. The operators L̂i are Lindblad jump operators, which
we take to be

L̂i =
p

γi n̂i , (3)

where γi represents the strength of the dissipation on site i. The dimensions of the density
matrix are N ×N , where N is the Hilbert space dimension. This unfavorable scaling with the
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system size makes the numerical solution of the Lindblad equation computationally expensive.
A more efficient approach is to unravel the evolution into a unitary evolution of wavefunctions
in the presence of white noise and then to average over the realizations of the noise to obtain
the quantities of interest [35,49–53].

For unitary unraveling, the time evolution operator is given by,

Û(t + d t, t) = e−iĤd t−i
p
γ d t
∑

i ηi(t)n̂i , (4)

where ηi (t) are independent Gaussian random variables with mean zero and unit variance.
The density matrix can be obtained by averaging over the realizations of the noise,

ρ̂(t + d t) = |ψ(t + d t)〉〈ψ(t + d t)| , (5)

where |ψ(t + d t)〉 = Û(t + d t, t)|ψ(t)〉 and the over-bar represents averaging over the noise
realizations. In this work, we set the noise strength to γ = 1 and the time-step to, d t = 0.1.
We have corroborated that our results do not change if d t is further reduced. We average over
10 noise trajectories and over 10 phase realizations (φ in Eq. (1), see Ref. [35] for further
numerical details). We have found this averaging sufficient to reduce the statistical uncertainty
of the data. To study the transport properties, we consider the following observables:

Particle transport at infinite temperature. It is easy to check that irrespective of Ĥ the RHS
of Eq. (2) vanishes for Hermitian Lindblad jump operators and ρ̂∝ I, such that any initial state
will reach an infinite temperature state. Therefore, to avoid transient effects we directly char-
acterize particle transport at infinite temperature. We note, that this corresponds to averaging
over all possible particle sectors. For this purpose we look at the two-point density-density
correlation function,

Ci (t) = Tr
�

ρ̂∞

�

n̂i (t)−
1
2

��

n̂L/2 −
1
2

��

, (6)

where ρ̂∞ = I/N is the infinite-temperature density matrix, and n̂L/2 corresponds to an initial
density excitation at the center of the lattice. From the Lindlbad master equation, the dynamics
of such a correlation function can be obtained using a quantum regression theorem, which
holds for any initial density matrix and allows the calculation of the correlation function in
the stationary state of the Lindblad master equation [54]. A more efficient approach, that we
employ here, is to evaluate the correlation function within the unitary unraveling dynamics.
For non-interacting systems, Eq. (6) can be written as

Ci (t) =
�

�Tr
�

ρ̂∞â†
i (t) âL/2

��

�

2
=

1
4

�

�

�U s
i,L/2 (t, 0)
�

�

�

2
, (7)

where U s
i,L/2 (t, 0) is the single-particle propagator, which can be efficiently calculated using

Eq. (4),

U s
i,L/2 (t = Nt · dt, 0) =

®

i

�

�

�

�

�

Nt
∏

n=1

e−i
�

hsdt+
p
γdtηn

�

�

�

�

�

�

L
2

¸

. (8)

Here Nt = t/dt is the number of time-steps, hs is the single-particle Hamiltonian corresponding
to Eq. (1) and the states |i〉 and |L/2〉, correspond to a particle found in sites i and L/2 respec-
tively. The second equality in Eq. (7) follows, since for unitary unraveling â†

i (t) can be written
as: â†

i (t) =
∑

k U s
ik (t, 0) â†

k and Tr
�

ρ̂∞â†
i â j

�

= 1
2δi j . Since U s

i,L/2 (t, 0) has dimensions L × L,
this allows us to efficiently study the system for large L.

We compute the root mean squared displacement (RMSD) [4,6,55,56],

R (t) =

√

√

√

√

L
∑

i=1

�

i −
L
2

�2

Ci (t) , (9)
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Figure 2: Root mean-squared displacement R (t) as a function of time; for system
size L = 1000. The noise strength is set to γ = 1. The top panels, which are plotted
on a log-log scale, correspond to the delocalized phase and the critical point. The
bottom panels, which are plotted on a semi-log scale, correspond to the localized
phase. The black dashed and dotted lines provide a guide to ballistic and diffusive
transport, respectively. The statistical error is of the order of the line width.

for each trajectory of the noise and potential realization. We then average over different re-
alizations to obtain the averaged RMSD, R (t). Typically, the RMSD grows as a power law in
time, R (t) ∼ tα, where the dynamical exponent α = 1/2 corresponds to diffusive transport
and α = 1 to systems with ballistic transport. Regimes characterized by sub-diffusive and
super-diffusive transport involve exponents ranging between 0 ≤ α < 0.5 and 0.5 < α < 1,
respectively. For localized systems α= 0.

3 Results

In this Section, we discuss our results for local coupling the heat bath to one site of the system
and to a finite fraction of system sites. In finite fraction coupling we either couple the heat
bath to a central region of the chain or to equally separated lattice sites through the entire
chain (Fig.1). All the results below are obtained for a chain length of L = 1000.

3.1 Local coupling

In the left panels of Figure 2 we plot the dynamics of the root mean squared displacement for
the delocalized, critical, and localized phases of the AAH model. In the absence of coupling to
the heat bath, particle transport in these phases is ballistic, anomalous and absent, respectively
[25,26]. As can be seen from Fig. 2(a), local heat bath does not affect the nature of transport
in the delocalized and critical regimes. On the other hand, it induces logarithmic transport
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Figure 3: Root mean-squared displacement R (t), as a function of time for L = 1000.
Left panels correspond to coupling of the heat bath to a central region of length l.
Right panels to coupling the heat bath to system sites which are λ distance apart. Top
panel correspond to W = 1 and bottom panels to W = 4. Dashed and dotted lines
are guides to the eye for diffusive and ballistic transport, respectively. More intense
colors stand for larger λ or l. The statistical error is of the order of the line width.

in the localized phase, similar to the case of the disordered Anderson model [35]. Within
the time range considered, there is no sign of a crossover to diffusion, as opposed to the case
where the noise is coupled to all the sites [34,57–60].

3.2 Coupling to a finite part of the chain

We have seen that local coupling to the heat bath is not affecting transport in the delocalized
phases and is inducing logarithmic transport in the localized phase. In this section we study
how transport is affected when the heat bath is coupled to a finite fraction of system sites.
Moreover, we will show that the spatial configuration of the coupled sites is important. Specif-
ically we consider two different configurations: Coupling l < L sites at the central region of
the chain, or coupling sites which are separated a distance λ apart, such that their density is
1/λ.

The left panels of Fig. 3 show the dynamics of R (t) in the delocalized phase (top panel)
and the localized phase (bottom panel) for different widths l of the coupled central region. In
both delocalized and localized phases R (t) initially grows diffusively. After this initial diffusive
growth it crosses over to ballistic transport (Fig. 3(a)) in the delocalized phase, or to logarith-
mic transport in the localized phase (Fig. 3(c)). In both cases the crossover time, which we
will designate by t l , grows with the width of the coupled region, l.

The right panels of Fig. 3 show R (t) for coupling sites which are a distance λ apart from
each other. In the delocalized and localized phases, we observe a crossover to diffusion. At the
critical phase, transport remains practically unaffected by the heat bath (not shown). In the
delocalized phase, the initial transport is ballistic (see Fig. 3(b)) and in the localized phase,
the initial transport is logarithmic (see Fig. 3(d)). In all cases the crossover time, which we
denote by td increases with λ. In the next section we introduce a classical master equation,
which provides an explanation to the dependence of the crossover times on the parameters of
the system.
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Figure 4: Root mean-squared displacement R (t), as a function of time; for a number
of coupled central region widths l (top panel) or the distance between the coupled
sites, λ (bottom panel). Solid lines correspond to the the numerical solution of the
Lindblad equation (2), and dashed lines to the solution of the classical master equa-
tion (10), with time rescaled by a factor of 20 to have the best fit with the solid lines.
The parameters used are L = 1000 and W = 4. The error-bars are of the order of the
line width.

3.3 Classical picture

The dephasing mechanism of the heat bath, diminishes the importance of interference ef-
fects, and gives hope that classical treatment might be sufficient to understand the underlying
phenomenology. We therefore follow the variable-range hopping approach of Mott [29], and
assume that coupling the system to the heat bath induces transitions between localized single-
particle eigenstates. The probability to find a particle in a single-particle state α, which we
denote by pα, evolves according to a classical master equation [57,61,62],

∂t pα =
∑

β

�

Γαβ pβ − Γβαpα
�

, (10)

where the transition rates Γαβ between the eigenstates α and β can be calculated from first-
order perturbation theory (see Appendix A),

Γαβ = Γβα = γ
∑

k∈coupled sites

�

�

�φ∗β (k)φα (k)
�

�

�

2
, (11)

where γ is the strength of the coupling, φα (i) are the single particles states in the position
basis, and the sum k runs over the sites coupled to the heat bath. In the localized phase, by
definition, φα (i) decays exponentially. We order the single-particle eigenfunctions such that
φα (i) has it center of mass around a site α, which allows us to approximate the transition
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Figure 5: Same as Fig. 4 but with the time axis rescaled by the crossover times t l or
td (see main text).

rates as,

Γαβ = γ
∑

k∈coupled sites

e−|α−k|/ξe−|β−k|/ξ , (12)

where ξ is the localization, which for the AAH model is ξ = 1/ ln W
2 [63]. The coupled site

is, therefore, initiating transitions, or scattering, between localized states within its neighbor-
hood. Transitions to far-lying states are exponentially suppressed with the distance from the
coupled site. For local coupling, this leads to logarithmic transport, R (t)∼ ξ ln (J t) [35]. We
note in passing that in the delocalized side, all the eigenstates φα (k) are extended and there-
fore cannot be ordered by their center of mass, such that the spatial structure of the rates is
lost. Moreover, the rates Γαβ are of the same order of magnitude which means that transport
is expected to transition to diffusion on a time-scale γ−1. In what follows, we only focus on
the localized phase.

When the heat bath is coupled to a region of final width l, the transitions rates Γαβ are
approximately constant in this region, and therefore a particle initiated in the coupled region
is expected to diffuse. It takes the particle time, t l ∼ l2, to leave this region. After leaving
the coupled region, transitions rates exponentially decay with the distance from the region,
and transport in the system is expected to be equivalent to the situation of local coupling.
When the coupled sites are at equal distances λ apart, on a time-scale of moving between two
nearby coupled sites, transport is logarithmic, but at larger time-scales the expected motion is
diffusive. The crossover time can be obtained from λ= ξ ln (J td), yielding td ∼ J−1 exp (λ/ξ),
and the diffusion constant as D ∼ λ2/td = λ2 exp (−λ/ξ).
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Figure 6: Extraction of the diffusion coefficient for various λ by fitting Dt1/2 to R (t)
obtained from the solution of the Lindblad equation (dashed lines, top panel). The
blue line at the bottom panel shows the diffusion coefficient as a function of λ for
W = 4 and L = 1000. The red line line corresponds to the theoretical prediction,
D ∼ λ2/td = λ2 exp (−λ/ξ), with ξ= 1/ ln W

2 (see text).

In Fig. 4 we compare the numerical solution of the classical master equation (10) to the
numerical solution of the Lindblad equation (2). Since the classical rates (12) are obtained
phenomenologically, the overall prefactor of the rates cannot be determined from microscopic
considerations. We determine it by rescaling the time axis of the classical master equation
such that the correspondence with the solution of the Lindblad equation is optimal (2). Apart
from this trivial rescaling of the units of time, there are no fitting parameters. Remarkably, the
agreement between the classical master equation and the Lindblad equation goes beyond the
qualitative level for the central coupled region (top panel). For equal spacing coupling, there
is still qualitative agreement, but the quantitative agreement is reasonable only for small λ/ξ.

In Fig. 5 we test the predictions of the classical theory for the crossover times, by rescaling
of the time axis by td or t l , respectively. We see that such a rescaling correctly identifies the
crossover time for both couplings to the heat bath when either l or λ are varied. The prediction
for the diffusion constant is verified in Fig. 6. The agreement is not quantitative, however the
exponential decrease of the diffusion constant with λ is nicely captured.
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4 Discussion

Using the unitary unraveling of the Lindblad master equation, we study the dynamical prop-
erties of the AAH model coupled to a dephasing heat bath. We consider local coupling and
coupling to a finite part of the chain. This setup is partly motivated by dynamics in MBL
systems in the presence of finite density of ergodic bubbles [7, 39, 40, 64], with the crucial
difference that it is dissipative.

For local coupling of the heat bath in the delocalized and critical phases of the AAH model,
we didn’t observe any qualitative effects of the heat bath on the dynamics of the particle.
On the other hand, in the localized phase, the root mean square displacement, entanglement
entropy, and average energy (not shown) show asymptotic logarithmic growth, as it occurs
for the one-dimensional Anderson insulator in the presence of a local noise [35]. Suppose the
region of the coupling to the bath is of finite width. In that case, we find a regime of transient
diffusion, which crosses over to ballistic transport in the delocalized phase and logarithmic
transport in the localized phase. We have shown that this crossover time increases as the
square of the width of the region, as typical for diffusion. When the heat bath is coupled to
the system on equally spaced sites, initial transport in the system is similar to the transport with
local coupling. Eventually, it crosses over to diffusion in all phases. Specifically, in the localized
phase, the crossover time increases exponentially with the distance between the coupled sites.

We have shown that in the localized phase, a classical master equation with transition
rates that exponentially decay from the location of the coupled sites captures all the observed
phenomenology. Moreover, it provides accurate predictions of crossover times for all studied
couplings of the heat bath. This time scale is set by the time it takes for a particle to traverse
the distance λ between two nearby coupled sites. In the delocalized phase, this time is pro-
portional to λ (if the transport is ballistic) or λ2 (if it is diffusive). On the other hand, it scales
as td∝ exp (λ/ξ) in the localized phase. Within the classical model, the motion of the parti-
cle between the coupled sites can be viewed as a random walk with a spatial step of λ and a
mean-free time of td , which means that the motion is diffusive, with diffusion constant given
by D ∼ λ2/td = λ2 exp (−λ/ξ).

In this work, we have focused only on fixed λ, such that D is also fixed. If λ is allowed to
vary randomly, such that its distribution is unbounded, then the average time to transition be-
tween coupled sites, td , can diverge. In this case, the average diffusion coefficient will vanish,
and transport will be subdiffusive (see Refs. [36,37] and Appendix B). Furthermore, this finite
number of dephasing sites in the non-interacting localized system mimics the presence of er-
godic bubbles in the many-body localized system that acts as a finite thermal bath and induces
quantum transport. However, unlike the ergodic bubbles, which cool off during the dynamics,
and therefore can stop being ergodic, the system here does not affect the heat bath. As such,
our model provides a non-rigorous upper bound on ergodic bubbles-induced transport in a
many-body localized system [7,39,40,64].

Here, we focus on a quasi-periodic model without mobility edges. In the presence of mobil-
ity edges, at least in principle, the coupling to the heat bath can create transitions between the
localized and delocalized states. Several interesting questions arise for these models: would
the coupling eliminate the intermittent logarithmic transport regime? How will the dynamics
depend on the initial conditions? We leave these questions to future studies.
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A Transition rates for white noise

In this section, we calculate the transition rates using the first order perturbation theory. With-
ing the unitary unraveling of the Lindblad equation the dynamics of the system is described
by a the time-dependent Hamiltonian,

Ĥ (t) = Ĥ0 + V̂ (t) ,

where, V̂ (t) =
p
γ
∑

i

ηi (t) |i〉〈i| with ηi (t) being a Gaussian random variable with

zero mean and unit variance. The noise is characterized by the correlation function,
〈ηi (t)η j

�

t ′
�

〉 = δi jδ
�

t − t ′
�

. The time evolution of the state |ψ(t)〉 in the eigenbasis |α〉
of Ĥ0 can be written as,

∂t cα = −i
∑

γ




α
�

�V̂ (t)
�

�γ
�

cγ (t) e
−i(εγ−εα)t , (A.1)

where εα is the eigenvalue of Ĥ0 which corresponds to |α〉. In the integral form, this corre-
sponds to,

cα (t) = cα (0)− i

∫ t

0

∑

γ

d t ′



α
�

�V̂ (t)
�

�γ
�

cγ (t) e
−i(εγ−εα)t ′ . (A.2)

Back substitution of the LHS into the RHS and ignoring terms of order, O
�

V 2
�

gives,

cα (t) = cα (0)− i

∫ t

0

∑

γ

d t ′



α
�

�V̂ (t)
�

�γ
�

cγ (0) e
−i(εγ−εα)t ′ . (A.3)

We assume that the system is initialized in state β , such that cγ (0) = δγβ , which yields,

cα (t) = δαβ − i

∫ t

0

d t ′



α
�

�V̂ (t)
�

�β
�

e−i(εβ−εα)t ′ . (A.4)

The transition probability rate between state |α〉 and |β〉 is given by

Γαβ = |cα (t)|
2 /t,=

1
t

∫ t

0

d t ′
∫ t

0

d t ′′



α
�

�V̂
�

t ′
��

�β
� 


β
�

�V̂
�

t ′′
��

�α
�

e−i(εβ−εα)(t ′−t ′′) . (A.5)

Now since averaging over the noise gives,



α
�

�V̂ (t ′)
�

�β
� 


β
�

�V̂ (t ′′)
�

�α
�

= γ
∑

i, j

ηi (t ′)η j (t ′′) 〈α|i〉〈i|β〉 〈α| j〉〈 j|β〉

= γ
∑

i

|〈α|i〉|2 |〈β |i〉|2δ
�

t ′ − t ′′
�

, (A.6)

we obtain

Γαβ =
γ

t

∑

i

|〈α|i〉|2 |〈β |i〉|2
∫ t

0

d t ′
∫ t

0

d t ′′δ
�

t ′ − t ′′
�

e−i(εβ−εα)(t ′−t ′′)

= γ
∑

i

|〈α|i〉|2 |〈β |i〉|2 ,

where 〈β |i〉= φ∗
β
(i) and 〈k|α〉= φα (k).
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Figure 7: Dynamics of R (t) for for W = 4.0, and the case where each site of the
system can be coupled with probability p. The dotted line corresponds to a guide to
the diffusive transport (t1/2).

B Coupling at random sites

In this section, we consider the case where a given site is coupled with probability p, which
means that the distance between two coupled sites is distributed according to the Poisson
distribution. In Fig. 7 we shows the dynamics of R (t) calculated using the classical master
equation for W = 4.0 and and number of p. We average the data over 50 realizations of
the couplings to the heat bath. As opposed to the case where the coupled sites are placed at
an equal distance from each other leading to eventual diffusion, here we find sub-diffusive
transport with a dynamical exponent which depends on p. Our results are consistent with
Refs. [36,37] where the stationary state current is calculated in a similar system.

C Dynamics of entanglement entropy

In this section we study the dynamics of entanglement entropy for a single site coupling to
the bath. While the entanglement entropy is not a good measure of quantum information for
mixed states [65], for the unitary unraveling, it is well defined for each of the trajectories.
Therefore, in situations when one can physically justify the specific form of the unraveling,1

the entanglement averaged over the various trajectories is a sensible quantity [35,66]. Another
advantage of the unitary unraveling is that the wavefunction |ψ (t)〉, is Gaussian through the
entire evolution, which allows an efficient computation of the entanglement entropy, using the
relation,

S (t) = −
∑

α

[cα (t) ln cα (t) + (1− cα (t)) ln (1− cα (t))] . (C.1)

Here, cα (t) are eigenvalues of the correlation function 〈ψ (t)
�

�â†
i â j

�

�ψ (t)〉, restricted to the
subsystem of interest [67,68]. For ballistic transport, the entanglement entropy grows linearly
with time, while anomalous transport is characterized by a sub-linear growth [69–72].

In the right panels of Fig. 8 we present the growth of the entanglement entropy starting
from a random product state averaged over noise trajectories (S (t)). We use a random product
state so that initially the entanglement entropy is zero, which provides us with a finite regime of
entanglement entropy growth. In particular, we initiate the system at a random product state,

1For example, a system in a time-dependent noisy potential.
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Figure 8: Entanglement entropy S (t) as a function of time; for system size L = 1000.
The noise strength to γ = 1. The top panels, which are plotted on a log-log scale,
correspond to the delocalized phase and the critical point. The bottom panels, which
are plotted on a semi-log scale, correspond to the localized phase. The statistical
error is of the order of the line width.

namely, ρs
i j(t = 0) = n jδi j , with random n j ∈ 0, 1. In the delocalized regime, the growth of

the entanglement entropy is unaffected by the presence of the local heat bath and is consistent
with a power-law dependence on time, observed in closed systems [63]. In the localized case,
the heat bath induces logarithmic growth of entanglement entropy which is reminiscent of
the entanglement entropy growth in the MBL phase [73–76]. However, here this growth is
accompanied with logarithmic particle transport, while the presence of logarithmic particle
transport in the MBL phase is under debate [77–79] .
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[60] M. Žnidarič, J. J. Mendoza-Arenas, S. R. Clark and J. Goold, Dephasing enhanced spin
transport in the ergodic phase of a many-body localizable system, Ann. Phys. 529, 1600298
(2016), doi:10.1002/andp.201600298.

[61] A. Amir, Y. Oreg and Y. Imry, Localization, anomalous diffusion, and slow relax-
ations: A random distance matrix approach, Phys. Rev. Lett. 105, 070601 (2010),
doi:10.1103/PhysRevLett.105.070601.

[62] M. H. Fischer, M. Maksymenko and E. Altman, Dynamics of a many-body-
localized system coupled to a bath, Phys. Rev. Lett. 116, 160401 (2016),
doi:10.1103/PhysRevLett.116.160401.

[63] G. Roósz, U. Divakaran, H. Rieger and F. Iglói, Nonequilibrium quantum relax-
ation across a localization-delocalization transition, Phys. Rev. B 90, 184202 (2014),
doi:10.1103/PhysRevB.90.184202.

[64] V. Khemani, S. P. Lim, D. N. Sheng and D. A. Huse, Critical properties of the many-body
localization transition, Phys. Rev. X 7, 021013 (2017), doi:10.1103/PhysRevX.7.021013.

[65] J. Eisert and M. B. Plenio, Introduction to the basics of entanglement the-
ory in continuous-variable systems, Int. J. Quantum Inf. 01, 479 (2003),
doi:10.1142/S0219749903000371.

17

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.023
https://doi.org/10.1088/1464-4266/4/4/339
https://doi.org/10.1088/1464-4266/4/4/339
https://doi.org/10.1103/PhysRevLett.118.140403
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1209/0295-5075/88/10004
https://doi.org/10.1103/PhysRevB.95.035155
https://doi.org/10.1103/PhysRevE.79.050105
https://doi.org/10.1088/1367-2630/12/4/043001
https://doi.org/10.1140/epjb/e2012-30730-9
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1103/PhysRevLett.105.070601
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevB.90.184202
https://doi.org/10.1103/PhysRevX.7.021013
https://doi.org/10.1142/S0219749903000371


SciPost Phys. Core 7, 023 (2024)

[66] X. Cao, A. Tilloy and A. De Luca, Entanglement in a fermion chain under continuous mon-
itoring, SciPost Phys. 7, 024 (2019), doi:10.21468/SciPostPhys.7.2.024.

[67] I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A:
Math. Gen. 36, L205 (2003), doi:10.1088/0305-4470/36/14/101.

[68] I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free
lattice models, J. Phys. A: Math. Theor. 42, 504003 (2009), doi:10.1088/1751-
8113/42/50/504003.

[69] P. Calabrese and J. Cardy, Evolution of entanglement entropy in one-dimensional systems,
J. Stat. Mech.: Theory Exp. P04010 (2005), doi:10.1088/1742-5468/2005/04/P04010.

[70] H. Kim and D. A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable
system, Phys. Rev. Lett. 111, 127205 (2013), doi:10.1103/PhysRevLett.111.127205.

[71] D. J. Luitz, N. Laflorencie and F. Alet, Extended slow dynamical regime close
to the many-body localization transition, Phys. Rev. B 93, 060201 (2016),
doi:10.1103/PhysRevB.93.060201.

[72] T. L. M. Lezama and D. J. Luitz, Power-law entanglement growth from typical product
states, Phys. Rev. Res. 1, 033067 (2019), doi:10.1103/PhysRevResearch.1.033067.
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