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Abstract

Feedback-based control is the de-facto standard when it comes to controlling classical
stochastic systems and processes. However, standard feedback-based control methods
are challenged by quantum systems due to measurement induced backaction and partial
observability. Here we remedy this by using weak quantum measurements and model-
free reinforcement learning agents to perform quantum control. By comparing control
algorithms with and without state estimators to stabilize a quantum particle in an un-
stable state near a local potential energy maximum, we show how a trade-off between
state estimation and controllability arises. For the scenario where the classical analogue
is highly nonlinear, the reinforcement learned controller has an advantage over the stan-
dard controller. Additionally, we demonstrate the feasibility of using transfer learning
to develop a quantum control agent trained via reinforcement learning on a classical
surrogate of the quantum control problem. Finally, we present results showing how the
reinforcement learning control strategy differs from the classical controller in the non-
linear scenarios.
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1 Introduction

Feedback-based control is essential in many different industries and domains. Stabilizing
temperatures, chemical reactions, robotics and even biomedical devices are all possible by
continuously adjusting the system inputs based on real-time feedback. Applications of this
type of control to quantum systems has not yet reached this level of maturity, though sev-
eral other quantum optimal control methods, such as GRAPE and CRAB [1-3] have gained
more widespread adoption. A key issue with feedback-based control for quantum systems is
that measurements of the quantum system cause measurement back-action [4-6] , limiting
the amount of information that can be obtained. In many cases that renders standard opti-
mal control techniques inapplicable or infeasible, either because they require a model of the
quantum system or because they need gradients that require many measurements to estimate.

In this work we discuss a simple quantum problem for benchmarking feedback-based con-
trol, building on the quantum cartpole [7]. This control problem is based on the classical cart-
pole problem, which has become the de-facto standard benchmark for reinforcement learning
controllers. We adapt the quantum cartpole problem to include explicit weak measurements
of position and momentum, and use a continuous control parameter for feedback. In addition,
we introduce a classical surrogate for this quantum problem by mimicking the measurement
feedback on the system and the uncertainty in the measurements via noise. For this classical
model, we investigate a standard optimal control algorithm - linear quadratic Gaussian con-
trol (LQGC), and show that this same controller can also control the quantum system based on
weak measurement inputs. In regimes where the standard optimal controller struggles, e.g.
for more non-linear systems or in scenarios where a noise characterization is infeasible, we
demonstrate that deep reinforcement learning [8] remains a valid option for achieving control.

Deep reinforcement learning (RL.) has been demonstrated to be a useful tool for control in
several previous works [9-14], starting with [15]. It provides a general approach to devising
control strategies in cases where a model of the system’s dynamics is incomplete, or where
other properties such as the noise model are unknown.

This work hence fits into the more general context of machine learning applications to
quantum systems [16]. Some of those have used RL for feedback-based control, such as [7,
17,18]. An interesting recent work has also explored the use of weak nonlinear measurements
as a way to compensate for purely linear controllers [19].
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2 The quantum cartpole

The quantum system we consider in this work is derived from the well-known classical cartpole
problem [20]. In it, a cart rolls on a flat one-dimensional track, and a force must be applied
in either direction in order to keep a pole, hinged to the middle of the cart, upright. At every
timestep, the system is described by a vector s, = (x,, X,, 6,, 0,) containing the instantaneous
position x, and pole angle 6, and their time derivatives. When the angle 6 exceeds a threshold
angle 6,;, the failure condition is met and the controller failed to stabilize the system. The time
step at which this failure condition is met is labelled the termination time t ;mination-

A related but slightly simpler control problem is that of a particle sliding off of a hill needing
to be pushed back up, for which the state vector is simply s, = (x;, X;) and for which the failure
condition is when the particle slides beyond a certain distance xg,, €.g., |x| > |xg|. Although
this system is an inverted pendulum, the quantum version of this problem has been dubbed the
quantum cartpole [4,7], in which a free particle [initialized as a Gaussian wavepacket 1(x)] is
centered on an inverted potential V(X) (for which we will discuss several choices later). The
system undergoes unitary dynamics governed by the Hamiltonian

~2
A= v, 1)
2m

and the failure condition is now set by at least 50% of the wavepacket’s probability density
extending beyond x,,. The state vector of this system is the wavefunction 1 (x), though a
controller will not have access to it. Instead, the controller has access to the results of weak
measurements on the system, based on which the controller must decide to apply a particular
unitary ‘kick’ uy to the system. This control force is realized through a momentum shift opera-
tor, i.e. up = e~'F*, Differently from [7], we will allow the controllers to choose a continuous
F (with bounded strength |F| < |F,,,«|) and we will provide the controller access to data from
repeated discrete weak measurements of position and momentum (rather than continuous
measurements of position only).

The full dynamics of the problem are hence as follows. First, a Gaussian wavepacket is
initialized at the top of the inverted potential. The wavepacket has a width set by o = 1.0,

Control Algorithm
) 4

Apply Control a Weak Measurements

H H AN
—Tth Tgn 7
Figure 1: The quantum cartpole setup. A wavepacket v(x) is placed on top of an
inverted potential V (%), and a controller must ensure that at least 50% of |(x)|?
stays within the interval [—xy,, X, ]. As input, the control algorithm receives weak
measurement outcomes, and as output it sets the strength of a unitary control force
that is applied to the wavepacket.
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and has an initial momentum chosen randomly from a zero mean uniform distribution of width
op =14/ <p12nit) = 0.1, where all units are set to 1. A more detailed description of the parameters
and some comments regarding the units can be found in App. A.1. From then on, in every time
step At:

(i) The system evolves unitarily under Hamiltonian (1) for a time At;

(ii) weak position and momentum measurements are performed, sequentially, and are re-
ported to the controller (more details below);

(iii) the unitary operator uy is applied to the system, with F chosen by the controller.

This loop is the core of the dynamics, and runs until the failure condition is met.

To investigate a trade-off between different timescales of the dynamics and control, we
introduce a variable N, representing the number of times the dynamics loop runs until the
force F can be changed. This is shown schematically in Fig. 2. In each repetition we perform a
weak measurement of the system’s position and momentum [21], and average them into X
and p., which are both passed to the control algorithm. Notice that this is not identical to
performing an N,,., times stronger weak measurement, as between every single measurement
the wave function evolves in time over the duration At, which is kept constant independent
from Npqq-

The pre-processing step of averaging the weak measurement results (rather than providing
the measurements directly and using, e.g., a controller with memory), is inspired by the frame-
stacking technique used in reinforcement learning [22] and has the goal of getting better
estimates of the position and momentum, and thereby preventing the controllers from applying
too strong or too weak forces. The weak measurements performed at each step are essential for
control. As a specific implementation, one can consider these measurements to be performed
by coupling the quantum cartpole system with an ancilla system for a short period that is then
projectively measured (see App. A.2 for a detailed derivation). Without the weak position
measurement, the wavepacket would continue delocalizing irrespective of the unitary force up.
Finally, we mention that we have implemented this control problem as an OpenAl Gymnasium
environment [23], making it suitable for reinforcement learning control.

Dest Lest

> raraiE

Time Evolve Weak Measurements

»—— duration At—
Repeat N, meas times

Apply Control

?
| lup = etf'® s Choose F' a sfest Dest
-

Figure 2: Scheme of the dynamics of the quantum cartpole problem. In every time
step At a force F is applied, the wavefunction is evolved in time and a weak position
and momentum measurement are performed. These steps are repeated N, times.
Afterwards, the mean values of the weak measurements X and p., are passed to a
control algorithm, which will decide on a value for the stabilizing force F.
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2.1 Classical surrogate of the quantum cartpole

To be able to compare the aspects of controlling this quantum system versus a classical system,
we introduce a noisy (stochastic) classical version whose noise properties are tuned to mimic
the uncertainty of weak measurements. For the rest of this work, the noisy classical system
refers to the following implementation rather than the original classical cartpole.

This classical system is a linear stochastic system, describing a classical particle on an
inverted potential, given by

St+1 =As +Bu, +wy, 2)
v =Cs; +v;, 3

where s, = (x;, X,) is the state vector introduced above, y, describes the results of measure-
ments (and hence the inputs to the controller), and u, is the control vector set by the control
algorithm, containing the force applied to the system (playing a role analogous to uy in the
quantum problem). The matrices A, B, and C describe the dynamics and measurements (see
App. A.1), and the vectors w, ~ N(0,04y,) and v, ~ N(0, 0 es5) describe noise on the dy-
namics and on the measurements, respectively. That is, w, and v, are normally-distributed
random variables with zero mean and standard deviations 0 gy, and O ppe,s, respectively. The
uncertainty coming from the weak measurements is reflected in v,, and the measurement
backaction is reflected through noise on the state, w,. Because the backaction depends on the
measurement outcome, the noise models for v, and w, are correlated (see App. A.3). Also in
this case, the particle (now a point-mass) is initialized on top of the inverted potential with a
random momentum chosen from a uniform distribution of width 0.1.

3 Control algorithms

Now that we have a quantum problem and a classical problem that mimics it, we turn our
attention towards two possible control strategies. In particular, we ask how well an optimal
controller for the classical variant performs on the quantum version, and whether a reinforce-
ment learning controller can go beyond such optimal control in scenarios where the latter
struggles.

3.1 Linear quadratic Gaussian control

The well-known linear quadratic Gaussian control (LQGC) algorithm is a classical control algo-
rithm that is known to optimally control a linear system subjected to Gaussian noise [24,25].
The algorithm itself consists of two parts: the Kalman filter [26,27] (the estimator) and the
linear quadratic regulator (LQR) (the controller) [28]. The latter assumes that we can apply
linear control, u, = —KjorX, in Eq. (2), and provides K} o by minimizing a quadratic cost
function J (see App. A.4.4). The performance of this controller (without the Kalman filter) on
the classical problem with a quadratic inverted potential is shown in Fig. 3a for various num-
bers of measurements and for several values of noise, where the performance is measured in
terms of ¢ ermination, Which is the average number of time steps At until the termination condi-
tion is met.! There is an intuitive trade-off where more measurements allow for better control
(averaging out the noise), but where too many measurements is detrimental since they take
too much time. In that time, the system either reaches the failure condition or goes beyond the
point where control is possible (e.g., because a control force |F| > |F,,«| would be required).

In the absence of noise, this system can be stabilized indefinitely.
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Better performance can be achieved by incorporating an estimator such as the Kalman
filter into the feedback protocol. The Kalman filter provides an estimate of the system’s state
$;, by using a model of the underlying dynamics to calculate the most probable state of the
system based on the measurement y,_;, the previous state estimation §,_;. Appendix A.4
describes how this is done for a linear system in more detail. Figure 3b shows that when we
use the Kalman filter, the trade-off disappears entirely and a single measurement provides the
best result. This is true for Markovian systems, for which the current state of the system only
depends on the previous state (and not further history), so that knowing the previous state
provides all information to provide a good estimate of the current state.

3.2 Reinforcement learning control

Because we will move away from the scenario where LQGC is designed to work, we turn our
attention to reinforcement learned control. A possible advantage of such controllers is that
they can learn control without having access to a model and without access to the noise model
(i.e., without explicitly making use of Egs. (3)). Hence, being model free and relying only
on measurement results as input, the agents we study can be applied either to the control of
quantum or classical systems (though performance and optimal parameters may be different
for the two cases). A thorough introduction to reinforcement learning control can be found
in [8], and we mention specifically here that reinforcement learning agents are capable of
learning the LQR algorithm [29].

Inspired by LQGC, rather than training a single agent to stabilize the quantum cartpole,
we train two distinct agents: one for determining the control force (the reinforcement learned
controller, RL.C) and another responsible for state estimation (the reinforcement learned es-
timator, RLE). Both agents are trained using a stochastic on-policy training algorithm called
the proximal policy optimization (PPO) algorithm [30], and both use continuous input and
output spaces. Detailed of the training process, a short description of the PPO algorithm, and
the parameters used are listed in Appendix A.5.

The first reinforcement learning agent — the reinforcement learning controller (RLC) - is
trained with the goal of providing the control input based on the raw measurement inputs.
The input to the agent is hence directly X, and p.. As output the agent returns a controlling
force up from the range [—Fp,ax, Fmax] fOr the next time step. The reward is —1 if the control
fails (i.e., the wavefunction moves outside the boundaries), and 0 every time step otherwise.
Testing the RLC on a classical system with inverse quadratic potential in Fig. 3a, we see that
it has the same trade-off as the LQR controller, but performs slightly better due to difference
in the objective in both algorithms. The LQR minimizes the quadratic cost during the run,
whereas the RLC aims to avoid the worst case of the wavefunction being pushed out of the
threshold.

The second agent — reinforcement learned estimator (RLE) — the is trained with the goal of
replacing the Kalman filter. To do so, we provide it with the previous state estimate §,_;, the
mean of the N, measurements taken at timestep t and the last control value u,. Compared
to the Kalman filter, however, the agent has no knowledge about the noise covariance nor of
the system’s equations of motion. As output the agent returns the predicted change of the state
AS,, so that §,,; = s, + AS;. The goal of the training is to minimize the squared prediction
error ef, where e, = y, — CAs,_; (see App. A.4), by providing a reward r, = —ef in each time
step. For the purpose of training, the controller is replaced by a simple random controller
(choosing a random force every time step), since the estimation task does not depend on the
actual control strategy.

Putting the estimator to the test in combination with the RLC on the classical surrogate
system with inverted quadratic potential is shown in Fig. 3b, where, like the LQGC, the per-
formance always reaches the maximum for N,,.,; = 1, independent of the noise level. Overall,

6
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Figure 3: Controller performance for noisy classical cartpole (with inverted
quadratic potential). Plot a) compares the RLC against the LQR for different levels of
measurement noise O ,.,s (see Eqs 3), showing a comparable increase and decrease
in performance with increasing number of measurements. The RLC reaches a higher
maximum compared to the LQR. In b) the noise level is fixed at 0., = 0.8 and
state estimators in form of the Kalman Filter and RLE are added to the comparison,
shifting the peak performance to a single measurement.

the performance of the reinforcement learned estimator is below that of the Kalman filter, in-
dicating that learning the state estimator is more challenging than learning the controller? and
making LQGC the better choice if the system is linear and a noise model is available.

4 Controlling the quantum cartpole

We now turn our attention to the quantum version of the problem. In Fig. 4 we show how a
reinforcement learning controller, trained on the quantum system, performs in this scenario
(still with a quadratic inverted potential), once without the estimator (panel a) and then with
(panel b). Here, too, the trade-off between more measurements for more information versus
latency is apparent if only the controller is used. Panel a also shows that control quickly turns
infeasible in the weak measurement regime (corresponding to the top of the panel), where the
trade-off fades out, but still indicates a finite number of measurements remains optimal. Like
in the classical case, using the estimator in addition makes it such that the optimum in N,
shifts to a single measurement as seen in Fig. 3b.

4.1 Potential variations

To comprehensively explore the capabilities of our controllers, we consider four possible com-
binations of controllers (LQR and the RLC) and estimators (Kalman filter and the RLE). We
explore how these combinations perform as a function of different numbers of measurements,
evaluating them based on the average time t,o;mination (calculated over 10° runs). To check
the validity and usefulness of the LQGC versus the reinforcement learning controller, we in-
vestigate different potentials that make the system non-linear. The potentials that we study
are depicted in Fig. 5, which next to the quadratic inverted potential shows two more:

2The training of the estimator agent converged, so the difference in performance is not due to training. More
likely is that a more complex agent would be able to learn the system’s dynamics and perform better estimation,
compared to the standard PPO agent we chose.
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Figure 4: Controller performance for quantum cartpole with an inverted quadratic
potential. Shown is the performance of various controllers (measured in the termi-
nation time t e mination) idicating a trade-off between the number of measurements
Npeas and the strength of the measurement, indicated by the width o ..y, of the mea-
surement wavefunction (see Appendix A.2 for details). Larger o . cOrresponds to
weaker measurements. Panels a) and b) show RLC and RLC + RLE as controllers,
respectively, with the heat maps showing the average termination time ¢ . ination O0
a logarithmic scale and the white line indicating t,ermination = 10°

(i) A cosine potential V(&) = k; (cos(nx/ky)—1), and
(i) An inverted quartic potential V(&) = —kx*.

The values for kq, k, and k are listed in Appendix A.1, which also shows the performance of
the controllers on the classical system with these potentials. For the RL based controllers, we
trained multiple agents and averaged the results of the 10 best performing ones and presenting
their performance relative to the LQGC performance, to highlight the improvement of the
performance, independent from the concrete performance, which depends on the underlying
potential.

For the quadratic inverted potential the combination of reinforcement learning controller
(RLC) and the Kalman filter performs as well as the LQGC algorithm (see panel a of Fig. 6).
This is a notable result, because the LQGC is not a guaranteed optimal controller in the quan-
tum environment. However, our findings are consistent with those presented for discrete con-
trol of the quantum cartpole [7]. At the same time, we note that the reinforcement learned es-
timator (RLE) struggles to match the performance of the Kalman filter up to about N, ~ 40,
and that does not remove the trade-off behavior discussed previously. For larger N, the RLE
seems to be able to match the Kalman performance.

Now going to a nonlinear system, starting with the cosine potential Fig. 6b, the overall
performances are similar to the linear system. It is notable to see that the combination RLC +
Kalman is now able to gain a notable advantage over the LQGC, increasing the performance
by ~ 10% for a single measurement N,.,; = 1. Similarly, the controllers involving RLE were
able to close the performance gap to the LQGC by small margins, but remain far behind.

It is for the quartic potential that the advantage of using RL becomes really evident. Here
the RLC + Kalman controller is able to achieve an increase in performance of ~ 60% compared
to the LQGC. At the same, we also see that both the RLC + RLE and the LQR + RLE controllers
are both able to also achieve a performance advantage over the LQGC and narrow the gap
with the RLC + Kalman controller, indicating that the LQR algorithm is the main bottleneck.
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Figure 5: The different potentials used for the quantum cartpole problem. The
cosine and quartic (red and green) potentials are used to demonstrate behavior on
nonlinear systems, while the quadratic (blue) potential is used for a linear system.

On a broader level, we expect that for even more non-linear problems reinforcement learning
control indeed becomes the go-to choice instead of LQGC.

4.2 Transfer learning

Finally, we consider a transfer learning scenario in which we train a reinforcement learning
agent on the classical surrogate, and then apply it to control the quantum system. The results
of these comparisons for the different combinations of controllers and estimators are shown
in Fig. 6. Interestingly, RL agents trained on the classical system perform almost identically to
those trained on the quantum system (comparing the ‘transfer’ controllers with their counter-
parts). This suggests that training on a classical surrogate model for controlling the quantum
cartpole is indeed a viable strategy.

4.3 Controller characteristics

To further elucidate the control strategies used by the control algorithms, we investigate the
resulting distributions of position (x) and momentum (p) expectation values, shown in Fig. 7.
For this we compare the LQGC and the RLC + RLE controllers on the three different potentials.
The distributions were taken by collecting the position and momentum of the wavefunction
over 10° time steps. In order to avoid measurement artifacts from the initialization of the
wavefuntions, only data from ¢t = 300 and onwards were taken.

Looking first at the LQGC, it can be observed that the distributions for all potentials are
symmetrical and centered around 0, showing that the controller aims to stabilize the wave-
function at the centers of the potentials. When comparing the quadratic and cosine potentials,
it is notable that the cosine potential has a wider distribution due to the fact that it starts to flat-
ten out near the threshold. It appears that this allows the controller to stabilize it closer to the
threshold for longer durations. In contrast, the quartic potential has the sharpest distribution,
suggesting that it is unable to recover the wavefunction when it is close to the thresholds.

Looking at the distributions of the full reinforcement learning control algorithm (RLE +
RLC) one notable disparity is observed. The distributions are neither centered around O nor
are they symmetric. This is attributed to the training process, where the agent can develop
a bias for stabilizing the wavefunction at a particular point. This is particularly evident in
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Figure 6: Benchmarks of the various controllers, on the quantum system depend-
ing on the number of measurements for the input. We showcase the performance of
the Kalman Filter + LQR (blue) and the pure reinforcement learning controller (light
red), as well as the mix of those controllers with Kalman Filter + RLC (red) and LQR
+ RLE (light blue). Additionally, transferred RLC + Kalman Filter and RLC + RLE
(black) are presented, which were trained on the classical system and then applied
on the quantum system. The performance is showcased as ratio of the average ter-
mination time between a selected controller and the Kalman + LQR controller. Each
plot represents a different potential, the first being the quadratic potential, followed
by the cosine potential and quartic potential.

the quadratic and quartic potentials, where the wavefunction is stabilized left and right of the
center.

For the cosine potential, the distribution of the average position with RLC + RLE signif-
icantly differs from that of the LQGC. Instead of a clear peak in the distribution a broader
plateau appears, indicating that the controller has learned to balance the wavefunction on the
side of the potential rather than the center.

N
- LQR + Kalman
—— RLC + RLE

p{x}))

0
(x)

p((p))
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1))

pp)

A

(p)

0
{x)
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Figure 7: Distributions of the position and momentum of the stabilized
wavepacket on the quantum system for the three different potentials: (I) quadratic,
(I1) cosine, (III) quartic. The position (x) of the wavefunction was tracked over 10
timesteps for the LQR + Kalman controller (blue) as well as the RLC + RLE (red)
controller and converted to a histogram of the position probability p ((x)). This is
also showcased for the momentum (p) in the top right insets.
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5 Conclusions and Outlook

Standard classical feedback-based control algorithms are challenged by quantum systems, due
to their intrinsic measurement induced backaction and partial observability. However, for
quantum systems with observables that can approximately be described by linear stochastic
equations, we found that the classical LQGC algorithm performs well if full knowledge of the
model as well as its noise characteristics are available. If such knowledge is not available,
or if the system is non-linear, the classical controller is found to struggle. In scenarios where
knowledge of the model and the noise are unavailable (as is often of the case for complex
experiments), and/or where the system is non-linear, we showed that a model-free reinforce-
ment learned controller outperforms the LQGC algorithm.

To fairly demonstrate the advantage of our reinforcement learning controller, we con-
structed a surrogate model in the form of a classical stochastic system, whose properties are
designed to closely mimic the measurement-induced backaction of the quantum cartpole. Us-
ing this classical surrogate, we demonstrate that transfer learning is feasible by training the
RL agent on this classical model and applying it to controlling the true quantum system. This
opens up the possibility of more efficient training methods.

Both the LQGC algorithm as well as our reinforcement learned controller are composed
of a separate estimator and a controller, and we show that without the estimator a trade-off
between the number of measurements and the controllability exists. Including the estimators
removes this trade-off, allowing for optimized control with just a single (weak) measurement.
For the LQGC algorithm, estimating the state (with the Kalman filter) again requires knowledge
of the model and the noise characteristics. The reinforcement learned estimator struggles
to match the performance of the Kalman filter, but still ensures controllability with single
measurements. Frame-stacking techniques improve upon this further.

Finally, we found that when analyzing the control strategies for the linear system, the rein-
forcement learning controller learns a strategy similar to the optimal strategy of the LQGC. For
the non-linear case, the reinforcement learning controller manages to outperform the LQGC
algorithm by stabilizing the system with a different control strategy that allows for a broader
distribution of the system’s momentum.

It would be an interesting future direction to focus on making the RL agent more au-
tonomous, by having it choose when and how strong to perform the weak measurements.
This would result in an adaptive algorithm that may learn to only measure when necessary.
Similarly, instead of frame-stacking the agent could learn to use the raw weak measurement
outputs instead, instead of only their average. Finally, future work could focus on extending
the system in interesting directions such as time-varying potentials, non-Markovian noise, or
interacting systems.
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Gymnasium) as well as the code and all configuration data used for obtaining the benchmarks
in this paper [32], are made available.

Table 1: Parametrization of the environment used for the benchmarks. Including
the parameters of the potentials, the time evolution, and the weak measurements.
All units are set to 1.

System Parameters
parameter | quadratic | cosine | quartic

TT

i T i

m T T T
A 0.05 0.05 0.05
O system 1.0 1.0 1.0
O ancilla 0.7 0.7 0.7
(p?)inic 0.1 0.1 0.1

Xih 8 8 8
Fax 8m 8m 8m

A Appendix

A.1 System parameters

For the simulation in order to make fair comparison between the different potential, we have
used the same initialization parameters on the on all three potentials, with the exception of
the potential constant k.

A.2 Weak measurement

We want to perform the weak measurement on the quantum state [¥) = |)) ® |¢), where
|y) is the system state and |¢) the ancilla state. The two systems interact via the Hamilto-
nian H;;; = A® p. We assume that the interaction time 0t is small enough, thus the time
evolution is dominated by the weak measurement. The time evolution can be written as
W) = U(Op) ® ) with :

U(t) = exp[—iAH;, ], (A1)

with A = s6t and s being the interaction strength and At the interaction time. Here A is a
Hermitian operator with the eigenstates a, acting on the system quantum state 1, and p is the
momentum operator acting on the ancilla state ¢.
. _ 1 2 2 :
Choosing the form |¢(q)) = Gsm77m f dq’ exp[—q’*/(40°)]|q’) for the ancilla state, per-

~ (2no
form a projective measurement in the q state using l_[q =1 ®|q)(q|. This leaves the state in

M, |V .
the form [¥, ) = %l-—>, and returns the measured quantity g,,, and the Kraus operator

an = WJ da exp[—(q, — Aa)*/(40?)]|a)(al, (A.2)

which is a Gaussian weighted sum of projectors onto the eigenstates of A.
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From the Kraus operator the probability density of the measurement follows as

P(q)="Tr[M(q) M (g I¥){|] (A.3)
— 1 = 2 —()La—q)z/(ZUz)
NorTs f_w da|y (a)|%e . (A.4)

Next we want to calculate the uncertainty of the measurement o, = (¢*) — (q)* using the
probability density. Starting with the expectation value of g,

(@)= J dqqP (q) (A.5)

Y : J ) J ) dqdaglep (@) |Pe a0/ (20%) (A.6)
20 )00 J—oo

= J daly (a)|*Aa (A7)

=2(A), (A.8)

one can see that the expectation value of the measurement is given by the expectation value
of the operator A. If we assume that ancilla wavefunction is much broader than the system
wavefunction, we can approximate |)(a)|? with a delta function.

oo

m f dad(a’ —(A)) exp[—(qg— Aa)*/(207)]

exp[—(q — A{A))*/(202)].

P(q) ~

1
~ (2n02)1/2)
This allows us to write the measurement result q as a stochastic quantity
q=MA) + AW, (A.9)

where AW is a zero-mean Gaussian random variable with a variance o2.

The same derivation can be done for {q?).

(@®) =J dqq*P (q) (A.10)
1 o0 oo ) )

— dad 2 2 —(ra—q) /(20’ ) A1l

%ij_w qdaq®|y (a)|%e (A.11)

=J daly (a)|? [202 + Azaz] (A.12)

=202+ 2%(4?). (A.13)

Putting both together yields the uncertainty of the measurement

03 =22(a?) +202% - A?%(a)? (A.14)
=202 4202, (A.15)

From this we can see that in the case A =1 and o — 0, the uncertainty of the measurement
reduces to the uncertainty of the system wavefunction, recovering strong measurement. This
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also translates to the uncertainty relation assuming the additional measurement using the
operator B with the eigenstates 8 and that A & B do not commute, giving us the relation

1

2
a 4 *

=okoh > (A.16)
Looking also in the other case with A = 0, we have no interaction between the system and
ancilla wavefunction and the uncertainty of a measurement reduces to 03 = 202 the variance

of the ancilla wavefunction.

A.3 Noise determination of classical system

The measurement and system noise of the classical system are defined by

w Q S
E[(th)(wf, v{,)]:(sT R)éﬁ,, (A.17)

where Q, R are the covariance matrices of the system and measurement noise, respectively, and
the S is the cross-covariance matrix between those two. Those matrices are chosen to mimic
the quantum system as closely as possible.

Based on Eq. A.9, the measurement noise covariance matrix follows directly as:

Q= |:O-§ncilla 20 :| . (A.18)
0 oancilla

The covariance matrix R of the system noise and the cross-covariance matrix S depend on the
width o of the system wavefunction, which is varying around a fixed value during a run.
The fixed value also depends on the underlying potential, so that the noise matrices change
depending on the potential. Because of that we numerically determined the values to be as
close as possible to the weak measurement back actions. This is done by running the quantum
system for a large number of steps and extracting the measurement and system noise added
by the weak measurements over 10° timesteps. The matrices are then given by:

| cov(x,x) cov(x,p) cov(X, Xmeas) COV(X, Pmeas)

_[COV(P’X) COV(P’P)]’ :|:Cov(p>xmeas) COV(p,pmeas)]' (A-19)

A.4 Linear quadratic Gaussian controller LQGC

The LQGC is an optimal control algorithm for linear systems subject to Gauss noise. It is com-
posed of the Kalman filter (or linear quadratic estimator LQE), which is a recursive estimator
using a time series of measurements to approximate the unknown variables, and the linear
quadratic regulator quadratic regulator (LQR), which converts the estimated values into an
applicable force.

A.4.1 Kalman filter

Assume we have a linear system, which can be described by the equations

Str1 =As; +Bu, +wy,
Y =Cs;+v;,

where u, is the known input at the timestep t and w,.v, are the process and measurement
noise respectively. It is assumed that the noises can be described as zero meas Gaussian noises
with the covariances Q, R.
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In order to predict the next step, only the estimation from the previous timestep and the
measurement from the current timestep are needed. The state of the filter can be described
using the a posteriori state estimate mean at the time t, including measurement up to the time
t’, $;-» and the a posteriori estimate covariance matrix, Py,,, which is used as a measure for
the accuracy of the state estimation.

Firstly the Kalman filter predicts the next state of the estimation, by updating the last state as
if process noise is applied

§t+1|t :A§t|t + Bu,,
_ T
P =AP A" +Q.

Next the state has to be corrected using the latest measurement y, ; by calculating the differ-
ence between the measurement and the optimal forecast of the estimated state:

2e41 = Ye41— C§t+1|t > (A.20)
Si41=CP 1 ,C" +R, (A.21)

where S, is the covariance of y,,;. From this the Kalman gain K follows as

Kis1 = Pes1ieCT S}y (A.22)
and the state estimation and covariance can be updated as
§t+1|t+1 = )Aft+1|t + Kk+15’3k+1 > (A.23)
Pt+1|t+1 =0 _Kt+1C)Pt+1|t . (A.24)
Based on the estimation we can now also define the prediction error
et1 = Yer1 — CSeear - (A.25)

A.4.2 Kalman Filter with same time step correlated noise

Normally it is assumed that the linear system has uncorrelated process and measurement noise,
but in the case of weak measurement, we have correlation between both noise types. To
accommodate this correlation, we rewrite the system equation, to be of uncorrelated noise,
following the derivation from [33]

Using an arbitrary matrix T, we transform the system to

Ser1 =As, +Bu, +w,+ T[y, —Cs, —v;]
=(@A—-TC)s;+Bu,+w;+ Ty, —Tv,

*

— A¥ *
=A"s tu; —wi,

with the new transition matrix A* = (A— T'C), new known input u} = Bu, + Ty, and the new
noise wy = w; + Tv,.

Now we choose the matrix T by setting the correlation between the new system noise and the
measurement noise to zero

E[wiv]1=E[[w,+Tv,]v/]]=S—TR=0, (A.26)

which yields
T=SR'. (A.27)

From this follows the covariance of the new process noise as:
Q*=Q—SR7'S'. (A.28)

Using the new state equation and covariance, the Kalman gain can be calculated normally.
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A.4.3 Extended Kalman filter

In the case that the system is described by the non linear functions f and h

Ser1 = f(5e,u) +wy,
Ye =h(s¢) +ve,
it is necessary for the Kalman filter to linearize the current estimate and covariance. This

model is called the extended Kalman Filter [33]. While the overall strategy of the filter stays
the same, there are some differences. We start by linearizing the system, with

0
A=, (A.29)
S
C(t)= ?Igt, (A.30)
S

(A.31)

where A, C are now the Jacobians of their respective functions. From the extended Kalman
functions follows from the same process as the standard Kalman:

§t+1|t = f(se,ue),

Pt+1|t :APthT +Q,
Ze41 = Yer1 — CBeanpe)
Sey1= CPt+1|tCT +R,
K1 = Pt+1|tCTSk_i1 >

§t+1|t+1 = §t+1|t + Kis1%k41 >
Pt+1|t+1 = _Kt+1C)Pt+1|t .

A.4.4 Linear quadratic regulator

The second part of the LQGC consists of the linear quadratic regulator LQR, which is defined
for a linear system by
St41 =As; +Bu,. (A.32)

In the case of inverted quadratic potential, we can use the A, B from the state equations,
whereas for the inverse quartic potential, we instead use the Jacboian matrices of the state
equations.
The LQR should return a controller

u, =—Ks;, (A.33)

that minimizes the quadratic cost

J=>(sTWase +ul Wou,) (A.34)
t

where Q, R are the weight matrices of the cost functions. Here we assume that applying
controls does not generate any cost and set W, = 0. The W; weight matrix is modeled so that
sZWlst = H and therefore the quadratic cost represents the energy of the system.

Using this approach we get the following weight matrix W; for the inverted quadratic potential,

L
unadratic = |:(2) L] . (A.35)
2m
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Figure 8: Visualization of the training results for training agents on the classical
system with inverse quartic potential. In a) the average termination time of all agents
after the training is shown against the number of measurements performed. For every
measurement number 48 different agent are shown, and are color coded depending
to rank their performance. In b) the process of training a RLE agent is showcased,
where the reward are plotted against the first 300 training epochs.

In case that we have a nonlinear system, we approximate the dynamics according to Eq. A.29
and set the weights to be s/ Wis, = H| :

kq(cos(mx/ky)—1) 2

A\nXlo)=) ks 0

Weosine = [ SS 1 :| > unartic = [ 0 i:| > (A.36)
2m 2m

where we evaluate the W,gine and Wy, every timestep, according to the latest state estima-

tion §,.

A.5 Reinforcement learning training

The PPO algorithm trains a policy my from which the actions a are sampled allowing for
exploration in the training. The policy is updated by maximizing the objective function L

9k+1 = argmaXGEs,aNnek [L(S) a, 95 Qk)] 5 (A37)
with L:
L(s,a,0,6;) =min (MA”% (s,a), g(e,A™0% (s, a))) . (A.38)
7, (a,s)

Since reinforcement learning is known to be vulnerable to performance collapse [34, 35],

caused by a few unfortunate episodes in the training, the PPO limits how far any new pol-

icy is allowed to differ from the previous one, by clipping the probability ratio % in the
(@,

objective function

(1+e)A, A>0, (A.39)
(1—e)A, A<O, '

with e controlling the clipping range. The new policy does not benefit by going far away from

the old policy.
In the training of the reinforcement learning models, we used 2 different sets of hyperpa-

rameters. One for the training of the RL.C models and one for the RLE.

g(e,A) = {
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Table 2: Hyperparameters of the reinforcement learning approach, specifying the
initialization of the RLC and RLE agents and their respective training process.

Reinforcement Learning Parameters
Parameter RLE RLC
learning rate 2e-05 ‘Nyeps | 3e-05
clipping rate 0.7 0.5

epochs 1000 10000
steps per epoch 100000 200000
batchsize 2048 1024
nepochs 20 10
action network [32, 32] [32, 32]
value network [32, 32] [32, 32]
activation function tanh tanh

The training of the RLE and RLC agents is done by utilizing the same underlying methods.
There is a variance in the used hyperparameters, which were determined using grid search
and are listed in the Tab. 2. During the training we tracked the returned reward after each
epoch and saved the models, which returned the highest reward.

The training of the RLC agent turned out be easily affected by getting stuck in local min-
ima, completely halting the learning process. Since this more often happened at small number
of weak measurements, we have utilized transfer learning [36] to circumvent this problem.
In transfer learning we trained 48 agents on Np,.,; = 48 weak measurements. These agents
were then used as the starting point for training with Np,., = 47 weak measurements. This
was repeated for each number of weak measurements until N, = 1 is reached. The trained
agents have then been evaluated on the potential as shown in 8 a) for the Kalman Fllter +
RLC controller on a classical system with an inverted quartic potential. At the starting point
of the training at N.,s = 48, the agents all show a performance close to on another, but as
the transfer learning continues, at around N,.,; = 20, the performance of the agents starts
to diverge. The majority of the agents exhibits increasing performance with the number of
measurements, while a small number of agents get stuck during the training and only show a

200000 —}— RLC + RLE
RLC
— 150000 —+— LQR + Kalman
S LQR
c
S
100000
£
£
g
-~
50000
0
0 10 20 30 40 50

# measurements

Figure 9: Comparison of RL vs LQR & Kalman Filter on the classical cartpole (with
inverse quadratic system). The noise level is fixed at o ,.,s = 0.5 and state estimators
in form of the Kalman Filter and RLE are added towards the comparison.
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Figure 10: Benchmarks of the various controllers, on the classical system depend-
ing on the number of measurements for the input. We showcase the performance
of classical controller using Kalman Filter + LQR (blue) and the pure reinforcement
learning controller (light red), as well as the mix of classical and reinforcement learn-
ing controllers with Kalman Filter + RLC (red) and RLE + LQR (light blue). The
performance is showcased as ratio of the average termination time between a se-
lected controller and the Kalman + LQR controller. Each plot represents a different
potential, the first being the quadratic potential, followed by the cosine potential
and quartic potential.
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Figure 11: Distributions of the position and momentum of the stabilized
wavepacket on the classical system. The position (x) of the wavefunction was
tracked over 10° timesteps for the LQR + Kalman controller (blue) as well as the RLG
+ RLE (red) controller and converted to histogram of the position probability p ({x)).
This is also showcased for the momentum (p) in the top right inserts. The three plots
represent measurement from different potentials, those being the quadratic (I), co-
sine (II) and quartic (IIT) potential.

fraction of the performance of other agents. THis shows the difficulty of the training process.
Because the training of the RLE isn’t directly depending on the average termination time of
the wavefunction, we don’t need to make use of transfer learning and can train the 48 agents
directly, independent from each other, one agent for every number of measurements we per-
form. In Fig. 8 b) the training process of the RLE agent for N,,,,, = 1 in the classical system
with inverse quartic potential is shown, demonstrating a fast converging in the training.

A.6 Extended classical benchmarks

In Fig. 9 the performance of adding an estimator to the RLC and LQR is showcased. Compared
to Fig. 3 the noise level is fixed at 0,,,,; = 0.7, resulting in higher overall performance for all
controller. Furthermore the performance gap has widened while using an estimator, with RLC
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+ RLE achieving a higher peak performance by a factor of ~ 5 compared to the RLC controller.

Performing the extended benchmarks on the classical surrogate model yields results similar
to the corresponding quantum test. Fig. 10 illustrates that, once again, the Kalman + RLC
model matches the performance of the LQGC for the quadratic and cosine potential. Only in
the case of the quartic potential is a performance advantage observed, with the performance
increasing by a factor > 3. Those results showcase a greater performance increase than that
on the quantum environment.

The controller combinations involving the RLE also only show a performance advantage
in the quartic potential. Compared to the quantum version, here the pure RL controller
(RLC + RLE) is able the showcase almost the same performance as RLC + Kalman.

Looking closer at the controller behaviour in the classical case, one can see in Fig. 11,
that the general observations from Fig. 4 remain valid. The differences are that the position
distribution of the RL controller in the cosine potential now displays a distinct peak around
the center of the potential, instead of having a plateau. Moreover, the position distribution
of the LQGC controller in the quartic case actually loses its single peak and is replaced by a
symmetrical double peak located around the center of the potential.
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