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κ-symmetric M5 brane web for defects in AdS7/CFT6 holography
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Abstract

In this work, we will continue our analysis of some general probe M5 brane solutions
from our previous work in AdS7×S4 spacetime (appeared in arXiv: 2109.08551). These
are codimension-2 in AdS7 and preserve at least 2 supercharges when the worldvolume
3-form flux field strength is zero. We will turn on the field strength and find that the
embedding conditions are modified, excluding certain branes contained in the previous
result. The new main result here is very general, so we pick simpler embedding condi-
tions that describe highly symmetric examples that preserve half of the supersymmetry
of the 11 dimensions. When the flux field is zero, worldvolumes have AdS5×S1 topology.
We turn the flux field value non-zero in these examples and analyze how the shape of
the worldvolume deforms as supersymmetry is broken by some additional fractions.
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1 Introduction

In this work, we present some new M5 probe brane solutions embedded in the background
spacetime geometry of AdS7× S4. These probe brane solutions are dual to the codimension-2
defects in the boundary gauge theory with 6d N = (2,0) supersymmetry via the AdS7/C F T6
holographic correspondence. They have non-compact world volumes that extend along the
radial direction of AdS and end in the boundary at the locations of the non-local defects.
See recent papers [5–7] on codim-2 defects using AdS7/C F T6 holography; also see [8] for
a nice exposition from defect-CFT viewpoint. See [1, 2] for their relation to Gukov-Witten
defects [3,4] in the 4d SYM theory. In our calculation, we consider the general solutions from
Section 4 of paper [9] and introduce the deformations by making the world volume self-dual
3-form flux field non-zero.

The figures 1 and 2, describe the situation from this calculation schematically. In figure 1
we depict the AdS7 of the spacetime geometry as a solid cylinder with its boundary along its
surface. The probe M5 brane in this figure is depicted by a surface that ends at the cylinder
boundary. This probe brane ends at the location of the dual defect which is sketched in the
inset alongside. The second schematic figure 2 estimates the situation when the 3-form flux
field h is turned non-zero on the worldvolume resulting in the changed shape of the probe
brane as well as the dual defect.

Figure 1: This figure depicts the probe M5 brane dual to a codimension-2 defect in
the background spacetime geometry of AdS7× S4 that ends on the defect in the AdS
boundary. The inset in this figure describes the dual defect in the gauge theory. The
brane world volume carries no 3-form flux field.
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Figure 2: In this second figure, we have introduced deformations by allowing the
field h to take non-zero values and in our calculation, we find that embedding con-
ditions get affected allowing for deformations under BPS constraints.

Analysing such probe branes in the AdS7 bulk is expected to reveal new features about the
4d defects in the boundary gauge theory.

For example, deforming the probe branes – due to the AdS/C F T holographic correspon-
dence – will lead to deforming the shape of the defects in the boundary theory. This in turn
may also be useful for the analysis of such defect-CFTs from the bootstrap point of view where
correlation functions of various operators can be determined.

For example, values of the 4-point correlation functions like

〈Dm(x)Dn(y)X
a(w)X b(z)〉4d defect , 〈Dm(x)Dn(y)Dp(w)Dq(z)〉4d defect , etc., (1)

can be determined on the defect. Here, Dm(x) are called displacement operators of the defect,
associated with the defect deformation at the location x . And X a, X b are the scalar field
operators in the 6d (2,0) tensor multiplet theory. See [10] for work on 2d Wilson surface
operators and [11] for Wilson lines. But while the deformation measurement in the correlators
in (1) includes the quantum fluctuations, the deformations that we analyze in this note are truly
classical, obeying the BPS constraints due to κ-symmetry.

In Section 2 of this note, we show that when we break the 1/16 BPS supersymmetry of the
codimension-2 brane solution from [9] by another factor of 1/2, the κ-symmetry constraint (8)
allows us to make the flux field h nonzero. Therefore, we start our calculation by considering
the projection conditions given in (12) which break the 11d spacetime susy by a factor of 1/32
and find the modified embedding conditions in (27) as a main result that allow the h field to
take non-zero value in the κ-symmetry equation (8).

So this analysis tells us that making h field non-zero deforms the shape of the M5 world
volume breaking the susy by a factor of 1/2. We further suspect these deformations must
be occuring in the form of some 2d ridge-like spiked shapes emerging from the brane world
volume and extending in the orthogonal directions to the brane in 11 dimensions.

In section 3 of this note, we focus on recovering some higher supersymmetric cases from
the general solution given in (27). Since the derived solution in section 2 is very general, it
is very difficult to interpret any shape associated with a brane. This solution in (27) is also
expected to include a complicated geometry of a BPS brane-web formed out of intersections
of many M5 branes. By choosing examples from the embedding condition in (27) which are
more supersymmetric, we look for a simpler version of this equation. For example, a solution
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like1

F (1)(Φ0,Φi , Za) =
Φ1

Φ0
= 0 , and F (2)(Φ0,Φi , Za) =

Z1

Z2
= 0 , (2)

belongs in this class and is a much simpler condition to express. In section 3.1, we show that
this solution preserves half of the supersymmetry, including the one suggested by the projection
conditions in (12). In our previous work [9], we have already understood that those M5 branes
that are half-BPS(and without 3-form flux) have a simpler world volume shape like: AdS5×S1

(or S5×S1 for a compact worldvolume) and the corresponding defect is also of a simpler shape
of R × S3. In section 3, we will analyze how the world volume due to an Ansatz like in (2)
gets affected when the flux field h field is turned non-zero.

2 New M5 solutions with flux field

The covariant action of a single probe M5 brane, first given by Pasti, Sorokin and Tonin in [12],
is given below

SPST = T5

∫

d6 x
�

q

−det[gmn + i eHmn]−
p
−g
4
eHmnHmn

�

− T5

∫

�

A(6) −
1
2

A(3) ∧H3

�

, (3)

T5 is the tension of the M5 brane

T5 =
1

(2π)5l6
p

. (4)

Here the second integral is the Wess-Zumino term where A(6) and A(3) are the pull-back of the
11d background gauge potential. In the action, Hmn and eHmn are defined as

eHmn = (⋆H)mnpvp

�

here (⋆H)mnp =
ϵmnpqrs Hqrs

3!
p
−g

�

,

Hmn = Hmnpvp

(5)

(ϵ is the Levi-Civita 6-tensor), and introduce an auxiliary field a with the normalized derivative

vp =
∂pa
p

−gmn∂ma∂na
. (6)

The 3-form field Hmnp above is defined as

H3 = dB2 − A(3) , (7)

where B2 is a 2-form gauge potential of the 6d (2,0) tensor multiple theory on the single M5
worldvolume. In the papers [13, 14], the authors show that the M5 action in equation (3) is
invariant under the κ-symmetry transformation. The constraint that one obtains under this
fermionic symmetry is given by the equation written below

Γκε= ±ε , (8)

where the projector is given by [15]

Γκ =
1
p

−det g

�

γτ12345 +
40
6!
ϵmnpqrsγmnphqrs

�

, (9)

1Here Φis and Zas are the complexified coordinates of 11 dimensions described in appendix A.

4

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.004


SciPost Phys. Core 9, 004 (2026)

γτ12345 is the product of six worldvolume Γ matrices. h is the self-dual 3-form flux field(obeying
the h = ⋆g h condition) and the indices m, n, p, q, r, s are the 6d coordinate indices. The h field
here is related to the field strength H3 in equation (7) by the equations

Hmnp =
4
Q
(δq

m + kq
m)hqnp ,

kn
m = hmpqhnpq ,

Q = 1 −
2
3

Tr
�

kp
mkn

p

�

,

(10)

ε in the equation (8) is the Killing spinor of the 11-dimensional spacetime given by the expres-
sion

ε= e
1
2 (Γ04+Γ1γ)ρe

1
2(Γ12+Γ45)αe

1
2 (Γ23+Γ56)β e

1
2 Γ0γφ0 e−

1
2 Γ14φ1 e−

1
2 Γ25φ2 e−

1
2 Γ36φ3

× e
1
2γΓ7θ e

1
2

�

Γ78+Γ910

�

χ e
1
2 Γ710ξ1 e−

1
2 Γ89ξ2ε0 ,

(11)

ε solves the classical Killing spinor equation of the 11d background theory whose metric solu-
tion and the choice of coordinate frame vielbein we present in appendix A of this note.

2.1 General solution of deformed M5 brane from κ-symmetry constraint

In this subsection, we will analyze the general M5 brane solutions from [9] that preserve the
single 11d spacetime supersymmetry dictated by the projection conditions

Γ14 ε0 = Γ25 ε0 = Γ36 ε0 = −Γ0 ε0 = i ε0 , Γ89ε0 = −Γ710ε0 = iε0 . (12)

After using all the projection conditions in ε, it takes a simplified form

ε = e
−i
2 (φ0+φ1+φ2+φ3+ξ1+ξ2)

�

cos
θ

2
− sin

θ

2
Γ7

�

ε0 . (13)

M5 worldvolume γ matrices are related to the 11 dimensional Γ matrices as follows

γi = ea
i Γa , index a runs over integer values 0,1, 2, . . . , 10 , (14)

here we have introduced the notation ea
i for pull-backs of the 11d frame vielbein as

ea
i ≡ ea

µ∂iX
µ.

Now we consider a generic embedding of the M5 so that the 11d coordinates:

φ0(τ,σ1,σ2,σ3,σ4,σ5),ρ(τ,σ1, . . . ,σ5), . . . ,φ3(τ,σ1, . . . ,σ5), . . . ,ξ2(τ,σ1, . . . ,σ5) , (15)

which are arbitrary functions of the worldvolume coordinates τ,σis. In this calculation, we
will actively use the pullbacks eas to find the generic conditions.

In our analysis, we consider the self-dual flux 3-form field h to be proportional to the
worldvolume forms and its expression given by

h= F(X m)
ϵabc

6
ea ∧ eb ∧ ec , (16)

where F(X m) is some functional dependence on the 11d spacetime coordinates to be deter-
mined in this section.

We are mainly going to analyze those M5s that are codimension-2 in AdS7 and wrap a 1d
curve on S4. A subclass of solutions of such M5 world volumes was also analyzed in section 4
of reference [9]. In that work, the branes had no flux field turned on and preserved atleast 2
supersymmetries given by the projections

Γ14 ε0 = Γ25 ε0 = Γ36 ε0 = −Γ710 ε0 = i ε0 . (17)
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Those solutions wrapped a circle along the ξ1 direction on S4(with the pullback e9 zero).
In another work [16], we also analyzed the branes that were codimension-4 in AdS7 and

wrapped an S3 sphere in S4 directions. Those solutions also had the world volume flux field
turned on and preserved at least 2 supersymmetries with one of them given from projections
in (12). See [17–19] for work on other similar codimension-4 branes wrapping S3 in S4 di-
rections.

We will focus on the κ-symmetry constraint in equation (8). The calculation method we
use in this section is based on the method in [20, 21] presented for a general class of 1

16 BPS
probe D3 brane solutions in AdS5×S5 carrying 5 non-zero angular momentum charges of the
10d spacetime.

For the class of solutions that we are analyzing, the following vielbein components are zero

e7 = 0 , e8 = 0 . (18)

Therefore the 6-form γτ12345 will be a sum of 84 terms (
�9

6

�

). Further ϵmnpqrsγmnphqrs will
give additional contribution in κ-symmetry constraint equation (8). From the first look, this
analysis seems to involve an additional 84× 20 6-form terms. However, we will take the hint
from [9] and proceed accordingly to find a significant reduction in this number. First, we point
out that the volume form in the most general solution in [9]was given by the derived formula2

dvol6 =
p

−det g = e0 ∧ e10 ∧
(ω+ ω̃)∧ (ω+ ω̃)

2
. (19)

For the class of solutions in this note, this formula for the volume form becomes

dvol6 =
p

−det g = e0 ∧ e10 ∧

�

e14 + e25 + e36
�

∧
�

e14 + e25 + e36
�

2
. (20)

And therefore, for the self-dual field h we find that we have to take

h = F(X m)
�

e0 + e10
�

∧
�

e14 + e25 + e36
�

. (21)

So in the κ-symmetry equation the term ϵmnpqrsγmnphqrs will be an addition of a lot less number
of terms! In appendix B we collect the 6-form constraints(a result from [9]) that these solutions
obey when the h field is zero. From now on we will analyze how much those 6-form constraints
modify when h field is nonzero.

Out of the 84 terms in γτ12345 and many more terms in ϵmnpqrsγmnphqrs, we start with

e010Γ010 ∧
�

e14 ∧ e25 Γ1425 + e14 ∧ e36 Γ1436 + e25 ∧ e36 Γ2536

�

, (22)

+ flux terms

+ F(X m)
∑

a,b,c,d,e, f
∈{0,10,1,4,2,5}

eabc Γabc ∧ ede f + F(X m)
∑

a,b,c,d,e, f
∈{0,10,1,4,3,6}

eabc Γabc ∧ ede f

+ F(X m)
∑

a,b,c,d,e, f
∈{0,10,2,5,3,6}

eabc Γabc ∧ ede f .

After acting on the Killing spinor ε in (13) this combination should be equal to
p

−det g whose
value is given in equation (20). Notice the indices d, e, f in the above equation will only appear
in the combinations suggested by the value of the h field given in equation (21). So each of

2Hereω and ω̃ are the pullbacks of Kähler 2-forms onCP1 andÝCP
3
, respectively, defined as follows: ω = e8∧e9

and ω̃ = e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.004


SciPost Phys. Core 9, 004 (2026)

these summations here will only contain 4 terms. We write the expanded form below (of flux
terms)

F(X m) e010 ∧ e14 ∧ e25
�

Γ014 + Γ1014 + Γ025 + Γ1025

�

+ F(X m) e010 ∧ e14 ∧ e36
�

Γ014 + Γ1014 + Γ036 + Γ1036

�

+ F(X m) e010 ∧ e25 ∧ e36
�

Γ025 + Γ1025 + Γ036 + Γ1036

�

.

(23)

After hitting the combination of (22) and (23) on ε in (13) we find that the result is equal to
the volume form in (20) provided function F(X m) is of the fixed value

F(X m) =
1 − sinθ
2 cosθ

=
1
2

cos θ2 − sin θ2
cos θ2 + sin θ2

. (24)

This functional dependence on the 11d coordinates is the same as the value that we found
in [16] where we analyzed a class of codimension-4 branes from the general solutions in [9].
This function vanishes when θ is equal to π2 which is also consistent with the solutions of [9]
(with h = 0).

Modified 6-form constraints

Next, we analyze the combinations in Γκ where indices a, b, c, d, e, f ∈ {0, 1,4, 2,5, 9} and
∈ {10, 1,4, 2,5, 9}. When h was zero the sum of these combinations was zero(see second
equation in (B.1) for a = 8). In the presence of the h field, we see that the 6-form constraint
becomes stricter and is equal to

e0 ∧ E8 ∧ e14 ∧ e25 = 0 ,

e10 ∧ E8 ∧ e14 ∧ e25 = 0 .
(25)

Similarly, the remaining constraints in (B.1) are also modified accordingly when appropri-
ate combinations are considered for indices a, b, c, d, e, f in the matrix Γκ

e0 ∧ Ea Eb Ec ∧ ω̃= 0 , e10 ∧ Ea Eb Ec ∧ ω̃= 0 ,

e0 ∧ Ea ∧ ω̃∧ ω̃= 0 , e10 ∧ Ea ∧ ω̃∧ ω̃= 0 (for a, b, c = 1, 2,3,8) .
(26)

By considering the remaining combinations in Γκ we have checked that the other 6-form con-
straints are unchanged and they are the same as the one given in the appendix equations (B.4),
(B.5) and (B.6).

Embedding solution

From this analysis, we have found that the functional conditions that determine the embedding
of this class of M5 solutions are given by the two arbitrary holomorphic constraints

F (I)(Φ0 ,Φ1 ,Φ2 ,Φ3 , Z1, Z2) = 0 (I = 1, 2) , (27)

satisfying the scaling differential equations

3
∑

i=0

∂φi
F (I) = 0 ,

∑

i=1,2

∂ξi
F (I) = 0 , (28)

along with the condition

θ = constant & ̸=
π

2
. (29)

7

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.004


SciPost Phys. Core 9, 004 (2026)

Main result

Therefore from the analysis of the M5 branes that are codimension-2 in AdS7, we conclude
that – due to the F(X m) dependence given in (24) – when the flux field h is non-zero the
brane shifts from the location of θ = π

2 . This solution preserves the same susy of the most
general solution of [9] given by the projections in (12)3 but one less susy than the solution
subclass in section 4 of the same paper. The worldvolume again wraps the two U(1) Hopf fibre
directions in AdS7 and S4 generated by vector fields dual to e0 and e10, respectively. But the
scaling condition has now been modified to the stricter conditions given in (28).

Comments

In this analysis, we have also found that for the subclass of M5 branes analyzed in section 4 of
ref. [9], supersymmetry is broken by another half when the flux field h is non-zero. The 1-form
pullback e9 was zero for that solution subclass.4 Without the h field that subclass preserved an
additional supersymmetry given by 4 projections in equation (17). A very similar result was
obtained for the 1

8 BPS dual giant D3 brane solutions in the AdS5×S5 spacetime in [22] where
additional 1/2 susy got broken when the world volume electromagnetic fluxes were turned
on. In [23]we showed that such 1

8 BPS dual giant D3 branes with compact worldvolumes, that
carry 3 non-zero angular momentum charges in the S5 directions, belong in the same class of
solutions which also admits non-compact branes holographically dual to the 2d surface defects
in the 4d N = 4 SYM theory.

3 Cases with higher supersymmetry

In the previous section, we have derived a class of general solution that carry non-zero 3-form
flux field strength h on their world volume. The embedding solution in (27) is very general and
includes various cases: from a complex web-like structure made of intersecting M5 branes to
simpler shapes like AdS5×S1 whose deformations can be analysed with some intuitions when
the flux field is made to be non-zero. The AdS7/C F T6 holographic duals of the M5 brane
examples(when h is zero) discussed in this section will be defects of topology R×S3. Later in
this section(in subsection 3.5), we will also comment on the consequences for the dual defects
when the 3-form h field is given non-zero values obtained in the equation (21).

3.1 Case: F (1) = Φ1 = 0; F (2) = Z2 = 0

In our first example of a simpler shape worldvolume, for the two general holomorphic condi-
tions in (27), we consider the conditions

F (1)(Φ0 ,Φ1 ,Φ2 ,Φ3 , Z1, Z2) = Φ1 = 0 ,

F (2)(Φ0 ,Φ1 ,Φ2 ,Φ3 , Z1, Z2) = Z2 = 0 ,
(30)

with θ = fixed value. Under the static gauge choice

τ→ φ0 , σ1→ ρ , σ2→ β , σ3→ φ2 , σ4→ φ3 , σ5→−ξ1 , (31)

3In [9] the most general solution contained both types of probe M5s that were codimension-2 and codimension-
4 in AdS7.

4Although, we haven’t put e9 equal to zero, explicitly in the above text, it can be checked easily that even with
e9 assumed to be zero, the steps presented above remain unaffected and an extra half of susy breaking due to (12)
is still necessary.
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the induced worldvolume metric is given by

ds2 =− 4l2
�

cosh2ρ dφ2
0 − dρ2 − sinh2ρ

�

dβ2 + cos2 β dφ2
2 + sin2 β dφ2

3

�

�

+ l2 sin2 θ dξ2
1 .

(32)

This is of topology AdS5 × S1. The κ-symmetry constraint with no flux turned on looks like

γτσ1σ2σ3σ4σ5
ε =
p

−det g ε . (33)

After some cancellations, this is the same as

−Γ0134610 ε = ε . (34)

With the current embedding conditions assumed Φ1 = 0, Z2 = 0(or α = π
2 , χ = 0), we

consider writing the spinor ε with the following notation

ε= e
1
2 (Γ04+Γ1γ)ρe

1
2(Γ12+Γ45)π2 e

1
2 (Γ23+Γ56)β e

1
2 Γ0γφ0 e−

1
2 Γ14φ1 e−

1
2 Γ25φ2 e−

1
2 Γ36φ3

×
�

cos
θ

2
− Γ8910 sin

θ

2

�

e
1
2 Γ710ξ1 ε0 ≡ M
�

cos
θ

2
− Γ8910 sin

θ

2

�

e
1
2 Γ710ξ1 ε0 ,

(35)

after commuting the six product matrix Γ0134610 through the factor M of ε in the κ-symmetry
equation (34) we get in the l.h.s.

M
�

cos
θ

2
+ Γ8910 sin

θ

2

�

e−
1
2 Γ710ξ1 Γ0235610 ε0 . (36)

For the solution to be supersymmetric this must be equal to the r.h.s. in (34). One can check
that this happens to be true only when θ = π

2 and the following projection condition is imposed
on the constant spinor ε0, killing half of its components

Γ0235689 ε0 = ε0 . (37)

Since the product of all the 11d Gamma matrices is equal to 1(Γ0123456878910 = 1), this is
equivalent to

Γ14710 ε0 = ε0 , (38)

which is the same as the projection condition for the half-BPS solutions analyzed in [9](with
p

Z1Φ1 = c0 as the embedding condition). Hence the solution under consideration is half-
BPS with projection condition of (37) when the 3-form flux field h is zero with its θ location
at π2 . Consistent with the half-BPS example of [9].

Turning the 3-form field h non-zero

Next, we make some of the components of the self-dual h field non-zero. We take the two of
the components to be

hτρξ1
= −4a l3 sinθ coshρ , hβφ2φ3

= 4a l3 sinh3ρ sin 2β , (39)

here ‘a’ is some arbitrary constant. The two components follow the self-duality:
hτρξ1

= ⋆g hβφ2φ3
. The κ-symmetry constraint looks like this

1
p

−det g

�

γτρβφ2φ3ξ1
+ γτρξ1

hβφ2φ3
− γβφ2φ3

hτρξ1

�

ε = ε . (40)
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After some algebra this simplifies to
�

−Γ0134610 − a coshρ
�

Γ0110 − Γ346

�

+ a sinhρ
�

Γ1410 − Γ036

��

ε = ε , (41)

and after commuting all the 3-product Γ matrices through the exponential factor M in ε we
get following in the l.h.s. (after the factor M)

− a cosβ coshρMφ0φ2

�

M−1
ξ1

�

Γ0210 cos
θ

2
+ Γ3568910 sin

θ

2

�

−Mξ1

�

Γ356 cos
θ

2
+ Γ0289 sin

θ

2

��

ε0

− a sinβ coshρMφ0φ3

�

M−1
ξ1

�

Γ0310 cos
θ

2
+ Γ2568910 sin

θ

2

�

+Mξ1

�

Γ256 cos
θ

2
− Γ0389 sin

θ

2

��

ε0

−M−1
ξ1

�

Γ0235610 cos
θ

2
− a sinhρ
�

Γ010γ cos
θ

2
− Γ23568910γ sin

θ

2

��

ε0 (42)

+Mξ1

�

Γ0235689 sin
θ

2
− a sinhρ
�

Γ2356γ cos
θ

2
− Γ089γ sin

θ

2

��

ε0 .

Here Mξ1
, Mφ0φ2

, Mφ0φ3
are the exponential factors: e

Γ710
2 ξ1 , e−Γ0γφ0 eΓ25φ2 , e−Γ0γφ0 eΓ36φ3 , re-

spectively. With the help of some Γ -matrix algebra and the projection condition in (37) it can
be shown that this is equal to ε (in the r.h.s.), only for θ = π

2 value.
This means turning on these flux components does not break the supersymmetry for the

probe M5 solution; it remains half-BPS and hence its world volume would not undergo any
deformation in the target 11d superspace. But this also requires the brane to be fixed at the
θ = π

2 location.

3.2 Deforming the world volume by turning on the new fluxes

Next in this subsection, we will turn on those components of the flux field h suggested by the
analysis in the previous section 2.1 (whose values were obtained in equation (21)). These
flux components break some supersymmetry, giving us insight into how the shape of the brane
deforms when this happens. We take the 3-form flux field to be

h =
�

e0 ∧ e1 ∧ e4 + e3 ∧ e6 ∧ e10
�

F . (43)

The κ-symmetry constraint equation is

1
p

−det g

�

γφ0ρβφ2φ3ξ
+
�

e0134610
�

φ0ρβφ2φ3ξ

�

Γ014 + Γ3610

�

F
�

ε = ε . (44)

After some simplification, this becomes
�

− Γ0134610 +
�

Γ014 + Γ3610

�

F
�

M
�

cos
θ

2
− Γ8910 sin

θ

2

�

Mξ1
ε0 = ε . (45)

After commuting all the Γ matrices in the l.h.s. through the exponential factor M , we get the
following

Mξ1
Γ0235689 sin

θ

2
ε0 − M−1

ξ1
Γ0235610 cos

θ

2
ε0

+Mξ1

�

cos
θ

2

�

Γ025 cos2 β + Γ036 sin2 β
�

F − sin
θ

2
Γ89

�

Γ36 cos2 β + Γ25 sin2 β
�

F
�

ε0

+M−1
ξ1

�

sin
θ

2
Γ8910

�

Γ025 cos2 β + Γ036 sin2 β
�

F + cos
θ

2
Γ10

�

Γ36 cos2 β + Γ25 sin2 β
�

F
�

ε0

+Mφ2φ3
cosβ sinβ Mξ1

�

sin
θ

2
Γ89 (Γ26 + Γ35) + cos

θ

2
(Γ026 + Γ035)
�

F ε0

+Mφ2φ3
cosβ sinβ M−1

ξ1

�

sin
θ

2
Γ8910 (Γ026 + Γ035) − cos

θ

2

�

Γ2610 + Γ3510

�

�

F ε0 .

(46)

10

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.004


SciPost Phys. Core 9, 004 (2026)

Table 1: Table showing the intersection directions of worldvolume of Φ1 = 0 solution
with the AdS7 boundary when fluxes are turned off and turned on, indicating the
deformations when h=

�

e014 + e2510
�

F value discussed in this subsection.

φ0 φ1 φ2 φ3 α β ρ θ χ ξ1 ξ2

M5N × × × × × × − − − − −

M5Φ1=0;h=0 × − × × − × × − − × −

M5Φ1=0;h̸=0 × × × × × − − × −

To show that this is equal to the r.h.s. in (45), the terms with the exponential factor Mφ2φ3

must vanish. So we focus on these terms first. After using the projection condition from (37)
and setting

F =
cos θ2 − sin θ2
cos θ2 + sin θ2

, (47)

these terms can be written as

Mφ2φ3
cosβ sinβ
�

cos
θ

2
− sin

θ

2

�

�

Mξ1
(Γ026 + Γ035) − M−1

ξ1

�

Γ2610 + Γ3510

��

ε0 . (48)

These will not vanish unless we impose another projection condition on ε, breaking the susy
by another half

(1+ Γ2536)ε0 = 0 . (49)

After taking care of Mφ2φ3
terms, we go to the remaining set of terms in the l.h.s. we wrote in

(46). We use the two independent projections from (37) and (49) to write the l.h.s. equal to

Mξ1

�

sin
θ

2
+
�

cos
θ

2
− sin

θ

2

�

Γ025

�

ε0 − M−1
ξ1
Γ8910

�

cos
θ

2
−
�

cos
θ

2
− sin

θ

2

�

Γ025

�

ε0 , (50)

and this is not equal to the r.h.s. in (45)
�

Mξ1
cos
θ

2
− M−1

ξ1
Γ8910 sin

θ

2

�

ε0 , (51)

unless we impose a third projection condition on ε0 breaking the susy to 1
8 BPS

Γ025 ε0 = ε0 . (52)

3.2.1 Consequence of susy breaking and analysis of the deformations

From the κ-symmetry constraint calculation for the solution Ansatz: Φ1 = 0; Z2 = 0; we see
that if we want to place the probe brane at an arbitrary value of θ coordinate, the flux field h

must be proportional to the factor F = cos θ2−sin θ2
cos θ2+sin θ2

. This makes h field equal to zero at θ = π
2

and nonzero at any other location. When the flux field is equal to the one taken in (43) the
supersymmetry breaks to 1

8 due to the 3 independent projections given below

− Γ0 ε0 = Γ25 ε0 = Γ36 ε0 = Γ89 ε0 . (53)

This analysis also tells us that it is impossible to have the solution Ansatz: Φ1 = 0; Z2 = 0;
as a half-BPS probe away from the coordinate location θ = π

2 . The supersymmetry have to
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be broken by at least another 1
4 factor. And the brane solution is always a deformed one at

arbitrary θ location.
The nature or shape of the deformation can be analyzed a bit if we look at the projection

conditions given in (53). One can realize that if we consider a common intersection of our
current solution with two of the solutions that we obtained in the past in [16], given by the
embedding conditions

M51
codim4 : Φ1 = 0 ; Φ3 = 0 ; (54)

M52
codim4 : Φ1 = 0 ; Φ2 = 0 ; (55)

the brane web made out of the intersection of these three will have the same susy due to the
projections in (53).

In principle, in this brane web, the world volume of the three constituting M5 branes need
not have to intersect with each other along a particular location or a common submanifold.
This web can be formed when each of the three component M5 brane worldvolumes start to
develop some 2-dimensional ridge-like spike deformations emerging out in the orthogonal di-
rections. Then those spikes join with each other at certain locations away from their respective
M5 worldvolume to form a complex web-like geometry preserving the 1/8 BPS supersymmetry
we see from the projection conditions in (53). See [25, 26] for the work done on BPS con-
figurations with such multiple orthogonal spikes emerging and joining between parallel M5
branes. These spikes from the point of view of the gauge theory living on the worldvolume of
the probe M5 brane can be seen as some string-like 1

4 BPS configurations, in which one or two
of the scalars of the 6d N = 2,0 tensor multiplet develop singularities at the locations of those
strings and source the 3-form flux components for field h that we switched on in equation
(43).

The emergence of this picture can be further strengthened when we turn on the relevant
flux field components, separately, on the world volume of the two half-BPS M5 solutions in
(54). These solutions were derived in [16]. Both the solutions had a world volume topology
of AdS3 × S3. They were holographic duals of codimension-4 defects in the boundary gauge
theory. And when we turn on the 3-form flux field on their world volume to be equal to

h =
�

e0 ∧ e8 ∧ e9 + e1 ∧ e4 ∧ e10
�

F . (56)

We see that supersymmetry has to be broken for both of them in a particular way. The susy
has to be broken by another factor of 1/4. For the M51

codim4 solution in (54) the deformed
brane configuration will be 1/8 BPS due to the three projection conditions

M51
codim4 : Γ25 ε0 = Γ89 ε0 = − Γ710 ε0 = − Γ0 ε0 . (57)

Whereas for the solution M52
codim4, the deformed brane configuration will be 1/8 BPS due to

the projection conditions

M52
codim4 : Γ36 ε0 = Γ89 ε0 = − Γ710 ε0 = − Γ0 ε0 . (58)

In conclusion, our analysis in this subsection with the flux field h taken in (43) suggests that
the solution Φ1 = 0; Z2 = 0; may exist in an M5 brane web configuration with its world-
volume deforming and developing 2d ridge-like spikes at certain locations from where h field
is sourced and then these spikes stretching in the directions transverse to the worldvolume
and intersecting with spikes coming out from the branes of (54). A clearer picture of this will
require a careful analysis of the 1/4 BPS configurations of the N = (2,0) field theory that
lives on the single probe M5. We will need to study the scalar field profiles near the endstrings
that source the h field at the base of these M2-spikes to get an accurate picture of the web;
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for example, see [24,26]. Looking at [25] for a supersymmetry analysis of a network of mul-
tiple endstrings of M2-spikes stretched between parallel M5 branes may also be useful. Apart
from this, perhaps one can also analyze the κ-symmetry of the ridge-like spike deformations,
which are interpreted as open M2 branes ending on the probe M5 worldvolume. κ symmetry
constraint for such incidence was obtained in this paper [28]. The anomaly-free action for
similar open-supermembranes was also discussed in these papers [29, 30]. We will address
these questions soon in future work.

3.2.2 Making other components of the flux field non-zero

In the remainder of this subsection, we will turn on some other components of the flux field h
nonzero and consider

h =
�

e0 ∧ e3 ∧ e6 + e1 ∧ e4 ∧ e10
�

F . (59)

In κ-symmetry analysis of this case, we will find that the supersymmetry has to broken further
by another factor of 1/2. So the M5 brane configuration with this value of flux field is 1/16
BPS and the projections are given in the equation below

− Γ0 ε0 = Γ25 ε0 = Γ36 ε0 = Γ89 ε0 = − Γ710 ε0 . (60)

We have put κ-symmetry constraint analysis of this case in the appendix C. Here we would
like to compare the 1/16 susy with the susy preserved in the other cases discussed in later
subsections 3.3.1 and 3.3.2. One can see that this 1

16 BPS susy is the same as the susy preserved
by the solutions of subsections 3.3.1 and 3.3.2 when some particular components of the h
flux field are non-zero(given in equation (67) and (73), respectively). This means that after
turning on these other components of flux field h in (59), the brane solution develops spikes
in the other orthogonal directions and those spikes can join the similar spikes coming from
the solutions of 3.3.1 and 3.3.2(with same nonzero components of the h flux field). And these
deformed M5 branes with their spikes joined form a complex web-like geometry that preserves
the 1/16 susy of the 11d background theory given by the projections in equation (60).

3.3 Other case examples

In this subsection, we would like to analyze other simpler M5 brane Ansatz from the general
solution in (27) from section 2.1 and list their preserved supersymmetry. All of the probe M5
brane cases discussed in this subsection will have the worldvolume of topology AdS5×S1 when
the fluxes are zero, and we will see how the supersymmetries are broken when the fluxes are
turned on; i.e. when the brane is moved from the coordinate position θ = π

2 . Upon turning
on the fluxes, all the brane examples considered here will become part of a bigger web of
M5 branes with the web preserving the common supersymmetry of the individual constituent
brane (with fluxes nonzero).

3.3.1 Case F (1) = Φ2 = 0; F (2) = Z2 = 0

In this case example, the brane solution is again half-BPS when the flux field value is 0 and
fixed at the location θ = π

2 . The projection condition for which is given below

Γ0134610 ε0 = ε0 . (61)

This is the same as the supersymmetry preserved by the half BPS brane in the previous work [9]
p

Z1Φ2 = c0 . (62)
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When we make the flux field non-zero by moving it away from θ = π
2 and take

h =
�

e014 + e2510
�

F , (63)

the supersymmetry needs to be broken by another factor of 1
4 . This makes this brane with the

above flux field value 1
8 BPS due to the impositions of the projection conditions5

− Γ0 ε0 = Γ14 ε0 = Γ36 ε0 = Γ89 ε0 . (64)

Remark: This 1/8-BPS brane configuration with the flux field (63) has all 4 of its supersym-
metries in common with the common supersymmetries of the two half-BPS solutions found in
our previous work [16]. The embedding conditions of those are given as follows

M51
codim4 : Φ2 = 0 , Φ3 = 0 , (65)

M52
codim4 : Φ1 = 0 , Φ2 = 0 . (66)

Further one can show that if we turn on some of the other components of the flux field h and
take it to be equal to

h =
�

e025 + e1410
�

F , (67)

the supersymmetry breaks by another factor of half to 1
16 BPS given by the projections

− Γ0 ε0 = Γ14 ε0 = Γ36 ε0 = Γ89 ε0 = −Γ710 ε0 . (68)

3.3.2 Case F (1) = Φ3 = 0; F (2) = Z2 = 0

In this case example, the brane solution is again half-BPS when the flux field value is 0 and
fixed at the location θ = π

2 . The projection condition for which is given below

Γ0124510 ε0 = ε0 . (69)

This is the same as the supersymmetry preserved by the half BPS brane in the previous work [9]
p

Z1Φ3 = c0 . (70)

When we make the flux field non-zero by moving it away from θ = π
2 and take

h =
�

e014 + e2510
�

F , (71)

the supersymmetry needs to be broken by another factor of 1
4 . This makes this brane with the

above flux field value 1
8 BPS due to the impositions of the projection conditions

− Γ0 ε0 = Γ14 ε0 = Γ25 ε0 = Γ89 ε0 . (72)

Further, if we change the flux field and make some other components non-zero to consider

h =
�

e025 + e1410
�

F , (73)

the supersymmetry breaks by another factor of half to 1
16 BPS given by the projections

− Γ0 ε0 = Γ14 ε0 = Γ36 ε0 = Γ89 ε0 = −Γ710 ε0 . (74)

5We collect the detailed step-by-step calculation with this flux field value in the appendix D.
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Table 2: We summarise the results for all three solution examples presented in this
section, considering various values for the flux field h and the supersymmetry pre-
served. To do the comparison, in the last two sets of rows we also write the results
of the general solution obtained in section 2.1.

Solutions h field values no. of susy required projections

F (1) = Φ1 = 0; h= 0 1
2 BPS Γ14 ε0 = −Γ710 ε0

F (2) = Z2 = 0; h=
�

1+ ⋆g

�

p

gββ gφ2φ2
gφ3φ3

( e2 = 0 ) h=
�

e014 + e3610
�

F 1
8 BPS Γ14 ε0 = −Γ710 ε0

Γ25ε0 = Γ36ε0 = Γ89ε0

h=
�

e036 + e1410
�

F 1
16 BPS Γ14ε0 = Γ89ε0 = −Γ710ε0

Γ25ε0 = Γ36ε0 = Γ89ε0

F (1) = Φ2 = 0; h= 0 1
2 BPS Γ25 ε0 = −Γ710 ε0

F (2) = Z2 = 0; h=
�

e014 + e2510
�

F 1
8 BPS Γ25 ε0 = −Γ710 ε0

( e3 = 0 ) Γ14ε0 = Γ36ε0 = Γ89ε0

h=
�

e025 + e1410
�

F 1
16 BPS Γ25ε0 = Γ89ε0 = −Γ710ε0

Γ14ε0 = Γ36ε0 = Γ89ε0

F (1) = Φ3 = 0; h= 0 1
2 BPS Γ36 ε0 = −Γ710 ε0

F (2) = Z2 = 0; h=
�

e014 + e2510
�

F 1
8 BPS Γ36 ε0 = −Γ710 ε0

( e3 = 0 ) Γ14ε0 = Γ25ε0 = Γ89ε0

h=
�

e025 + e1410
�

F 1
16 BPS Γ36ε0 = Γ89ε0 = −Γ710ε0

Γ14ε0 = Γ25ε0 = Γ89ε0

F (1) (Φi , Za) = 0; h= 0 1
16 BPS Γ14ε0 = −Γ710ε0 = i ε0

F (2) = Z2 = 0; Γ14ε0 = Γ25ε0 = Γ36ε0

h= #F 1
32 BPS Γ14ε0 = −Γ710ε0 = i ε0

(as given in eqn (21)) Γ14ε0 = Γ25ε0 = Γ36ε0

Γ14ε0 = Γ89ε0

F (1) (Φi , Za) = 0; h = 0 1
32 BPS Γ14ε0 = −Γ710ε0 = i ε0

F (2) (Φi , Za) = 0; h= #F Γ14ε0 = Γ25ε0 = Γ36ε0

(as given in eqn (21)) Γ14ε0 = Γ89ε0
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3.4 Onshell action value

In this subsection, we will discuss the on-shell value of the actions for the examples we saw
in this section. The values for all the case examples here are the same, which was expected
since all of the AdS5×S1 world volumes undergo similar deformations when the h field is con-
sidered non-zero. All of these probe branes end in the AdS7 boundary, at some 4-dimensional
submanifold R×Σ3 where Σ3 denotes some compact space-like 3-surface.

We focus on the example Φ1 = 0; Z2 = 0; we compute the Lagrangian given by PST in
equation (3) onshell.

We choose the gauge fixing condition where we set the scalar ‘a’ to be

a = ξ1 . (75)

For the on-shell embedding solution

α =
π

2
, θ = constant, χ = 0 , (76)

when we consider taking the flux field h to be

h =
�

e014 + e3610
�

F . (77)

The Lagrangian density in (3) evaluates to the value

LPST

�

�

�

on-shell
= (16 l6) T5 sin 2β coshρ sinh3ρ f (θ ) , (78)

which can be written as a total derivative term,

LPST

�

�

�

on-shell
=

�

N2

8π3

�

f (θ )∂ρ
�

sin2β sinh4ρ
�

, (79)

here f (θ ) is some function of the fixed coordinate θ , which is a constant for the solution
under consideration. The action from LPST in (78) is divergent. It can be regularized by
using a boundary term at ρ = ρ∞. We saw that LPST takes the similar onshell value and can
be written as a total derivative as in (79), for the other two case examples as well. And so
after adding the appropriate boundary term, we find that the action value is zero for all the
examples we discussed in this section

SPST

�

�

�

reg.
= 0 . (80)

3.5 Taking AdS7 boundary limit and recovering the dual defects

From these probe M5 configurations, we can also learn about the holographic dual defects
in boundary gauge theory. For instance, in section 4 of reference [9], for a certain subclass
of embedding conditions that preserved at least 2 supersymmetry, we were able to determine
the nature of coupling of the dual codimension-2 defects to the field contents of the boundary
theory by taking the large value limit for AdS radial coordinate: r = 2l sinhρ → ∞ .

In [9], we were able to determine how a complexified scalar in the boundary theory be-
comes singular at defect locations in the boundary theory. A case example that we considered
in [9] was given by the embedding conditions

Z
1
2

1 Φ1 = c0 ; Z2 = 0 . (81)

Upon taking the large r limit in this condition, it tells us where the probe ends in the AdS7
boundary, which is also the location of the dual defect in the boundary gauge theory. The

16

https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.004


SciPost Phys. Core 9, 004 (2026)

projection of this probe solution on the AdS boundary also gives us the topology of the defect,
which is R × S3 for this example. And it also tells us about the behaviour of a complexified
scalar in the boundary theory

λ =
c0

cosα eiφ1
, (82)

where λ = r ei
ξ1
2 which is identified with a complex scalar field in the boundary theory. Here,

c0 is a complex parameter that tells how the defect couples with the ambient gauge theory. Our
first example Φ1 = 0; Z2 = 0; analyzed in this section belongs to the case example of [9] if
we consider the parameter c0 value to be zero. This means for this example the corresponding
dual defect in the boundary gauge theory doesn’t couple to the complex scalar field in the
usual way(as discussed in [3, 23, 31]). However, we must still be able to determine how the
dual defect couples to the other bosonic fields in the non-abelian N = 2,0 tensor multiplet
theory. Since the embedding conditions

Φ1 = 0 , Z2 = 0 , (83)

are not the only equations that describe this probe M5 brane example. There is also a non-
zero-valued flux field h associated with it (the one which was given in equation (39)).

We expect that the dual codimension-2 defect here will couple to the bosonic fields of the
boundary theory in the same way as the rigid surface defects of the 4d N = 4 SYM theory
do in reference [4].6 The rigid defects of [4] were the non-Abelian solutions of the same
BPS equations of Kapustin and Witten in [32] that were also solved by the Abelian surface
defects of [3]. For rigid surface defects, the complex scalar field and the gauge field of the
boundary gauge theory attain profiles that are weaker than the 1

x pole singularity near the
defect locations(it is 1

log x singularity). Also see the recent papers [33,34], where the half-BPS
rigid defects are analysed and their AdS/C F T holographic dual D3 branes are also discussed.
In contrast to the non-rigid defects of [3], which preserve the bosonic SO(2, 2)×SO(4)R×SO(2)
subgroup of the SO(2, 4)×SO(6)R symmetry(of the 4d SYM theory), the rigid defects preserve
the enhanced symmetry of SO(2,2)× SO(4)R × SO(2)× SO(2)R subgroup.

Our example in (83) will also map to the dual defect of such an enhanced symmetry, in
comparison to the defect coming from the brane in (81), where c0 is non-zero. Due to the
c0 = 0 value, there is no coupling between the two circular directions φ1 and ξ1, so the
defect coming from (83) will get to preserve an enhanced symmetry due to an extra SO(2)R
factor. The defect dual to the probe solution in (83) will preserve the bosonic symmetry of
SO(2, 4)× SO(3)R × SO(2)× SO(2)R subgroup from the 6d superconformal symmetry.

In the example in subsection 3.1, we have also seen that the non-zero value of h field in
(43) causes the brane world volume to break the supersymmetry and, as a result, the space-
time symmetry to get broken down to a smaller isometry subgroup, suggesting the deformation
in the shape of the brane. In the probe M5 brane example here, we have 5 directions orthog-
onal to its worldvolume; 3 orthogonal directions in S4 and 2 orthogonal directions in AdS7;
the orientation and the stretching of the spiked deformations in orthogonal directions could
determine the change in coupling of the dual defect with bosonic fields in the boundary gauge
theory. After taking the large radius limit r →∞ here (with h ̸= 0), we will get a holographic
dual codimension-2 defect whose shape is now deformed from R×S3 topology to some R×Σ3

topology. With the S3 deforming in such a way that there are spikes coming out of S3 and
elongating in the two spacelike directions orthogonal to the defect in the 6d theory.

However, we first need a careful study of the deformation of the M5 worldvolume to get
a precise picture here. The analysis of the worldvolume gauge theory will be useful in this re-
gard. The quarter BPS configurations of the Abelian worldvolume theory with non-trivial scalar

6Codimension-2 defects of 6d N = 2,0 SCFT map to surface defects of 4d SYM theory upon doing compactifi-
cation on a suitable 2d Reimann surface [1,2].
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profiles will capture these spike-shaped deformations of the worldvolume in a precise manner.
The understanding of these spike-shaped deformations in the AdS7 boundary limit(r →∞)
should also become useful for determining the change in the coupling of the dual defect with
other bosonic fields in the boundary gauge theory: the other three real scalar fields and the
2-form gauge potential field Bmn. While the deformations of its world volume along AdS7
directions would affect the coupling of the dual defect with the potential field Bmn; world vol-
ume deformations along S4 directions would affect the coupling with the scalar fields. It would
also be useful to understand the quantity: displacement operator Dm(x) associated with these
codimension-2 defects [35].

4 Summary and conclusion

In this work, we considered some probe M5 brane solutions from a general class of solutions
derived in the previous work [9]. The solutions subclass considered here are codimension-2
in the AdS7 directions and preserve at least 2 supersymmetries of 11d due to projections in
(17) when there are no fluxes present on the world volume. In section 2.1, we showed that to
turn on the fluxes for these solutions, the supersymmetry has to be broken by another factor
of 1/2. We found that the 3-form flux field h should always need to be proportional to the
functional factor of

F =
cos θ2 − sin θ2
cos θ2 + sin θ2

. (84)

This makes the flux field zero whenever the coordinate θ is equal to π2 . The general embedding
conditions of [9] are also modified and become more constrained. The main result of this
section is the following embedding conditions in terms of two arbitrary holomorphic functions
satisfying some scaling conditions

F (I)(Φ0 ,Φ1 ,Φ2 ,Φ3 , Z1, Z2) = 0 (I = 1,2) ,
3
∑

i=0

∂φi
F (I) = 0 ,

∑

i=1,2

∂ξi
F (I) = 0 .

(85)

Since the above solution is very general, it is very difficult to analyze how the shape of the
brane gets deformed when the flux field is turned on. In section 3, we consider examples of
the brane solutions that have the world volume of shape AdS5 × S1 when the flux field h is
zero. Then we turned h non-zero suggested by our calculations in section 2.1. We found that
when the flux field is equal to

h =
�

e014 + e3610
�

F , (86)

the supersymmetry was broken by another factor of 1/4. This implies that the brane worldvol-
ume must be getting deformed by developing some 2d ridge-like spikes in one or two transverse
directions. The endlines of these spikes on the worldvolume should be sourcing the flux field
h. We also gave evidence that for the case example: Φ1 = 0; Z1 = 0; and h field with this
value; and with susy broken by 1/8 factor, the world volume may form a complex web with
some other solutions we found in [16], given in equation (54). This web is made out of the
spikes that stretch between the three different types of M5 branes. Further when we turned
on some different components of the h field non-zero; h =

�

e036 + e1410
�

F , we found that
the supersymmetry breaks to 1/16 factor and the κ-symmetry analysis suggests that this brane
example may become a part of a larger web structure with the examples of subsections 3.3.1
and 3.3.2 also becoming a part.

In the future, we would like to understand these spiked deformations from the viewpoint
of the abelian gauge theory that lives on the probe M5 world volume. These deformations
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should be captured by the scalar profiles of the BPS configurations in the gauge theory in a
precise manner [24–26]. In AdS boundary limit this can also tell us how the codimension-
2 holographic dual defect couples to the field content of the non-abelian N = 2, 0 gauge
theory that exists in the boundary. While the worldvolume deformations along the S4 may
determine the coupling of the dual defect with 3 of the real scalar of the boundary gauge
theory, the deformations along the AdS7 may determine the coupling with the 2-form potential
field Bmn(x). It will also be worthwhile to understand precisely how the probe with flux field
value in equation (39) would map to the half-BPS rigid defects of references [4], [33,34].

In future, following the method given in [7,10,11,27], we would also look to treat scalar
profiles -transverse to the brane world volume- around our original solution of AdS5 × S1

worldvolume(when the new fluxes were zero) as small fluctuations and then calculate the M5
brane action. It will be interesting to compare this answer with the calculated on-shell value of
M5 brane action for the deformed BPS configurations given in equation (80) in section 3(when
the fluxes were non-zero). The calculated action from the two different ways mentioned above
will give the effective action associated with the 4d defect that exists in the boundary theory.
While the second action has the classical answer; the first action calculation will also include
the quantum corrections for the defect with the shape of R× S3.

This could also be taken to the next level. Since the deformed worldvolume configurations
that we analyzed here are classical, by again following the method of [7, 10, 11, 27], we can
do the calculation of the effective action with 1-loop correction by allowing fluctuations in the
values of the embedding fields X m(τ,σi) and 3-form h around the field solutions we presented
in section 3.
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A Details of the 11-dimensional geometry

We consider the following metric of the eleven-dimensional AdS7 × S4 geometry in global
coordinates system

ds2
AdS = −
�

1+
r2

4l2

�

d t2 +
dr2
�

1+ r2

4l2

� + r2dΩ5 , (A.1)

with dΩ5 = dα2 + cos2α dφ2
1 + sin2α
�

dβ2 + cos2 β dφ2
2 + sin2 β dφ2

3

�

,

ds2
S4 = l2
�

dθ2 + sin2 θ (dχ2 + cos2χ dξ2
1 + sin2χ dξ2

2)
�

. (A.2)
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The global AdS7 coordinates above can be written in terms of the following complex coordi-
nates in C1,3

Φ0 = l coshρ eiφ0 , Φ1 = l sinhρ cosα eiφ1 ,

Φ2 = l sinhρ sinα cosβ eiφ2 , Φ3 = l sinhρ sinα sinβ eiφ3 ,
(A.3)

which define the AdS7 part as the following locus in C1,3

−|Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2 = −l2 . (A.4)

For the S3 ⊂ S4 we define the complex cooordinates describing it embedded in C2 space

Z1 = cosχ eiξ1 , Z2 = sinχ eiξ2 . (A.5)

The frame vielbein that we use are the following

e0 = 2l
�

cosh2ρ dφ0 − sinh2ρ
�

cos2α dφ1 + sin2α cos2 β dφ2 + sin2α sin2 β dφ3

��

,

e1 = 2l dρ , e2 = 2l sinhρ dα , e3 = 2l sinhρ sinα dβ ,

e4 = 2l coshρ sinhρ
�

cos2α dφ01 + sin2α cos2 β dφ02 + sin2α sin2 β dφ03

�

,

e5 = 2l sinhρ cosα sinα
�

cos2 β dφ02 + sin2 β dφ03 − dφ01

�

,

e6 = 2l sinhρ sinα cosβ sinβ (dφ03 − dφ02) ,

(A.6)

where r = 2l sinhρ, φ0 =
t

2l , and

e7 = l dθ , e8 = l sinθdχ , e9 = l sinθ cosχ sinχ (dξ1 − dξ2) ,

e10 = l sinθ
�

cos2χ dξ1 + sin2χ dξ2

�

.
(A.7)

With the above choice of frame vielbein, it becomes apparent that the AdS7 part can be ex-

pressed as a U(1)Hopf fibration over a Kähler manifoldÝCP
3
. HereÝCP

3
is a complex projective

space which is identified with the space of rays passing through the origin in the complex space
C1,3. Similarly for the S3 ⊂ S4 part, the frame vielbein is chosen so that U(1) Hopf fibration
over a Kähler manifold CP1 becomes manifest.

B 6-form constraints when h field is zero

From the terms in the first group, we have the following set of 6-form constraints

�

e0 + e10
�

∧ Ea Eb Ec ∧ ω̃= 0 ,
�

e0 + e10
�

∧ Ea ∧ ω̃∧ ω̃= 0 , for a, b, c = 1, 2,3, 8 ,
(B.1)

with the definition
E1 = e1 − i e4 , E2 = e2 − i e5 ,

E3 = e3 − i e6 , E8 = e8 − i e9 ,
(B.2)

here we have also defined a real 2-form:

ω̃= e14 + e25 + e36 =
i
2

�

E1 E1 + E2 E2 + E3 E3
�

≡ω
ÝCP

3 . (B.3)

This 2-form is the pull-back of certain Kähler forms onto the worldvolume of the brane. This
Kähler form is of the base manifoldÝCP

3
when the AdS7 is written as Hopf-fibration overÝCP

3
.
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The terms with a factor e010 give the constraints

e0 ∧ e10 ∧ Ea Eb ∧ ω̃= 0 ,

e0 ∧ e10 ∧ E1 E2 E3 E8 = 0 .
(B.4)

The BPS differential 6-form constraints from the remaining set of terms are

Ea Eb ∧ ω̃∧ ω̃= 0 , for a, b = 1, 2,3,8 . (B.5)

The final constraint is the following:

e14 ∧ e25 ∧ e36 = 0 . (B.6)

C κ symmetry analysis with h036, h1410 components

In this appendix section, we turn on some other components of the flux field h for the case
Ansatz: Φ1 = 0; Z2 = 0 discussed in section 3.1. The flux field has the following components
nonzero

�

e036 + e1410
�

F . (C.1)

After some simplifications κ-symmetry constraint equation takes this look

�

− Γ0134610 +
�

Γ036 + Γ1410

�

F
�

M
�

cos
θ

2
− Γ8910 sin

θ

2

�

Mξ1
ε0 = ε . (C.2)

After commuting all the six-product and 3-product Γ matrices through the exponential factor
M in the killing spinor the l.h.s. in the above equation (C.2) becomes

M Mξ1
cos
θ

2

�

cosh2ρ
�

cos2 β Γ036 + sin2 β Γ025

�

− sinh2ρ Γ2356 γ
�

F ε0

+M Mξ1
sin
θ

2

�

Γ0235689 − cosh2ρ Γ89

�

cos2 β Γ25 + sin2 β Γ36

�

F − sinh2ρ Γ089 γF
�

ε0

+M M−1
ξ1

cos
θ

2

�

− Γ0235610 + cosh2ρ
�

cos2 β Γ2510 + sin2 β Γ3610

�

F − sinh2ρ Γ010 γF
�

ε0

+M M−1
ξ1

sin
θ

2
Γ8910

�

cosh2ρ
�

cos2 β Γ036 + sin2 β Γ025

�

− sinh2ρ Γ2356 γ
�

F ε0

−M Mφ2φ3
Mξ1

cosh2ρ cosβ sinβ
�

cos
θ

2
(Γ026 + Γ035) + sin

θ

2
Γ89 (Γ26 + Γ35)
�

F ε0 (C.3)

+M Mφ2φ3
M−1
ξ1

cosh2ρ cosβ sinβ
�

cos
θ

2

�

Γ2610 + Γ3510

�

− sin
θ

2
Γ8910 (Γ026 + Γ035)

�

F ε0

+M Mφ0φ2
Mξ1

coshρ sinhρ cosβ
�

cos
θ

2
(Γ356 + Γ0236 γ)− sin

θ

2
Γ89 (Γ02 + Γ5 γ)
�

F ε0

+M Mφ0φ2
M−1
ξ1

coshρ sinhρ cosβ
�

cos
θ

2

�

Γ0210 + Γ510γ
�

+ sin
θ

2
Γ8910 (Γ356 + Γ0236 γ)

�

F ε0

−M Mφ0φ3
Mξ1

coshρ sinhρ sinβ
�

cos
θ

2
(Γ256 + Γ0235 γ) + sin

θ

2
Γ89 (Γ03 + Γ6 γ)
�

F ε0

+M Mφ0φ3
M−1
ξ1

coshρ sinhρ sinβ
�

cos
θ

2

�

Γ0310 + Γ610γ
�

+ sin
θ

2
Γ8910 (Γ256 + Γ0235 γ)

�

F ε0 .

The terms in the first 4 lines of the above equation will combine to give the r.h.s. in (C.2) while
the terms with Mφ2φ3

, Mφ0φ2
and Mφ0φ3

factors will vanish among themselves respectively.
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Let’s focus on them one by one. We first consider Mφ2φ3
terms. We impose the projection

condition
Γ0235689ε0 = ε0 , (C.4)

and substitute for F to get

−M Mφ2φ3
cosh2ρ cosβ sinβ

�

cos
θ

2
− sin

θ

2

�

×
�

Mξ1
(Γ026 + Γ035)− M−1

ξ1

�

Γ2610 + Γ3510

��

ε0 ,
(C.5)

which vanishes when we substitute our second projection condition

(1 + Γ2536)ε0 = 0 , (C.6)

from section 3.2. Next we write the Mφ0φ2
terms. After using the two projections mentioned

above and substituting for F we get

M Mφ0φ2

�

cos
θ

2
− sin

θ

2

�

coshρ sinhρ cosβ

×
�

Mξ1
(Γ356 + Γ0236 γ) +M−1

ξ1

�

Γ0210 + Γ510 γ
��

ε0 ,
(C.7)

the above will vanish if we impose two more projection conditions breaking the supersymmetry
to the total factor of 1/16

Γ025 ε0 = ε0 , Γ78910ε0 = ε0 . (C.8)

Along the similar lines the terms with Mφ0φ3
factor can also be shown to combine and vanish.

And after using the same 4 independent projection conditions in (C.4), (C.6), (C.8) one can
show that the terms in the first four lines in (C.3) combine to give

M
�

Mξ1
cos
θ

2
− M−1

ξ1
Γ8910 sin

θ

2

�

ε0 , (C.9)

which is the r.h.s. in κ symmetry constraint in (C.2).

D κ-symmetry analysis of the example: Φ2 = 0

The κ-symmetry constraint when the fluxes are absent is

−Γ0124510 ε = ε . (D.1)

After commuting Γ0124510 through the exponential factor M in the Killing spinor ε this con-
straint equation becomes

−M Γ0134610

�

cos
θ

2
− Γ8910 sin

θ

2

�

Mξ1
ε0 = M
�

cos
θ

2
− Γ8910 sin

θ

2

�

Mξ1
ε0 . (D.2)

This holds only at θ = π
2 , when we impose the projection condition

Γ0134689 ε0 = ε0 . (D.3)
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Turning on the new fluxes from section 2.1: Next, we consider the flux field h non-zero
and take

h =
�

e014 + e2510
�

F . (D.4)

After some simplifications, the κ-symmetry constraint condition takes the form given below

�

− Γ0124510 +
�

Γ014 + Γ2510

�

F
�

M
�

cos
θ

2
− Γ8910 sin

θ

2

�

Mξ1
ε0 = ε . (D.5)

Next, we commute all the 6-product and 3-product Γ matrices through the exponential factor
M in the Killing spinor to write the l.h.s as follows

Mφ1φ3
cosα sinαMξ1

�

�

Γ016 + Γ034

�

cos
θ

2
+ Γ89

�

Γ16 + Γ34

�

sin
θ

2

�

F ε0

− Mφ1φ3
cosα sinαM−1

ξ1

��

Γ1610 + Γ3410

�

cos
θ

2
− Γ8910

�

Γ016 + Γ034

�

sin
θ

2

�

F ε0

+ Mξ1

�

Γ0134689 sin
θ

2
+
�

Γ014 cos2α+ Γ036 sin2α
�

cos
θ

2
F

− Γ89

�

Γ25 cos2α+ Γ14 sin2α
�

sin
θ

2
F
�

ε0

− M−1
ξ1

�

Γ0134610 cos
θ

2
−
�

Γ3610 cos2α+ Γ1410 sin2α
�

cos
θ

2
F

− Γ89

�

Γ014 cos2α+ Γ036 sin2α
�

sin
θ

2
F
�

ε0 .

(D.6)

The r.h.s. in (D.5) is equal to

M
�

cos
θ

2
− Γ8910 sin

θ

2

�

Mξ1
ε0 .

R.h.s. has no term with a factor Mφ1φ3
. Therefore the terms in the first two lines in l.h.s. (D.6)

must combine and cancel. This will happen only if we impose another projection condition

Γ14 ε0 = Γ36 ε0 . (D.7)

Next, we move to the terms in the last two lines of (D.6), after using the two projection con-

ditions: (D.3), (D.7) and substituting F = cos θ2 − sin θ2
cos θ2 + sin θ2

, terms here combine to give

Mξ1

�

sin
θ

2
+
�

cos
θ

2
− sin

θ

2

�

Γ014

�

ε0 −M−1
ξ1
Γ8910

�

cos
θ

2
−
�

cos
θ

2
− sin

θ

2

�

Γ014

�

ε0 . (D.8)

This will not give the r.h.s. in (D.5) unless we impose one more projection condition

Γ014 ε0 = ε0 . (D.9)

Therefore this brane solution with the flux field value given in (D.4) is 1/8-BPS with the 3-
independent projections imposed given below

− Γ0 ε0 = Γ14 ε0 = Γ36 ε0 = Γ89 ε0 . (D.10)
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