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Abstract

We report the first protocol specifically designed to generate anticoherent spin- j states
at different orders. The protocol consists of cycles of a rotation pulse about an axis fol-
lowed by a squeezing pulse in a perpendicular direction. To protect these states, we
develop dynamical decoupling techniques using group-based sequence design and the
dynamically corrected gate formalism. We analyze key sources of dephasing, disorder,
and dipole-dipole interactions and assess the effectiveness of our methods in preserv-
ing coherence. Potential applications of the produced anticoherent spin states include
quantum sensing and studies related to quantum entanglement.
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1 Introduction

Anticoherent (AC) spin states represent an extreme form of quantum behavior, contrasting
sharply with coherent spin states, which closely resemble classical angular momentum states
(see [1] for the origin of the concept and Section 2 for a detailed introduction). While co-
herent spin states exhibit minimal quantum fluctuations, pure AC states maximize quantum
uncertainty, making them fundamentally distinct. This exacerbated quantum nature makes AC
states highly sensitive to external perturbations, a feature that, while advantageous for certain
applications [2], also makes them particularly fragile in the presence of decoherence [3].

The interest in AC states stems from their unique property of achieving equal sensitivity
to rotations around any axis [4–8]. This rotational invariance not only makes them ideal for
tasks such as the alignment of Cartesian reference frames [9], but also positions them as pow-
erful tools in the wider field of quantum metrology. In particular, non-classical states of atomic
ensembles, such as squeezed spin states and highly entangled states, are known to beat the
standard quantum limit in terms of sensitivity [10]. However, while squeezed states gener-
ally improve accuracy along one axis at the expense of others, AC states, of which the spin-2
tetrahedron state is an example, uniquely enable the simultaneous estimation of multiple pa-
rameters [11]. This capability stems from their high degree of symmetry, often associated with
Platonic solids, which makes them particularly advantageous when the direction of the applied
transformation is unknown [5–7]. Ultimately, by allowing simultaneous estimation of several
transformation parameters with precision at the Heisenberg limit, AC states offer a significant
advantage in quantum-enhanced measurement strategies.

Schrödinger cat states and their multipartite equivalent, the Greenberger-Horne-Zeilinger
(GHZ) states, are well-known examples of AC states, though they only exhibit first-order an-
ticoherence. They have been successfully created on various physical platforms, such as pho-
tons, neutral atoms, and spins, and for different numbers of constituents or spin values; see,
for example, [12–17] and references therein. However, higher-order AC states have so far
been generated exclusively in multiphotonic systems [11, 18], underscoring the urgent need
for protocols that enable their realization on other physical platforms, such as atomic or solid-
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state systems. In this work, we fill this gap by introducing simple protocols that enable the
generation of AC states of various orders using only spin rotation and squeezing.

This manuscript is organized as follows. In Section 2, we review the concept of AC spin
states and discuss their general properties and interest. Section 3 details our protocol for gen-
erating AC states of different orders. Section 4 examines decoherence and mitigation strate-
gies, covering typical sources of dephasing and dynamical decoupling techniques. Section
5 discusses robust AC state generation, including the design of dynamically corrected gates,
error-resistant protocols using finite-duration pulses, and the impact of control errors. Finally,
Section 6 summarizes our conclusions and outlines possible directions for future work. Addi-
tional technical details are provided in the appendices.

2 Anticoherent spin states

In a general study of individual spin- j systems, anticoherence is best defined based on the den-
sity operator, as it offers a complete description of the system’s state, including both pure and
mixed cases. The density operator ρ can be expressed in terms of multipolar tensor operators,
defined as

TLM =

p

(2 j − L)!(2 j + L + 1)!
p

4π (2 j)!

∫

S2

YLM (Ω) |Ω〉〈Ω| dΩ , (1)

where L = 0, 1, . . . , 2 j and M = −L, . . . , L. Here, |Ω〉 denotes a spin-coherent state oriented
along the direction Ω ≡ (θ ,ϕ) [19]. The multipolar tensor operators are in direct correspon-
dence with the spherical harmonics YLM (Ω), acting as their operator analogues. They trans-
form according to the (2L + 1)-dimensional irreducible representations of the spin rotation
group SU(2) and form a complete orthonormal set under the Hilbert-Schmidt inner product.
The expansion of ρ then takes the form

ρ =
2 j
∑

L=0

L
∑

M=−L

ρLM TLM , (2)

where the coefficients ρLM are known as multipole moments or statistical tensors [19–22].
The multipoles ρLM are measurable physical quantities that encode information about the sys-
tem’s polarization and coherence and can be determined from intensity moments [23]. The
tensor operators basis thus serves as a powerful tool for both theoretical and experimental
investigations of spin- j systems. The quantum number L of the tensor operator corresponds
to the multipole order, with L = 0 representing the monopole (population), L = 1 the dipole
(orientation), L = 2 the quadrupole (alignment), etc., for higher orders. The monopole com-
ponent corresponds to a scalar quantity that remains invariant under rotations. Because it
has no angular dependence, it is the simplest and most isotropic term. The dipole component
is a vector-type quantity that transforms under rotations like a vector in a three-dimensional
space. A nonzero dipole moment indicates a preferred axis along which the spin expectation
value is aligned. The quadrupole component is a rank-2 tensor that characterizes the shape of
the angular distribution rather than its net direction. A nonzero quadrupole moment means
that the state exhibits alignment rather than mere orientation, i.e., the spin projections favor
particular axes without necessarily having a net spin vector. Based on this formalism, we can
now define anticoherent spin states.

Definition A state ρ is said to be anticoherent to order t, or t-AC, if ρLM = 0 ∀M for
1≤ L ≤ t, which means that all multipole moments of order L up to t vanish.
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Let J = (Jx , Jy , Jz) denote the spin operator. An AC state to order 1 is defined by the ab-
sence of net orientation, i.e. 〈J〉 = 0, while an AC state to order 2 further requires isotropic
fluctuations, ∆J2

x = ∆J2
y = ∆J2

z . More generally, an AC state to order t is one for which
all multipole moments up to rank L = t vanish, except for the monopole term fixed by nor-
malization. This leads to a more isotropic statistical distribution of the angular momentum
components and their products and makes AC states particularly suitable for applications that
require rotational invariance. A remarkable feature of pure spin states is their ability to exhibit
anticoherence up to an order limited by the spin quantum number j. Such AC states, referred
to as “kings of quantumness” in Ref. [24], contain no lower-order multipolar contributions in
the expansion (2). To illustrate this, consider two examples using the common eigenbasis of J2

and Jz , formed by the | j, m〉 states, which satisfy J2| j, m〉= j( j+1)| j, m〉 and Jz| j, m〉= m| j, m〉
(we set ħh= 1). First, the spin cat state

|ψcat〉=
1
p

2
(| j, j〉+ | j,− j〉) , (3)

is anticoherent to order 1 for any j > 1/2, since 〈J〉 = 0, but it does not exhibit higher-order
anticoherence. By contrast, the spin-2 tetrahedron state

|ψtetra〉=
1
2
(|2,2〉+ i

p
2|2,0〉+ |2,−2〉) , (4)

is anticoherent to order 2, satisfying both 〈J〉= 0 and the isotropy condition∆J2
x =∆J2

y =∆J2
z .

These examples illustrate how carefully constructed superpositions can cancel specific angular
momentum moments while preserving higher-order coherence, highlighting the nonclassical
nature of these states.

Beyond their fundamental interest, AC states have been studied in a variety of contexts.
In Majorana’s representation, a pure spin- j state corresponds to a symmetric state of N = 2 j
qubits [25,26]. From the entanglement perspective, a spin- j AC state can then be interpreted
as a maximally entangled state of N = 2 j spin-1/2 particles within the symmetric subspace,
shedding light on the relationship between anticoherence and multipartite entanglement [27].
As a result, the states generated by the protocols presented in this work correspond to the most
entangled symmetric multiqubit states. Their metrological usefulness has also been explored,
particularly in optimizing precision for rotation estimation with both pure and mixed states. It
was shown that AC states are optimal quantum rotosensors and that the higher their AC order
t, the more advantageous their metrological advantage [6, 8]. These properties highlight the
significance of AC states both in quantum entanglement theory and in quantum metrology.

3 Protocol for generating AC states

In this section, we present our protocol for generating a sequence of control operations that
produce a pure AC state of a given order t in a spin- j system. Our analysis focuses exclu-
sively on the unitary dynamics driven by a time-dependent Hamiltonian, while the impact of
decoherence will be addressed in the next section.

3.1 Controls and figure of merit

As in quantum optimal control (QOC), a crucial first step is to define an objective function that
depends on the controls and serves as a figure of merit, quantifying the quality of the final state
produced by them. Our goal is to prepare an anticoherent state of a given order t, regardless
of its specific form, rather than to aim for a predetermined target state. We therefore consider
measures that quantify the degree of anticoherence of spin states to a given order t, which we
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refer to as t-AC measures. Various such measures have been proposed; see, e.g., [28–30] and
references therein, but among these, one family stands out due to its exceptional sensitivity to
deviations from anticoherence: t-AC measures based on the Bures distance between density
operators, referred to as ABures

t [29]. Using these measures (for different orders t) will ensure
that the pure states generated by our protocol have properties very close to those of a genuine
t-AC state. The t-AC measure based on the Bures distance is defined as

ABures
t (ρ) = 1−

√

√

√

p
t + 1−
∑t+1

i=1

p

λip
t + 1− 1

, (5)

where λi are the eigenvalues of the spin-t/2 reduced state obtained by tracing out 2 j− t spin-
1/2 constituents (see [29] for more details). In the following, we write At(ρ) for ABures

t (ρ) to
keep expressions concise. The t-AC measure (5) can take a value between 0 and 1, these two
extreme values being realized only for coherent spin states (λ1 = 1, λi>1 = 0) and anticoherent
spin states (λi = 1/(t + 1) ∀ i).

To explore the controlled generation of pure AC spin states, we consider a Hamiltonian
capable of producing any SU(2 j + 1) spin unitary transformation, and therefore of accessing
the full state space [31,32], which is of the form

H(t) = Ω(t)
�

cos
�

φ(t)
�

Jx + sin
�

φ(t)
�

Jy

�

+χ(t)J2
z , (6)

where Ω(t) is the rotation rate about an axis in the x-y plane oriented at an angle φ(t) to the
x axis and χ(t) is the one-axis twisting rate which controls squeezing along the z direction.
Squeezing is essential, as it is the only term in the Hamiltonian (6) responsible for the creation
of nonclassical states from spin-coherent states [33]. A Hamiltonian of this form has been suc-
cessfully implemented in a variety of experimental settings, including the hyperfine manifolds
of cesium atoms [34] and dysprosium atoms [35, 36] as well as in condensates of spin-1/2
particles [37–39], and in atomic ensembles in optical cavities where light-mediated interac-
tions induce similar effective spin dynamics [40]. For strontium atoms, this Hamiltonian has
been investigated numerically for the universal generation of quantum states and gates [41],
and has also been realized experimentally [42]. In addition, the one-axis twisting term χJ2

z
has already been realized on several experimental platforms [43–45].

We will show that the number of control parameters can be reduced while still allowing the
generation of AC states. To do this, we fix φ(t) = π/2. The Hamiltonian (6) then reduces to
the well-studied one-axis twisting and rotation Hamiltonian H(t) = Ω(t)Jy+χ(t)J2

z , which can
be used to produce extreme spin squeezed states achieving the Heisenberg limit, see e.g. [46].
Our protocol exploits this Hamiltonian to maximize the objective function At(|ψ〉〈ψ|) starting
from a pure coherent spin state |ψ0〉. In QOC, the most efficient algorithms rely on the calcu-
lation of the gradient of the objective function with respect to the controls. However, in our
case, gradient-based methods, such as LBFGS or gradient descent with the use of automatic
differentiation, frequently only found local minima, resulting in a suboptimal set of parame-
ters and anticoherence measure. Initially, to find controls that generate AC states, we used the
well-known gradient-free CRAB algorithm [47] with the Hamiltonian (6), which gave satis-
factory results for small orders of anticoherence. For example, we were able to find controls
that generate spin states close to anticoherent states to order 5, with 1−A5 < 10−3 for j = 9.
However, we developed a pulse-based protocol that uses the same control parameters, specif-
ically designed for the generation of AC states, which greatly outperformed CRAB in terms of
speed, convergence and scalability. Despite the limitations of the gradient-free Nelder-Mead
method, our approach has enabled us to find controls that can successfully produce higher-
order AC states (up to t = 9 for j = 24) and that can handle large spins (up to j = 5000 for
t = 2). Furthermore, because our protocol applies the pulses sequentially, it is not limited by
the bandwidth of the control frequency, unlike in QOC.
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Figure 1: Diagram illustrating the coupling between state multipoles (for j = 2).
Each square represents a multipole ρLM of the spin state from the expansion (2)
(these are shown explicitly for L = 0, 1). Blue and green arrows indicate the effects
of rotation (Jy generator) and squeezing (J2

z generator), respectively. Red crosses
denote either the absence of coupling between two multipoles or the absence of an
adjacent multipole.

3.2 Pulse-based protocol

The key idea behind our pulse-based protocol lies in the distinct multipole coupling behaviors
of the squeezing and rotation operations. Squeezing generated by J2

z couples a multipole
ρLM only to its neighbors ρL±1,M , while the rotation generated by Jy affects only multipoles
with the same L (see Fig. 1 and Appendix A for details). Through squeezing, population can
therefore be transferred from a multipole at level L to one at level L + 1, which is desirable
when seeking to generate anticoherent states, in which all multipole moments of order less
than or equal to t are suppressed. While squeezing enables this upward transfer, it can also
cause reverse coupling from L + 1 to L, which can reintroduce lower-order moments and
prevent anticoherence from being achieved. However, this can be avoided by using a rotation
that places the L + 1 multipoles in specific M states, namely M = 0 and M = ±L, which are
decoupled from the lower levels. By transferring the population to these decoupled states, we
can apply a squeezing while keeping those multipoles occupied in the upper level, allowing
others in L to move to L + 1 without unwanted backflow. Conversely, a rotation can also
move a lower multipole from a decoupled position (M = 0 or M = ±L) to a configuration
where further squeezing pushes it upward. Figure 5 clearly demonstrates this behavior; see
Section 3.3.2.

Based on this idea, our protocol consists of a sequence of nC cycles, where each cycle
(except the first) applies a rotation about the y-axis followed by a squeezing operation along
z. Thus, in the one-axis twisting and rotation Hamiltonian, we alternate between applying
squeezing (χ(t) ̸= 0, Ω(t) = 0) and rotation (Ω(t) ̸= 0, χ(t) = 0) by activating only one term
at a time. The corresponding operations are described by the operators

R y(θ ) = e−iJyθ , Sz(η) = e−iJ2
z η ,

where θ and η are the amplitudes of the rotation and the squeezing. Note that this sequence
of pulses is similar to the protocol presented in [46]. The final state of the system after nC
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cycles is then given by

|ψnC
〉=

� nC
∏

i=1

Sz(ηi)R y(θi)

�

|ψ0〉 , (7)

where θ1 is always taken as zero since it is necessary to first perform a squeezing. The initial
state |ψ0〉 is the coherent state that points in the direction of the y-axis. For each sequence,
we optimize the parameters {θi , i = 2, 3, . . . , nC} and {ηi , i = 1, 2, . . . , nC} to generate an AC
state of a given order, that is, a state that maximizes the AC measure (5) for a given t. As
we shall see, while this approach is fully realizable with the Hamiltonian (6), it is specifically
tailored for AC state generation rather than producing arbitrary spin states. This protocol is
experimentally accessible with current technology, both in terms of the necessary gates [46]
and the attainable experimental parameters θ and η [48, 49]. For example, the coherence
times of the coherent and spin cat states in a Sb donor nucleus ( j = 7/2) implanted in silicon-
based chip are respectively of T ≈ 100 ms and T ≈ 14 ms. Based on conservative value
of the squeezing strength χ, a typical squeezing parameter η = χ t = π/2 is achievable in
4.375 ms [48,49], well within the coherence time of the system.

3.3 Results

3.3.1 Numerical optimization

We first optimize the parameters ηi and θi numerically using the gradient-free Nelder-Mead
algorithm. Figure 2 shows the pulse sequence obtained for j = 3, which prepares an AC state of
order 3 with a deviation 1−A3 < 10−7 in nC = 3 cycles. The first squeezing operation, Sz(η1),
transfers the population from the lower-order multipoles ρ2±2 to the higher-order multipoles
ρ6±2. The subsequent rotation, R y(θ2), shifts the dominant population within L = 6 from
M = ±2 to M = 0. As discussed previously, the M = 0 components are decoupled from lower-
order multipoles under squeezing, allowing the next squeezing step to preserve these higher-
order contributions without transferring them back. Finally, the rotation R y(θ3) removes any
residual population in ρ20 by transferring it to ρ2±1 and ρ2±2, which are completely eliminated
by the final squeezing operation.

Figure 2: Protocol for generating anticoherent states of order 3 for spin j = 3 using
nC = 3 cycles. The optimization is performed over all parameters (η1,η2,η3,θ2
and θ3). Each colored rectangle represents the modulus squared of the corre-
sponding multipole of the expansion (2). The final anticoherence measure reaches
1−A3 < 10−7.

7
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Figure 3: Highest anticoherence measure achieved using the pulse-based protocol for
orders t = 2,3 and 4 (from top to bottom), shown as a function of the spin quantum
number j for different numbers of cycles nC .

In Figure 3, we present the maximum AC measures of order t = 2,3 and 4 obtained by
optimizing this protocol, as a function of the spin quantum number j for different numbers
of rotation-squeezing cycles nC . The top panel reveals a clear qualitative difference between
nC = 2 and nC = 3, the latter ensuring that all generated states satisfy 1−A2 < 10−7. This
suggests that nC = 3 acts as a threshold in the pulse-based protocol to achieve AC to order
t = 2. A similar threshold behavior is observed for t = 1 (data not shown), t = 3, and t = 4,
occurring at nC = 1, nC = 4, and nC = 7, respectively, as illustrated in the second and third
panels. This seems to indicate that the pulse-based protocol is indeed specifically optimized
to generate AC states. Finally, with nC = 14, we are able to successfully generate a state with
A9 > 0.99 for j = 24, corresponding to the highest AC order achievable with such precision
before the number of cycles becomes too large for the Nelder-Mead optimization to remain
effective.

In Table 1, we present the accumulated values of rotation and squeezing obtained for the
generation of AC states of order t = 2,3, . . . , 7, up to numerical errors (1−At < 10−15). These
control parameters were obtained to minimize the total squeezing time, which is anticipated
to be the limiting factor on the experimental duration of the protocol. The chosen spin number
j is systematically the smallest one for which a given order of anticoherence t is theoretically
possible. The values found for each parameter (for j = 2,3, 6 and 12) are provided in a GitHub
repository [50], alongside Julia code used to optimise our protocol.

3.3.2 Analytical results for t = 2

Our numerical results show that the cat state, which is AC of order 1, can always be generated
in a single cycle using η1 = π/2 for any j, a finding previously reported and proved in [51–53].
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Table 1: Minimum number of cycles nC required to generate a pure AC state of
order t (with 1 −At < 10−15) in a spin- j system. The values chosen for j are the
smallest that still allow the generation of an AC state to order t. For those values, we
observe that nC always coincides with j. The last two columns of the table indicate
the accumulated values of rotation and squeezing required to generate the state.

j t nC Total rotation
∑nC

i=1 |θi| Total squeezing
∑nC

i=1 |ηi|

2 2 2 0.560 1.323

3 3 3 3.824 1.325

6 4 6 9.818 0.959

6 5 6 6.496 1.043

12 6, 7 12 17.812 1.953

Figure 4: Majorana representation of the states (10) (left) and (13) (right) produced
by 3 rotation-squeezing cycles.

Similarly, we have just seen in Fig. 3 that AC states of order 2 can be generated from 3 cycles
for all j. Based on this observation and on the intuition provided by Fig. 1, we were able, for
integer spin j, to derive analytical values for the required control parameters. By examining
the effect of the control parameters on the multipoles TLM for L ≤ 2, we identified that 2-AC
spin- j states could be generated using the following set of squeezing and rotation values

η1 =
π

2
, θ2 = −

π

4 j
, θ3 =

π

2
. (8)

These were subsequently adopted as an ansatz for the next steps of our protocol. Using a
symbolic computation program and the results from Appendix A, we further obtained the
following squeezing parameters for j = 2

η2 = −
arccot

p
2

2
, η3 =

arccot
p

2
4

. (9)

With the control parameters (8) and (9), the generated state is the tetrahedron state (as shown
in Fig. 4)

|ψ〉= c1|2,−2〉+ c2|2, 0〉+ c1|2,2〉 , (10)

where

c1 =
−1/
p

2+ i
p

6
, c2 =

p
2+ i
p

6
. (11)
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Figure 5: Protocol for generating a spin-3 AC state of order 3 based on nC = 3 cycles.
The control parameters used are those given in Eqs. (8) and (12).

For j = 3, we found the parameter values

η2 = −
arccot

p
2

2
, η3 =

1
8

�

π− arctan
�

2
p

2
��

, (12)

leading to the octahedron state (also represented in Fig. 4)

|ψ〉= c1|3,−3〉+ c2|3,−1〉 − c2|3, 1〉 − c1|3,3〉 , (13)

where

c1 = −
1
4

i
�

1
3

�

−241+ 22
p

2i
�

�
1
8

, c2 = −
i
p

5
4

�

1+ 11
p

2i
�1/4

35/8
. (14)

The latter state is not only AC of order 2 but also of order 3. This is a special result, as it
is the only AC state of order 3 that we could obtain with only nC = 3 cycles. The other AC
states of order 3 we found needed nC = 4 cycles, as can be seen in Fig. 3. We show in Fig. 5
the evolution of the state multipoles during the generation of the octahedron state (13). It
can be compared to the protocol represented in Fig. 2 which also gives an AC state of order 3
for j = 3. These analytical results are particularly remarkable because, although the applied
controls do not allow the generation of arbitrary spin states, they can still produce exact AC
states, as confirmed by our numerical results shown in Fig. 3.

For j > 3, the parameters η2 and η3 are determined by numerical optimization to ensure
that 1−A2 < 10−6. For any j, the evolution of the multipoles to obtain an AC state of order 2
from the parameters (8) is similar to the evolution illustrated for j = 3 in Fig. 5. The process
begins by generating the cat state with η1 = π/2. Next, the rotation θ2 = −π/(4 j) isolates the
highly populated multipoles ρ2 j±1 from the lower levels by transferring them to ρ2 j0. This is
followed by the squeezing η2, which shifts the ρ2±2 multipoles to higher L. The subsequent
rotation θ3 =

π
2 fully transfers ρ20 to ρ2±2. Finally, the squeezing η3 further moves these

multipoles to higher L, completing the protocol.
This approach of first generating the 1-AC state and then the 2-AC state is not the most time-

efficient in terms of squeezing and rotation durations. However, the initial cat state produced
by the first squeezing η1 = π/2 could be generated more rapidly using alternative dynamical
methods [54–56] or based on post-selection [57], thus reducing the total time required for the
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j
10 25 50 100 200 300

𝜂

10−2.5

10−2.0

10−1.5

10−1.0

10−0.5

𝜂2 𝜂3

3

4�2j
5
4j

Figure 6: Squeezing parameters η2 (blue dots) and η3 (orange triangles) required
for generating a 2-AC spin- j state with our pulse-based protocol. The other control
parameters are set to η1 =

π
2 , θ1 = −

π
4 j and θ2 =

π
2 . The red and green lines

represent the analytical approximations given in Eq. (15).

spin squeezing. As this first large squeezing η1 = π/2 represents a substantial portion of the
total squeezing time, the exploration of alternative methods to generate the cat state could
prove to be highly advantageous.

Additionally, these analytical values minimize the number of parameters that need opti-
mization, enabling the generation of AC states of order 2 for larger spin numbers. Figure 6
shows the squeezing parametersη2 andη3, obtained via numerical optimization up to j = 350,
as functions of j in log-log scale, providing strong evidence that they follow power laws well
approximated by

η2( j) =
3

4
p

2 j
, η3( j) =

5
4 j

. (15)

The validity of these expressions seems to extend well beyond the fitting region, since by using
(15) for η2 and η3 for j = 5000, the generated state has a 2-AC measure close to 1 with a
deviation 1−A2 < 10−3.1

4 Decoherence and mitigation strategies

In the previous section, we presented general protocols for generating AC states in quantum
systems of total angular momentum j, which can be large. These systems may arise from a
variety of physical platforms and can represent either individual quantum systems or multi-
partite systems composed of many particles. Although higher angular momentum enables the
generation of higher-order AC states, it also increases their vulnerability to decoherence, as
shown in Ref. [3]. Indeed, achieving higher degrees of anticoherence not only accelerates
decoherence, but also requires access to larger systems, which are naturally more prone to
additional sources of dissipation. Therefore, it is essential to develop strategies aimed at sup-
pressing decoherence and correcting finite-duration pulse errors during the state preparation
process in order to preserve, generate, and utilize AC states [59].

1For large spin j, low-order AC measures of random states sampled according to the Haar measure can be
significantly high (see related Ref. [58]). Therefore, we might suspect that the state generated by our controls for
j = 5000 is simply a random state with a high 2-AC measure. However, this is not the case. For a sample of 5000
random states, we find an average value of 1−A2 > 10−2 (with a standard deviation σ < 3.3 · 10−3), which is an
order of magnitude larger than that of our generated state.
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4.1 Typical sources of dephasing

A practical platform for experimentally realizing the protocols presented in Sec. 3.2 is an en-
semble of N spin-1/2 particles, where collective spin-N/2 states can be generated within the
symmetric subspace of the total Hilbert space. In this system, SU(2) operations correspond to
global rotations of the ensemble, while squeezing is achievable, e.g., by coupling the ensemble
to a resonant circuit [60], a mechanical resonator [61–63] or a cavity mode [63–65]. However,
the system is susceptible to coherence loss resulting from undesirable dynamics, such as local
disorder and dipolar interactions between neighboring spin-1/2. These effects are captured
by the error Hamiltonian

Herr = Hdis +Hdd , (16)

with
Hdis =
∑

i

δi e⃗i · j⃗i ,

Hdd =
∑

i, j

∆i j

�

3
�

e⃗i j · j⃗i
��

e⃗i j · j⃗ j

�

− j⃗i · j⃗ j

�

,
(17)

where Hdis describes the set of spins { j⃗i} rotating around different axes {e⃗i} with different
frequencies {δi} and Hdd describes dipole-dipole interactions of frequencies

�

∆i j

	

between
pairs of spins with different orientations. When the Rotating Wave Approximation (RWA)
holds, all spins align in the same direction (z), leaving only the terms

Hdis =
∑

i

δi ji,z , Hdd =
∑

i, j

∆i j[3 ji,z j j,z − j⃗i · j⃗ j] . (18)

In the disorder-dominated regime (δi ≫∆i j), this model captures the main dephasing mecha-
nism to first order in quantum magnetometers based on dense ensembles of NV centers. In this
regime, the sensitivity of the sensor is ultimately limited by a combination of factors: strong
local disorder resulting from crystal inhomogeneities and interactions with the surrounding
spin environment, composed of randomly distributed nuclear spins (13C) and nitrogen defects
(P1 centers), as well as dipole interactions between neighboring NV centers [66–70]. In such
systems, the dipole-dipole Hamiltonian in the rotating frame reads [68,71]

HNV
dd =
∑

i, j

∆i j[2 ji,z j j,z − j⃗i · j⃗ j]

=
∑

i, j

∆i j

§

2
3
[3 ji,z j j,z − j⃗i · j⃗ j]−

1
3

j⃗i · j⃗ j]
ª

,
(19)

where the Heisenberg Hamiltonian −
∑

i, j∆i j j⃗i · j⃗ j acts trivially on the collective spin-N/2
subspace and hence does not contribute to dephasing to first order of the Magnus expansion.
As we will focus solely on first-order decoupling strategies, we may drop the Heisenberg term
and use the conventional dipole-dipole Hamiltonian in Eq. (18). In the interaction-dominated
regime, the model captures the dephasing mechanism in solid-state nuclear spin ensembles,
where the dipolar interactions between nuclear spins are typically greater than local disorder
due to their low gyromagnetic ratio [72–74].

Although the dephasing Hamiltonian (18) generates only unitary dynamics, it does not
preserve the polarization of the ensemble and can be described as a form of intrinsic deco-
herence that induces information leakage out of the collective spin subspace. In this case, the
effect of the environment is entirely captured by a static random dephasing term that describes
the local magnetic field created by the bath on each spin, introducing disorder into the system.
In a more realistic scenario, fluctuations in the local magnetic field due to the dynamics of the
bath need to be taken into account, but the static approximation remains valid for time scales

12

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.001


SciPost Phys. Core 9, 001 (2026)

much smaller than the memory time of the bath (non zero in the non-Markovian regime). In
the case where the bath dynamics is slow compared to the one due to the system-environment
coupling, the static approximation is justified to describe the decay of coherence; this is the
case, for instance, for an ensemble of NV centers interacting with a spin bath composed of
13C nuclear spins [75] and P1 centers [76–78]. It becomes necessary to include the dynamics
of the bath in the calculation, for example, when studying the spin-echo decay where low-
frequency noise becomes important on the timescale of interest, and this is usually done by
replacing the quasi-static dephasing of spin i (δi in Eq. (18)) with a random, time-dependent
dephasing term δi(t) with a correlation function 〈δi(t)δi(0)〉 = δ2

i e−t/τc , associated with a
Lorentzian spectral density centered on zero frequency, where τc is the memory time of the
bath [76–79]. In this work, we consider decoupling protocols with total duration T satisfying
T < 1/
q

〈δ2
i 〉 ≪ τc , justifying the approximation of the system dynamics by a random, static

disorder with zero mean and standard deviation
q

〈δ2
i 〉.

Another platform suitable for the generation of AC spin states is based on the spin- j hyper-
fine manifold of alkali atoms, where rotations can be implemented using a rotating magnetic
field, and squeezing is achieved via an off-resonant laser beam [41,80,81]. In these systems,
decoherence may arise from interactions with a fluctuating magnetic field or from quadrupole
interactions with an electric field [82, 83]. The system dynamics is typically described using
the framework of open quantum systems, where decoherence is modeled through a master
equation. The dephasing caused by interactions with a magnetic field is represented by a
jump operator proportional to the collective spin operator Jz , while electric quadrupole in-
teractions are incorporated through the addition of a Hamiltonian term proportional to J2

z ,
leading to energy level shifts in the spin system. Although the following sections focus only
on an interacting spin ensemble, our results apply equally well to the alkali atom platform.
This is because the dephasing and quadratic terms Jz and J2

z transform under the dynamical
decoupling sequences considered in this work in the same way as the disorder and dipolar
terms in Eq. (18).

Furthermore, unwanted dynamics that occur during the application of each pulse of the
preparation protocol (control pulse), whether rotation or squeezing, can also introduce slight
deviations from the intended unitary operations (i.e. finite-duration errors), causing the state
preparation protocol to miss the target state. To quantify these finite-duration errors, it is
common to move to the so-called toggling frame, which is defined as the interaction picture
with respect to the control Hamiltonian. For an ideal propagator U(t), which implements a
target pulse U(τ) = U over a time duration τ, the faulty pulse is given by Ufaulty = Ue−iτHeff ,
where the effective Hamiltonian Heff generates the finite-duration errors. If decoherence is
small enough (τ∥Herr∥ ≪ 1 where ∥·∥ denotes the operator norm), the effective Hamiltonian
can be approximated as

Heff ≈
1
τ

∫ τ

0

U†(t)HerrU(t)d t . (20)

4.2 Mitigating dephasing with dynamical decoupling

In order to mitigate the impact of noise and decoherence in the system, a periodic sequence
of pulses, known as a dynamical decoupling (DD) sequence [84, 85], can be applied to the
system. This DD sequence sequentially and globally rotates the spins of the ensemble in such
a way that the system is periodically refocused, preventing errors from accumulating. Many
DD sequences have been designed to suppress noise induced by a Hamiltonian of the form (16),
with each sequence showing variable levels of efficiency depending on the specific parameter
regime [72, 73, 86–88]. The choice of the most appropriate sequence depends mainly on the
details of the experimental setup, such as the strength of the different noise sources and the
minimum pulse duration that can be achieved.
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Mitigating finite-duration errors during a control protocol is a more tedious task and re-
quires more advanced techniques, such as the use of dynamically corrected gates (DCG) [89–
91]. In this scheme, a DD sequence is modified to remove the unwanted Hamiltonian while
implementing the intended unitary operation. DCGs were originally constructed to implement
simple single- and two-qubit operations in a qubit register, but their design for more complex
operations in other quantum systems is not trivial because not all DD sequences are suitable to
serve as building blocks for the construction of a DCG. In particular, they must be associated
to a decoupling group and designed on the Cayley graph of that group [90], a requirement that
is not satisfied by any of the current state-of-the-art sequences for the noise Hamiltonian un-
der consideration (18). However, decoupling sequences that satisfy these requirements have
recently been introduced and their potential application in the construction of a DCG has been
pointed out [92, 93]. In the next section, we use these sequences to construct a DCG that
protects the pulse-based protocols described in the previous section from the effect of disorder
and dipolar interactions in a spin ensemble.

5 Robust generation of AC states

In this section, we introduce DCGs designed to perform rotation and squeezing operations
protected from finite-duration errors caused by disorder and dipolar interactions in an en-
semble of N spin-1/2. We then explain how they can be used in the context of protecting
the pulse-based protocol described in Sec. 3.2 and demonstrate their effectiveness in the low-
decoherence regime of parameters. Finally, we study the effect of control errors on the per-
formance of our DCGs in order to identify the relevant regime of parameters where applying
a DCG may improve the fidelity of the control protocol.

5.1 Dynamically corrected gate design

The building blocks of our two DCGs are the TEDD and TEDDY sequences introduced in
Refs. [92] and [93] and shown in Fig. 7. They consist of 24 and 8 pulses, each corresponding to
one of the two rotations a and b specified in the axis-angle notation for each sequence. TEDD
cancels the general Hamiltonian (17) regardless of whether the RWA holds, while TEDDY can-
cels arbitrary disorder but dipolar interaction only under the RWA. We note that the TEDD se-
quence considered here slightly differs from the one presented in Ref. [92], as we have decided
to use an Eulerian path on the Cayley graph that passes by each vertex exactly once during
the first half of the sequence. This choice ensures that, in the ideal pulse regime, dephasing
is suppressed in the timescale of 12 pulses, instead of 24, which leads to better performances.
To construct the DCGs, we insert 11 (resp. 3) identity pulses at the appropriate locations in
the TEDD sequence (resp. TEDDY), following the procedure described in Refs. [89, 90] and
we insert the unitary pulse we want to implement at the end of the sequence (see Fig. 7).
The resulting sequences, which we call TDCG and TYDCG, are guaranteed to implement the cor-
responding unitary operation while refocusing the system, provided that two conditions are
met:

1. Firstly, the identity pulse and the target unitary pulse must have the same finite-duration
errors. If this is the case, this pair of pulses is called a balanced pair.

2. Secondly, these finite-duration errors must be suppressed by the DD sequence used in the
construction. If the finite-duration error is no longer suppressed by the DD sequence, we
say that it has leaked out of the correctable subspace, which contains all the Hamiltonians
suppressed by the sequence.
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Figure 7: Schematic representation of the DD sequences used in this work (left) and
their corresponding dynamically corrected gates (right). In the DCGs, the stretched
pulse represents either a rotation unitary, a squeezing unitary or a rotation followed
by a squeezing. The DD pulses are labeled using axis-angle notation, as indicated in
the boxes.

We begin by addressing the first condition with a simple construction of balanced pairs.
For a simple control Hamiltonian of the form H(t) = f (t)h, where h is a time-independent
operator and f (t) is the control profile that generates a target unitary gate U(τ) = U over a
duration τ, a simple prescription for the balanced pair construction is presented in Ref. [89]. In
this procedure, the unitary pulse at the end of the sequence is obtained by stretching the control
profile of the desired gate, such that the new control profile is given by fstr(t) =

1
2 f (t/2), which

implements the same unitary gate U in a duration 2τ. The identity pulse is then obtained by
applying the intended gate with the original control profile f (t), followed by the reverse time-
antisymmetric pulse, which corresponds to a control profile − f (τ− t). Overall, the balanced
pair is defined by the two control profiles

Stretched pulse profile : fstr(t) =
1
2

f (t/2) , t ∈ [0,2τ] ,

Identity pulse profile : fid(t) =

¨

f (t) , t ∈ [0,τ] ,
− f (2τ− t) , t ∈ [τ, 2τ] .

(21)

A similar design can be used to construct a balanced pair in a composite pulse sequence. For

example, for a composite pulse composed of two successive pulses U1(t) = e−ih1
∫ t

0 f1(t ′)d t ′ and

U2(t) = e−ih2
∫ t

0 f2(t ′)d t ′ , the stretched pulse is obtained by individually stretching the profiles
f1(t) and f2(t). The identity pulse is then obtained by applying the composite pulse, followed
by the same pulse sequence executed in reverse, where the reverse time-antisymmetric control
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profile is used for each pulse. This design therefore requires us to be able to reverse the sign
of the control Hamiltonian.

We now turn to the second condition, which requires that the finite-duration error (20)
be effectively suppressed by the DD sequence. Whether this condition is met depends on the
specific pulse that is being implemented. For example, when applying a squeezing pulse along
the z-axis, which commutes with the noise Hamiltonian (17), the finite-duration errors are
indeed suppressed by both DD sequences, and the condition is satisfied. In contrast, for a
rotation pulse, the most general form of the finite-duration error takes the form

Heff =
∑

i

δi m⃗ · j⃗i +
∑

i j

∆i j

�

3 j⃗i · (M j⃗ j)− j⃗i · j⃗ j

�

, (22)

where m⃗ is an unnormalized vector and M a symmetric matrix, both of which depend on
the specific rotation being implemented. Their explicit form are given in Appendix B. In this
case, we find that the error remains suppressed by the TEDD sequence but leaks out of the
correctable subspace of TEDDY.

In the case where a composite pulse is to be implemented, finite-duration errors are slightly
more complex, and it can be observed that the finite-duration error of a composite pulse con-
sisting of a rotation followed by a squeezing is suppressed, while that of a composite pulse
consisting of a squeezing followed by a rotation leaks out of the correctable subspace (see
Appendix B).

This leaves us with two options for protecting the pulse-based protocols of Sec 3.2, which
consist of several cycles each consisting of a rotation followed by a squeezing. The first strategy
is to protect each cycle as a block using the dynamically corrected gate TDCG, and the second
is to protect each rotation individually using TDCG and each squeezing using TYDCG.

5.2 Pulse-based protocols robust to finite-duration errors

To evaluate the performance of a dynamical decoupling protocol, we use the distance met-
ric [92,94,95]

D(U , V ) =

√

√

1−
1
ds
|Tr[UV †]| , (23)

which quantifies how close a noisy evolution U is to the ideal target unitary V for a system
of dimension ds. To identify parameter regimes where incorporating dynamically corrected
gates (DCGs) enhances performance, we compute D(U , V ) for a pulse-based protocol both
with and without DCGs, across a broad range of parameters (δ/χ,∆/χ). Here, δ = ∥Hdis∥
and ∆ = ∥Hdd∥ denote the strengths of the disorder and dipolar interaction Hamiltonians,
respectively, and χ is the amplitude of the control Hamiltonian. The results are averaged over
20 randomly generated instances of Hdis and Hdd of the form of Eq. (18), using rectangular-
shaped control pulses.

We calculate the distance (23) between the noisy and ideal state preparation protocol prop-
agators of an AC state to order 2 in a system of N = 4 spin-1/2 particles, and of an AC state
to order 3 in a system of N = 6 spin-1/2 particles, using the optimized rotation and squeezing
parameters presented in the GitHub repository [50] for t = 2 and t = 3 respectively. The
results are shown in Fig. 8. We consider two strategies: one where each pulse is individually
protected by a DCG (red surface), and another where each cycle is protected as a block (green
surface). Both protocols yield smaller distances compared to the unprotected noisy protocol
(the ’NoDD’ scenario), provided the ratio between the pulse amplitude and the noise ampli-
tude is sufficiently small, as expected [90]. When this ratio exceeds a critical threshold, the
decoupling protocol becomes less effective and introduces more errors than it corrects, due to
the significantly longer implementation time of the DCG (see Appendix D for more details).
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Figure 8: Left: average distance (23) in the (δ/χ,∆/χ) parameter space between
the ideal and noisy control protocols for the generation of an AC state of order 2 (top)
and 3 (bottom). Right: infidelity of the state preparation protocol for an AC state
of order 2 (top) and 3 (bottom). Results are shown for protocols without dynamical
decoupling (gray), with DCGs applied to each pulse (red), and with DCGs applied
to each cycle (green). The blue line in the center plots, corresponding to δ = ∆,
separates the interaction dominated regime (∆ > δ) from the disorder-dominated
(δ >∆) regime.

In the absence of pulse imperfections, both DCG strategies perform similarly, as indicated
by the near-complete overlap of the red and green surfaces in Fig. 8. However, protecting
each pulse individually results in a slightly smaller distance in all parameter regimes, which
can be explained by the superior performance of TEDDY, which cancels out certain higher-
order terms, compared to TEDD. In the disorder-dominated regime (δ > ∆), we find that
this strategy outperforms the unprotected protocol (NoDD) when δ/χ ≲ 10−1.6 for both the
2-AC and 3-AC state preparation protocols. Conversely, in the interaction-dominated regime
(δ <∆), the performance improvement occurs when∆/χ ≲ 10−1.6 for the 2-AC protocol and
∆/χ ≲ 10−1.3 for the 3-AC protocol.

We may also calculate the infidelity of the prepared quantum state,

I = 1−
�

�〈ψ0|V †U |ψ0〉
�

�

2
, (24)

where |ψ0〉 is the initial state. We see that the regime where the DCG strategies perform better
than NoDD occurs when the infidelity is already quite low, with I ≲ 10−2.5 (resp. I ≲ 10−2)
for the 2-AC (resp. 3-AC) state preparation protocol. The DCG protocols should therefore be
used in systems where the state-preparation protocol achieves a fidelity already quite high
(F ≳ 99−99.9%) and where the leading source of error is decoherence and is not induced by
the control pulses. In such systems, dynamically corrected gates can help decrease infidelity
by further orders of magnitude ; for instance, for the 2-AC state preparation protocol, if the
initial infidelity is as low as I ∼ 10−3.5, the protection offered by the DCG further reduces
the infidelity down to I ∼ 10−5. We also note that the smallest infidelity is always achieved
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by the individual pulse protection (resp. cycle protection) in the disorder-dominated (resp.
interaction-dominated) regime, when no control error is taken into account.

Such low infidelities are essential, for example, for realizing fault-tolerant quantum com-
putation with logical qubits encoded in a realistic number of physical qubits. In particu-
lar, recent works have proposed encoding a logical qubit using spin- j AC states [96–98].
Our protocols could therefore find applications in quantum computing platforms based on
atomic or molecular spins, where highly non-classical spin- j states serve as logical qubit en-
codings [81,82,99–102].

In order to further increase the efficiency of the protection protocol and its usefulness
in experimental setups, it might be possible to optimize the DCG scheme, using the many
degrees of freedom in the choice of the pulse sequence, so that the crossover between the
NoDD and DCG surfaces in Fig. 8 occurs at greater infidelities and for the DCG to offer better
protection over a wider range of parameters. Increasing the amplitude of the DD pulses (red
and green pulses in Fig. 7) can also enhance performance by reducing the total duration of the
DCGs. Although stronger pulses generally introduce larger control errors, we show in the next
section that systematic errors in the DD pulses are corrected to first order and are therefore
less detrimental. Consequently, using stronger but potentially more error-prone DD pulses can
actually be beneficial for maximizing the overall fidelity of the protocol.

5.3 Effect of control errors

Dynamically corrected gates are constructed to provide some protection against finite-duration
errors, at the cost of a significant control overhead. In particular, the DCGs presented in this
work replace a single pulse with a sequence of 36 pulses for TDCG and 12 pulses for TYDCG.
This overhead can be detrimental to the system if the errors associated with the pulses, which
are not all corrected by the DCG, are non-negligible, in which case the pulse sequence can
induce more errors than it corrects. In Appendix C, we study the effect of control errors on
the performance of the DCG strategies presented above, using simple error models consisting
of flip-angle errors [103], where each rotation or squeezing is subject to a slight over-rotation
or over-squeezing. These deviations arise from imperfections in the pulse amplitude, captured
by an error parameter ε, leading to an effective pulse amplitude of χfaulty = χ(1+ ε) rather
than the intended χ.

Two distinct types of pulse error must be considered in a DCG: those affecting the DD
pulses and those affecting the balanced pair. Errors of the first type (those associated with
DD pulses) are automatically corrected to first order by the DCG, provided they are system-
atic and lie within the correctable subspace of the sequence. This robustness arises from the
Eulerian design of the DCG [85,104]. In the sequences investigated in this work, correctable
errors include systematic over- or under-rotations and axis misspecification, where a rotation
is performed around a slightly incorrect axis [92]. As these errors are self-corrected at first
order by the DD sequence, they are less detrimental to the overall performance of the DCG,
and we find that a DCG outperforms the unprotected protocol when the control error mag-
nitude satisfies ε ≲ λ

p

∥Herr∥/χ, where ∥Herr∥ denotes the supremum operator norm of the
noise Hamiltonian (18), and λ is a constant that depends on the ratio between the duration of
the DCG and of the unprotected protocol, as well as the norm of the second-order term of the
Magnus expansion (see Appendix C). The parameter λ can be estimated using analytical upper
bounds of the DCG’s distance, and we find that λ ∼

p

2/γα2 where γ = χτ and α = τDCG/τ

and where τ (resp. τDCG) is the duration of the NoDD (resp. DCG) protocol. For the GHZ
state preparation protocol considered in Appendix C, we find λ ∼ 10−1. We also note that
the performance of the DCG is limited by the control errors in the regime ε ≳ ∥Herr∥/χ, in
that increasing the amplitude χ to shorten the DCG duration no longer decreases the distance
between the noisy gate and the desired gate, since ε is the leading error parameter.
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Table 2: Performance regimes of a DCG when control errors are introduced in the
pulse sequence. We consider errors in the DD pulses and in the balanced pair, distin-
guishing between type I errors (where identity pulses introduce no additional errors
but fail to correct over-rotation) and type II errors (where identity pulses imperfectly
implement the identity, introducing new errors). We find the parameter regimes
where DCG outperforms the NoDD protocol and where its performance is limited by
control errors.

Errors in DD pulses
Errors in Balanced Pair

Type I Type II

DCG better than NoDD ε≲ λ
r

∥Herr∥
χ ε≲ λ
r

∥Herr∥
χ ε≲ ∥Herr∥

χ

DCG performance bound ∥Herr∥
χ ≲ ε

∥Herr∥
χ ≲

1
λ

p
ε

∥Herr∥
χ ≲

1
βλ

p
ε

As discussed in the previous section, the self-correction inherent to the Eulerian design
allows one to enhance the performance of the DCG by increasing the amplitude of the DD
pulses (denoted χDD). This reduces the total duration of the protocol, albeit at the cost of
additional errors arising from the stronger pulses. However, the resulting fidelity improvement
becomes negligible once the finite-duration errors of the DD pulses are small compared to the
finite-duration errors of the balanced pair or to the control errors of the DD pulses themselves.
When ε is independent of χDD, a simple error analysis (see Appendix D) reveals that increasing
R≡ χDD/χ further does not significantly improve the fidelity once

1≪ R
�

θBP

θDD
+

εχ

∥Herr∥

�

, (25)

where θDD (resp. θBP) denotes the sum of the absolute values of all rotation angles imple-
mented by the DD pulses (resp. the rotation angles and squeezing parameters implemented
by the balanced pairs). For the 2-AC state preparation protocol, where θBP/θDD ≈ 1.7 (resp.
0.4) when the squeezing and rotation pulses are protected as a cycle (resp. individually),
we expect that increasing R will favor the TYDCG(S)TDCG(R) protocol. This protocol reduces
the parameter θBP, which determines the total duration required to implement all balanced
pairs. The ratio D0/D between the average distances of the unprotected and protected pro-
tocols is plotted in Fig. 9 for various values of R and ∥Herr∥/χ. Results are shown for the
disorder-dominated regime (δ/∆ = 10, panels A,B) and the interaction-dominated regime
(δ/∆= 0.1, panels D,E), considering both cycle protection (panels A,D) and individual pulse
protection (panels B,E), with a fixed flip-angle error parameter ε = 0.5%. A ratio D0/D > 1
(resp. < 1) indicates an improvement (resp. no improvement) over the unprotected NoDD
protocol corresponding to a reduction of the infidelity by a factor proportional to (D0/D)2. In
the regime ε≫ ∥Herr∥/χ, the performance of both protocols is largely independent of R, since
εχ/∥Herr∥ is already much greater than one. Conversely, when ε < ∥Herr∥/χ, performance
improves significantly with increasing R, as shown by the extension of the parameter region
where the DCG protocol outperforms NoDD, and by a several-fold increase in the ratio D0/D.
Finally, the heatmaps in panels C,F identify which protocol performs best as a function of R
and ∥Herr∥/χ, demonstrating the widening of the high-performance regime of the DCG with
increasing R.

Unfortunately, the errors associated with the balanced pair are typically not corrected and
may more easily accumulate to significantly reduce the performance of the DCG, or even pre-
vent any benefit. Flip-angle errors in the balanced pair are modeled by their effect on the
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Figure 9: Ratio between the average distances of the unprotected and protected 2-AC
state preparation protocols, shown for the disorder-dominated (A,B) and interaction-
dominated (D,E) regimes, and for the cycle (A,D) and individual-pulse (B,E) protec-
tion schemes. The ratio is plotted as a function of the noise strength ∥Herr∥/χ for
various values of R. The dashed line in panels (A,B,D,E) indicates the condition
∥Herr∥/χ = ε. Panels (C,F) display heatmaps identifying the best-performing pro-
tocol in the (∥Herr∥/χ,R) space, using the same color code as in Fig. 8. The black
arrows highlight the extension of the DCG performance regime with increasing R.

control profile of the stretched and identity pulses, and we replace the profiles given in (21)
by

NoDD profile : fNoDD(t) = (1+ ε) f (t) , t ∈ [0,τ] ,

Stretched pulse profile : fstr(t) =
1
2
(1+ εstr) f (t/2) , t ∈ [0, 2τ] ,

Identity pulse profile : fid(t) =

¨

(1+ ε) f (t) , t ∈ [0,τ] ,
−(1+ εid) f (2τ− t) , t ∈ [τ, 2τ] .

(26)

The error parameters ε, εstr and εid can in general differ, as the control error can vary if
the control profile is stretched or the sign of the Hamiltonian is reversed. We find that two
different types of balanced pair errors have very different impacts on the DCG performance,
which can be modeled by choosing different sets of parameters (ε,εstr,εid). For ε= εstr = εid,
each identity pulse implements the identity operation perfectly and introduces no additional
errors into the system, so that the DCG implements the error-prone pulse without introducing
any additional errors, but without correcting the over-rotation. We refer to these errors as
type I errors. In this case, we find that the DCG still outperforms the NoDD protocol in the
regime ε ≲ λ
p

∥Herr∥/χ, but that DCG’s performance is now limited by the control errors in
the regime where ∥Herr∥/χ ≲ λ

p
ε.

Finally, it should be noted that other types of control error can result in additional errors
introduced by each identity pulse, which is the case when ε = εstr = −εid. In this particular
case, each identity pulse in the DCG implements an operation that differs slightly from the
identity due to ε, and the DCG not only fails to correct the control error but also introduces new
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ones ; we refer to these errors as type II errors. This extends the regime in which DCG provides
no improvement over NoDD to ε≳ ∥Herr∥/χ, and the performance of the DCG remains limited
by control errors in the regime where ∥Herr∥/χ ≲ γ

p
ε, with γ ∼
p

βλ and β = τBP/τ being
the ratio between the time spent on the balanced pair and the duration of the NoDD protocol.
Moreover, in the presence of such errors and in the regime ε ≲ ∥Herr∥/χ ≲ γ

p
ε, the DCG

strategy where each pulse is protected individually performs much better than the strategy
where each cycle is protected as a block, because the TYDCG sequence requires fewer identity
pulses and thus introduces fewer errors into the system. This strategy should therefore be
considered when errors during the squeezing pulses are non-negligible and reducing the total
squeezing time is crucial to the outcome of the control protocol.

6 Conclusion

In this work, we have presented a simple and efficient protocol for the deterministic genera-
tion and protection of anticoherent (AC) spin states using a combination of spin rotation and
squeezing operations. Our pulse-based protocol, which involves cycles of rotations followed by
squeezing, has demonstrated remarkable efficiency in producing AC states of different orders,
achieving a high degree of anticoherence even for large spin quantum numbers. Through nu-
merical optimization and analytical derivations, we have identified the optimum parameters
for the rotation and squeezing operations, enabling the generation of AC states up to order 9
for spin-24 systems and order 2 for collective spin ensembles.

To address the inherent fragility of AC states to decoherence, we developed dynamically
corrected gates (DCGs) capable of implementing the pulse-based state preparation protocol
while suppressing the relevant noise mechanisms. We have shown that our methods effectively
mitigate dephasing arising from dipole-dipole interactions and on-site disorder in interacting
spin ensembles, preserving coherence during state preparation by our protocol. Our anal-
ysis demonstrates that single-pulse protection using DCGs outperforms full-cycle protection
in disorder-dominated regimes, while the latter performs very similarly in the interaction-
dominated scenarios. Furthermore, we have shown that DCGs remain advantageous when
control errors are sufficiently small and that the self-correcting properties of the sequences
with respect to certain pulse errors can be leveraged to improve the sequence performance,
supporting the feasibility of experimentally producing t-AC states for various orders t. These
states hold great promise for applications in quantum sensing, metrology, and fundamental
quantum studies, where their rotational invariance and sensitivity to perturbations can be ex-
ploited.

Our protocols can be applied to any physical platform where rotation and squeezing opera-
tions are possible, such as magnetic atoms, spin ensembles, or even Bose-Einstein condensates.
Future research could then explore the use of more sophisticated Hamiltonian dynamics, such
as two-axis anisotropic countertwisting [105] or effective three-body collective-spin interac-
tions [106], to further speed up the generation of AC states. Beyond deterministic coher-
ent control schemes, AC states could also be generated probabilistically via post-selection or
through dissipative state preparation methods. An interesting direction to explore could be
the use of quantum non-demolition measurement schemes based on multicolor probing, as
demonstrated in [107], which may offer another approach to generate AC states in atomic
ensembles with increased robustness against technical noise and inhomogeneous broadening.
Investigating these alternatives may offer new avenues for producing practically useful AC
states under less stringent coherence requirements, expanding their applicability to realistic
experimental platforms.
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A Evolution of multipoles under rotation and squeezing

In this Appendix, we show that the rotation generator Jy couples a multipole of order M only
to those of order M ± 1, without changing the value of L, while the squeezing generator J2

z
couples a multipole of order L only to those of order L ± 1, without altering the value of M .
Throughout this section, we set ħh= 1.

A.1 Rotation

Under the unitary evolution generated by the Hamiltonian ΩJy , the density matrix in the
multipolar basis evolves according to

i
∑

LM

ρ̇LM TLM = Ω
∑

LM

ρLM

�

Jy , TLM

�

. (A.1)

The operator Jy can be expressed in terms of the ladder operators as

Jy =
J+ − J−

2i
, (A.2)

and its commutator with any multipole operator is given by

[J±, TLM ] =
Æ

L(L + 1)C LM±1
LM ,1±1TLM±1 . (A.3)

Therefore, the commutator in Eq. (A.1) can be rewritten in the form

�

Jy , TLM

�

=

p

L(L + 1)
2i

�

C LM+1
LM ,11TLM+1 − C LM−1

LM ,1−1TLM−1

�

. (A.4)

Using the relations

C LM−1
LM ,1−1 =

p

(L −M + 1)(L +M)
p

2L(L + 1)
, C LM+1

LM ,11 = −
p

(L +M + 1)(L −M)
p

2L(L + 1)
, (A.5)

and the orthogonality relation

Tr
�

TLM T †
L′M ′
�

= δLL′δM M ′ , (A.6)

we find that the evolution of any multipole component ρLM is governed by
∑

LM

ρ̇LM =
Ω

2
p

2

�

(L −M + 1)(L +M)ρLM−1 + (L +M + 1)(L −M)ρLM+1

�

, (A.7)

which depends only on the neighboring multipoles ρLM±1.
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A.2 Squeezing

Under the unitary evolution generated by the Hamiltonian χJ2
z , the density matrix in the

multipolar basis evolves according to

i
∑

LM

ρ̇LM TLM = χ
∑

LM

ρLM

�

J2
z , TLM

�

. (A.8)

In the multipolar basis, the squeezing operator is given by

J2
z =

j( j + 1)
p

2 j + 1

3
T00 +

1

6
p

5

√

√(2 j + 3)!
(2 j − 2)!

T20 . (A.9)

Since T00 is proportional to the identity matrix, it does not contribute to the evolution of the
density matrix, meaning only the term involving T20 need to be considered. We can now use
the general commutator between two multipolar operators, given by [20]
�

TL1M1
, TL2M2

�

=
Æ

(2L1 + 1)(2L2 + 1)
∑

L

(−1)2 j+L
�

1− (−1)L1+L2+L
�

×
�

L1 L2 L
j j j

�

C LM1+M2
L1M1,L2M2

TLM1+M2
,

(A.10)

where we used the 6 j-symbol and Clebsch-Gordan coefficients. These coefficients are non-
zero only when |L1 − L2| ≤ L ≤ L1 + L2. In our case, since L1 = 2, the maximum multipolar
order reachable from L2 is L = L2 ± 2. However, for L = L2 ± 2 or L = L2, the factor

1− (−1)L1+L2+L , (A.11)

vanishes, leading to the final expression

�

J2
z , TLM

�

=
M

p
2L + 1

�√

√(L −M + 1)(L +M + 1)(2 j − L)(2 j + L + 2)
2L + 3

TL+1M

+

√

√(L −M)(L +M)(2 j − L + 1)(2 j + L + 1)
2L − 1

TL−1M

�

.

(A.12)

Finally, using the orthogonality property (A.6), Eq. (A.8) simplifies to

ρ̇LM =
χ

i
M

p
2L + 1

�√

√(L −M)(L +M)(2 j − L + 1)(2 j + L + 1)
2L − 1

ρL−1M

+

√

√(L −M + 1)(L +M + 1)(2 j − L)(2 j + L + 2)
2L + 3

ρL+1M

�

,

(A.13)

which clearly shows that a multipole of order L is coupled only to its adjacent multipoles of
order L ± 1.

B Finite-duration errors and leakage out of the correctable sub-
space

Consider a unitary evolution operator U(t), implementing a target unitary U(τ) = U in a time
τ, and the noise Hamiltonian

Herr =
∑

i

δi ji,z +
∑

i j

∆i j

�

3 ji,z j j,z − j⃗i · j⃗ j

�

, (B.1)
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which induces finite-duration errors. The error can be quantified by moving to the toggling
frame with respect to U(t), where the noise Hamiltonian reads, in the case where τ∥Herr∥ ≪ 1,

Heff ≈
1
τ

∫ τ

0

d t U†(t)HerrU(t) . (B.2)

We aim to determine whether the effective Hamiltonian Heff leaks out of the correctable sub-
space of the TEDD and TEDDY sequences for several relevant propagators, including elemen-
tary squeezing and rotation pulses, as well as composite pulses consisting of squeezing and
rotation.

B.1 Elementary pulses

Squeezing In the case of a squeezing pulse, U(t) = e−iχ(t)J2
z (with Jz =
∑

i ji,z the collective
spin) and we have [U(t), Herr] = 0∀t, so that Heff = Herr and no leakage occurs.

Rotation In the case of a rotation R[n⃗(t),θ (t)] ≡ R(t) ∈ SO(3), U(t) = e−iθ (t)n̂(t)·J⃗ and we
have

Heff =
∑

i

δim⃗ · j⃗i +
∑

i j

∆i j

�

3 j⃗i · (M j⃗ j)− j⃗i · j⃗ j

�

, (B.3)

where m⃗= 1
τ

∫ τ

0 d tR(t)z⃗ is an unnormalized vector and M is a 3× 3 symmetric matrix whose

entries are given by Mi j =
1
τ

∫ τ

0 d t Rzi(t)Rz j(t). While the disorder term is still in the cor-
rectable subspace as for squeezing, the dipolar term leaks out of the correctable subspace of
TEDDY which corrects only two-body interactions proportional to 3 ji,z j j,z− j⃗i · j⃗ j . On the other

hand, TEDD corrects all two-body interactions written as Hi j =
∑

α,β hi j
αβ

jα,i jβ ,i that satisfy

Tr
�

hi j
�

= 0. Indeed, in this case, it is easy to verify that

Tr[3M −13×3] = 3
1
τ

∫ τ

0

d t
�

R2
zx(t) + R2

z y(t) + R2
zz(t)
�

− 3= 3
1
τ

∫ τ

0

d t − 3= 0 , (B.4)

using the property that R(t) is an SO(3) rotation matrix with unit-norm rows and columns at
all times. Consequently, TEDD suppresses the Hamiltonian (B.3).

B.2 Composite pulses

Consider a composite pulse composed of two pulses U1(t) and U2(t), implementing the uni-
taries U1(τ1) = U1 and U2(τ2) = U2 in a time duration τ1 and τ2 respectively. The finite-
duration error of the composite pulse can be written as Heff = H(1)eff +H(2)eff with

H(1)eff =
1

τ1 +τ2

∫ τ1

0

d tU†
1(t)HerrU1(t) ,

H(2)eff =
1

τ1 +τ2
U†

1

�∫ τ2

0

d tU†
2(t)HerrU2(t)

�

U1 ,

(B.5)

where H(1)eff and H(2)eff represent the finite-duration errors of the first and second pulses, respec-

tively, with H(2)eff evaluated assuming that U1 has already been applied.
In the case where U1(t) is a rotation and U2(t) is a squeezing along the z axis, the total

finite-duration error can be suppressed by TEDD, as both H(1)eff and H(2)eff can be written in the
form (B.3). However, when U1(t) is a squeezing and U2(t) is a rotation, squeezing U1 does not
commute with U†

2(t)HerrU2(t) at all times. As a result, the finite-duration error H(2)eff cannot be
decomposed into simple disorder and dipolar terms. Instead, it includes more complex K-body
interactions that are not corrected by our sequence.
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Figure 10: Average distance between the ideal and noisy control protocol propagators
for the preparation of a GHZ state in an ensemble of 4 spin-1/2 under the different
DCG strategies.

C Effect of control errors on the DCG
We study the effect of control errors on the performance of our pulse-based protocol protected
from finite-duration errors by DCGs. For that purpose, we consider the simplest protocol pre-
sented in this work, which prepares a GHZ state starting from a coherent state pointing in
the direction of the z-axis by applying a π/2 rotation about the x-axis followed by a squeez-
ing of strength π/2 along the z-axis. For an ensemble of N = 4 spin-1/2, we calculate the
distance (23) between the noisy and ideal state-preparation propagators for a wide range of
parameters (δ/χ,∆/χ), where δ = ∥Hdis∥ and ∆ = ∥Hdd∥, in the NoDD case, when the ro-
tation and squeezing pulses are individually protected by a DCG and when the whole cycle is
protected by a single DCG (results shown in Fig. 10). In the absence of control errors, we find
that protecting each pulse individually performs better than protecting a cycle in the disorder-
dominated regime, while the cycle protection scheme works best in the interaction-dominated
regime. In general, the best DCG strategy only provides an improvement over NoDD in the
parameter regimes δ/χ ≲ 10−1.6 and ∆/χ ≲ 10−1.3.

We then introduce control errors in the protocols and study how they impact the DCG’s
performance by calculating the distance measure in the (ε,∥Herr∥/χ) parameter space, where
∥Herr∥ = ∥Hdis +Hdd∥, considering both the interaction- and disorder-dominated regime by
fixing ∥Hdis∥/∥Hdd∥ = 10−1 and ∥Hdd∥/∥Hdis∥ = 10−1 respectively. We consider three types
of error, namely (i) errors in the DD pulses, (ii) errors in the balanced pair for which the
identity pulses do not introduce additional errors and (iii) errors in the balanced pair where
each identity pulse introduces errors to the system. As a simple model for control errors, we
consider flip-angle errors [103] (over- or under- rotations) where the amplitude of a faulty
pulse is given by χfaulty = χ(1 + ε) where |ε| ≪ 1. For convenience, we concentrate on the
case where ε > 0, which generates over-rotations.

C.1 Errors in the DD pulses

Let us consider that the amplitude of each DD pulse slightly deviates from the intended ampli-
tude by a small error parameter ε≪ 1, which systematically over-rotate each spin, and that
the balanced pairs and the NoDD protocol are error-free. To study the effect of these errors
on our protocols, we construct an AC state of order 1 in an ensemble of 4 spin-1/2, using the
NoDD and the DCGs strategies and calculate the distance (23) in the (∥Herr∥/χ,ε) parameter
space, where ∥Herr∥ = ∥Hdis +Hdd∥ is the norm of the Hamiltonian (18). We consider the
disorder-dominated and interaction-dominated regimes by fixing ∥Hdd∥/∥Hdis∥ = 10−1 and
∥Hdis∥/∥Hdd∥= 10−1 respectively.
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Figure 11: (a) (resp. (b)): Average distance in the disorder-dominated (resp.
interaction-dominated) regime in the (∥Herr∥/χ,ε) parameter space, where
∥Herr∥ = ∥Hdis +Hdd∥ and ∥Hdd∥/∥Hdis∥ = 10−1 (resp. ∥Hdis∥/∥Hdd∥ = 10−1), in
the case of flip-angle errors in the DD pulses.

The results are presented in Fig. 11a and Fig. 11b for the disorder-dominated and
interaction-dominated regimes, respectively, and show that the DCGs still offer some protec-
tion whenever ε ≲ 10−0.8

p

∥Herr∥/χ. When flip-angle errors are greater than this critical
value, the DCGs introduce more errors than they correct. Note that similar results can be
obtained for any systematic pulse error which belongs to the correctable subspace of TEDD
and TEDDY, such as axis-misspecification errors, where each rotation is implemented around
an axis which deviates from the intended one [92, 103]. The inclusion of small DD pulse er-
rors does not appear to change the overall hierarchy of the protocols: TDCG(SR) continues to
perform best in the interaction-dominated regime, while TYDCG(S)TDCG(R) remains the most
effective in the disorder-dominated regime. However, for strong pulse errors—specifically in
the regime ∥Herr∥/χ ≲ ε≲ 10−0.8

p

∥Herr∥/χ, the green and red surfaces nearly overlap, indi-
cating that the advantage of the individual-pulse protection scheme over the cycle protection
becomes less pronounced. This behavior is expected, as the individual-pulse scheme involves
a larger number of DD pulses and thus accumulates more errors. Consequently, TDCG(SR)may
become preferable for certain state preparation protocols within this parameter range.

C.2 Errors in the balanced pair

Let us now consider the same control protocol where flip-angle errors also appear in the bal-
anced pair and the NoDD protocol, such that the faulty control profiles of the NoDD pulse,
stretched pulse and identity pulse are given by

NoDD profile : fNoDD(t) = (1+ ε) f (t) , t ∈ [0,τ] ,

Stretched pulse profile : fstr(t) =
1
2
(1+ εstr) f (t/2) , t ∈ [0, 2τ] ,

Identity pulse profile : fid(t) =

¨

(1+ ε) f (t) , t ∈ [0,τ] ,
−(1+ εid) f (2τ− t) , t ∈ [τ, 2τ] ,

(C.1)

where the error parameters may differ when the pulse is stretched or when the sign of the
Hamiltonian is switched. One can show that, in the case where ε = εstr = εid, the balanced
pair implements the over-rotation with no additional errors compared to the NoDD case, but
do not correct it, such that the DCG’s performance is upper-bounded by the flip-angle error but
it should still provide some protection whenever the errors of the DD pulses are not significant
(ε≲ 10−1
p

∥Herr∥/χ).
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Figure 12: (a) (resp. (b)): Average distance in the disorder-dominated
(resp. interaction-dominated) regime in the (∥Herr∥/χ,ε) parameter space, where
∥Herr∥= ∥Hdis +Hdd∥ and ∥Hdd∥/∥Hdis∥= 10−1 (resp. ∥Hdis∥/∥Hdd∥= 10−1), in the
case of flip-angle errors in the DD pulses and the balanced pair, using ε= εstr = εid.

Figure 13: (a) Average distance in the disorder-dominated regime within
the (∥Herr∥/χ,ε) parameter space, where ∥Herr∥ = ∥Hdis +Hdd∥ and
∥Hdd∥/∥Hdis∥ = 10−1. (b) Same as (a), but for the interaction-dominated
regime with ∥Hdis∥/∥Hdd∥ = 10−1. In both cases, flip-angle errors are introduced in
the dynamical decoupling pulses and the balanced pair, with ε= εstr = −εid.

Adding such flip-angle errors to the balanced pair and the NoDD protocol for the same
quantum system and control protocol as in Sec. C.2, we find that the flip-angle errors limit
the DCG’s performance whenever ε ≳ 100.7(∥Herr∥/χ)

2, greatly reducing the benefit of the
DCG strategies (see Fig. 12). In the regime 10−1

p

∥Herr∥/χ ≳ ε ≳ 100.7(∥Herr∥/χ)
2, the

two protocols exhibit comparable performance. The cycle-protection scheme performs slightly
better when ε ≳ ∥Herr∥/χ, whereas the single-pulse protection scheme is slightly superior
when ε≲ ∥Herr∥/χ.

In the more general case where ε ̸= εstr ̸= εid, the identity pulses in the balanced pair
may introduce additional errors, which are intrinsic to the DCGs and not corrected to first
order. This is the case, for instance, when ε = εstr = −εid (see Fig. 13), where each identity
pulse introduces an additional error into the system. In this case, uncorrected errors appear in
the DCG which do not occur in the NoDD protocol, which changes the regimes where NoDD
performs better than any DCG strategies to ε ≳ 10−0.6∥Herr∥/χ. In this regime, the DCG
strategy which protects rotation and squeezing individually significantly outperforms the other
strategy, as this reduces the total time spent applying the error-prone identity pulses which
account for the dominant source of pulse errors.
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D Distance metric and error analysis

In the most general case of a system interacting with its environment, a relevant environment-
invariant metric which measures the distance between the system+bath evolution and the
system-only target evolution is given by [95]

D(U , V ) =
1
p

2dSdB

min
Φ
∥U − V ⊗Φ∥Fr =

√

√

1−
1

dSdB
∥Γ∥Tr , (D.1)

where
¨

∥Γ∥Tr = Tr
�p
Γ †Γ
�

,

Γ = TrS

�

U(V † ⊗1B)
�

.
(D.2)

This metric can be used to evaluate the performance of DD protocols [92, 94]. In the case of
a closed system as considered in the main text, the distance metric reduces to

D(U , V ) =
1
p

2dS

∥U − V∥Fr =

√

√

1−
1
dS
|Tr [UV †]| . (D.3)

Due to finite-duration errors, the propagator V (t) of the pulse V (τ) = V is replaced by the
propagator

U = Ve−iΦV , with ΦV =
∞
∑

n=1

Φ
[n]
V , (D.4)

where the finite-duration error operator ΦV is expressed as a series by performing a Magnus
expansion in the toggling frame with respect to control Hamiltonian which generates V (t).
When decoherence is small enough, that is when τ∥Herr∥ ≪ 1 where ∥Herr∥ is the supremum
operator norm of the noise Hamiltonian, finite-duration errors can be approximated by the
first term of the series,

ΦV ≈ Φ
[1]
V =

∫ τ

0

d t V †(t)HerrV (t) , (D.5)

which corresponds (up to a factor 1/τ) to the finite-duration error Hamiltonian given in the
main text, see Eq. (20). The norm of the higher-order terms of the Magnus expansion can be
upper-bounded as [108]








Φ
[n]
V








≤ π
�

τ∥Herr∥
ξ

�n

, (D.6)

where ξ ≈ 1.0868 is a convergence radius. For the second-order term, a tighter upper-bound
is given by








Φ
[2]
V








≤
1
2
(τ∥Herr∥)

2 . (D.7)

In this case, one can derive an upper-bound on the distance using a Taylor expansion,

D(U , V )≲
1
p

2dS








V
�

1S − iΦ[1]V + . . .
�

− V









Fr

≤
1
p

2













∫ τ

0

d t V †(t)HerrV (t)













≤
1
p

2
τ∥Herr∥ ,

(D.8)

where we used the norm inequality 1p
dS
∥·∥Fr ≤ ∥·∥, the triangle inequality ∥A+ B∥ ≤ ∥A∥+∥B∥,

submultiplicativity ∥AB∥ ≤ ∥A∥∥B∥ and unitary invariance of the supremum operator norm. In
the low-decoherence regime, the distance thus scales linearly with the norm of the unwanted
noise Hamiltonian.
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D.1 DCG error analysis

In the case of a DCG, the propagator of the total sequence can still be written as

U = Ve−iΦDCG , with ΦDCG =
∞
∑

n=1

Φ
[n]
DCG , (D.9)

where ΦDCG is again obtained by performing a Magnus expansion in the toggling frame with
respect to the dynamical decoupling sequence [89, 90]. When decoherence is small enough,
the series converges and can be approximated by its first term, which reads

Φ
[1]
DCG =
∑

λ=a,b

ΠG(Φλ) +ΠG(ΦV ) , (D.10)

where Φλ=a,b are the finite-duration errors of the pulses a and b of the DD sequence, ΦV is the
finite-duration error of the balanced pair and ΠG is the DD symmetrization

ΠG(S) =
1
|G|

∑

g∈G
g†Sg , (D.11)

which projects the operator S on a G-invariant subspace of the space of operators, suppressing
S entirely in the case where S belongs to the correctable subspace of the group G. In the
case where the DD symmetrization suppresses the finite-duration error of the pulses and the
balanced pair, Φ[1]DCG = 0 and if decoherence is small enough, that is τDCG∥Herr∥ ≪ 1 where
τDCG is the duration of the DCG, the finite-duration error is approximated by the second-order
term in the expansion. We can then find an upper-bound as

D(U , V )≲
1
p

2








Φ
[2]
DCG








≤
1
p

2

1
2
(τDCG∥Herr∥)

2 . (D.12)

In order to estimate the regime of parameter where the DCG provides an improvement over
the NoDD case, one can compare the upper-bounds (D.12) and (D.8) and find when the upper-
bounds of the DCG is smaller than that of the unprotected pulse, i.e., when

τ∥Herr∥≳
1
2
τ2

DCG∥Herr∥
2 . (D.13)

By defining a parameter α > 1 such that τDCG = ατ, this condition is satisfied when

2
α2
> τ∥Herr∥ . (D.14)

As the duration τ is lower-bounded by the pulse amplitude χ, one can also define some pa-
rameter γ as τ= γ/χ, such that

2
γα2

>
∥Herr∥
χ

. (D.15)

The regime of parameters where a DCG outperforms NoDD thus depends on the parameter α,
which quantifies the time-overhead of the DCG. Note that this estimation is not very tight ; for
instance, for the TEDD sequence used to protect a γ = π/2 rotation, the total duration of the
DCG is given by

τDCG = 24
2π
3χ
+ 12

π

χ
, (D.16)

where 2π
3χ is the time it takes to perform a 2π/3 rotation with a pulse amplitude χ and π/χ

is the time it takes to perform a π/2 rotation when the pulse is stretched by a factor of two.
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Dividing τDCG by τ = π/2χ, we find that α = 76 and ∥Herr∥/χ ≲ 10−4, while the DCG
is observed to provide an improvement over NoDD in the regime ∥Herr∥/χ ≲ 10−1.6 in our
numerical simulations. A slightly tighter estimate can be found by considering also the second-
order term of the Magnus expansion in the NoDD case, but the analytical estimate still differs
with the numerical results as the upper-bound on the second-order term Φ[2]DCG is itself not very
tight and the norm of high-order terms tend to be over-estimated.

D.2 DCG error analysis with pulse errors

In the case of control errors in the DD pulses, the Eulerian design of the sequence auto-corrects
the errors, such that their introduction only impacts the second order term which now reads

Φ
[2]
DCG ≤

1
2
τ2

DCG(∥Herr∥+χε)
2 , (D.17)

where ε≪ 1 is the error parameter defined in the main text and χ is the pulse amplitude. The
parameter regime where the DCG provides an advantage over NoDD is then found by solving
the inequality

τ∥Herr∥≳
1
2
τ2

DCG(∥Herr∥+χε)
2 . (D.18)

In the case where ∥Herr∥/χ is small enough (D.15), we find that the parameter regime where
the DCG still outperforms NoDD is estimated by

ε≲ −
∥Herr∥
χ

+

√

√ 2
γα2

√

√∥Herr∥
χ
≈
√

√ 2
γα2

√

√∥Herr∥
χ

, (D.19)

and we recover the power law observed in the numerical calculation (see Appendix C) and
reported in the main text, although the estimate is again not very tight. We can also find the
leading error of the DCG by determining the leading term in (D.17), and we find that the
leading error of the DCG is caused by the error in the DD pules when ∥Herr∥/χ ≤ ε.

In the case of errors in the balanced pair, the leading error will now appear in the first-
order term of the Magnus expansion in both the NoDD and DCG cases. Considering an error
of amplitude χε, the NoDD distance upper-bound estimate will be given by

D(U , V )≲
1
p

2
τ(∥Herr∥+χε) . (D.20)

For the DCG, we should take into account that the uncorrected error only occurs during the
balanced pair and not throughout the entire sequence, such that we have

D(U , V )≲
1
p

2

�

τBPχε+
1
2
τ2

DCG(∥Herr∥+χε)
2
�

, (D.21)

where τBP is the total duration of all identity pulses and the stretched pulse. Defining τBP = βτ
with β > 1, one finds that the DCG outperforms NoDD when

ε≲
∥Herr∥
χ
−
β − 1
γα2

�

−1+

√

√

1+
2γα2β

(β − 1)2
∥Herr∥
χ

�

. (D.22)

In the case where decoherence is small enough (D.15), the term in parentheses cancels out an
we find that the DCG now outperforms NoDD if

ε≲
∥Herr∥
χ

. (D.23)
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Note that in the case where the identity pulses add no error to the DCG, we can simply use
TBP = τ so that β = 1 and we retrieve the regime

ε≲
∥Herr∥
χ
−
√

√ 2
γα2

√

√∥Herr∥
χ
≈
√

√ 2
γα2

√

√∥Herr∥
χ

. (D.24)

We also find that the leading error in the DCG is caused by the control errors whenever

ε≳
γα2

2β

�∥Herr∥
χ

�

. (D.25)

D.3 Optimal DD pulse amplitudes

To improve the performance of a DCG, one may increase the amplitude of the DD pulses,
thereby shortening the total protocol duration at the cost of introducing larger pulse errors.
The optimal pulse amplitude can be estimated by analyzing the upper bound of the protocol’s
performance error, assuming systematic pulse errors that are corrected to first order:

D(U , V )≲
1
p

2
T2

tot[∥Herr∥+χDDηε]
2 , (D.26)

where χDD is the DD pulses amplitude, ε is the error parameter, and η≡ TDD/Ttot the fraction
of time spent applying DD pulses, accounting for the fact that errors occur only during those
pulses. The total duration of the protocol can be expressed as

Ttot ≡
θDD

χDD
+
θBP

χ
, (D.27)

where χ is the amplitude of the balanced-pair pulses, and θDD (θBP) denotes the total rotation
(rotation and squeezing) angle implemented by the DD pulses (balanced pairs). Substituting
this expression into the upper bound yields

D(U , V )≲
1
p

2
θ2

DD

�

θBP

θDD

∥Herr∥
χ

+ ε+
∥Herr∥
χDD

�2

. (D.28)

The optimal value of χDD minimizes the term in brackets, which can be written as

f (R) = h̃
�

1
R
+ θ̃
�

+ ε , (D.29)

where h̃≡ ∥Herr∥/χ, R≡ χDD/χ ≥ 1 and θ̃ ≡ θBP/θDD.
If ε is independent of R, e.g., when the errors arise from magnetic-field inhomogeneities

across the sample, the upper-bound is minimized when χDD→∞. However, the improvement
in fidelity becomes negligible once

f (R)− f (∞)≪ f (∞) ⇔ R
�

θ̃ +
ε

h̃

�

≫ 1 , (D.30)

that is, when further increasing the DD pulse amplitude yields a gain much smaller than the
leading error. In particular, whenever θ̃ + ε/h̃≫ 1, i.e.when the control errors are too large
or θBP≫ θDD, increasing χDD offers no significant advantage.
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