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Abstract

In this work, we will continue our analysis of some general probe M5 brane solutions
from our previous work in AdS- x S* spacetime (appeared in arXiv: 2109.08551). These
are codimension-2 in AdS-; and preserve at least 2 supercharges when the worldvolume
3-form flux field strength is zero. We will turn on the field strength and find that the
embedding conditions are modified, excluding certain branes contained in the previous
result. The new main result here is very general, so we pick simpler embedding condi-
tions that describe highly symmetric examples that preserve half of the supersymmetry
of the 11 dimensions. When the flux field is zero, worldvolumes have AdSs x S1 topology.
We turn the flux field value non-zero in these examples and analyze how the shape of
the worldvolume deforms as supersymmetry is broken by some additional fractions.
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1 Introduction

In this work, we present some new M5 probe brane solutions embedded in the background
spacetime geometry of AdS, x S*. These probe brane solutions are dual to the codimension-2
defects in the boundary gauge theory with 6d N = (2,0) supersymmetry via the AdS,/CF T,
holographic correspondence. They have non-compact world volumes that extend along the
radial direction of AdS and end in the boundary at the locations of the non-local defects.
See recent papers [5-7] on codim-2 defects using AdS,/CF T holography; also see [8] for
a nice exposition from defect-CFT viewpoint. See [1,2] for their relation to Gukov-Witten
defects [3,4] in the 4d SYM theory. In our calculation, we consider the general solutions from
Section 4 of paper [9] and introduce the deformations by making the world volume self-dual
3-form flux field non-zero.

The figures 1 and 2, describe the situation from this calculation schematically. In figure 1
we depict the AdS, of the spacetime geometry as a solid cylinder with its boundary along its
surface. The probe M5 brane in this figure is depicted by a surface that ends at the cylinder
boundary. This probe brane ends at the location of the dual defect which is sketched in the
inset alongside. The second schematic figure 2 estimates the situation when the 3-form flux
field h is turned non-zero on the worldvolume resulting in the changed shape of the probe
brane as well as the dual defect.

/

~_ |

Figure 1: This figure depicts the probe M5 brane dual to a codimension-2 defect in
the background spacetime geometry of AdS, x S* that ends on the defect in the AdS
boundary. The inset in this figure describes the dual defect in the gauge theory. The
brane world volume carries no 3-form flux field.
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Figure 2: In this second figure, we have introduced deformations by allowing the
field h to take non-zero values and in our calculation, we find that embedding con-
ditions get affected allowing for deformations under BPS constraints.

Analysing such probe branes in the AdS, bulk is expected to reveal new features about the
4d defects in the boundary gauge theory.

For example, deforming the probe branes — due to the AdS/CFT holographic correspon-
dence — will lead to deforming the shape of the defects in the boundary theory. This in turn
may also be useful for the analysis of such defect-CFTs from the bootstrap point of view where
correlation functions of various operators can be determined.

For example, values of the 4-point correlation functions like

<Dm(x)Dn(J/)Xa(W)Xb(z)>4d defect » (Dm(X)Dn(.y)Dp(W)Dq (Z)>4d defect>  €tC., (1)

can be determined on the defect. Here, D,,(x) are called displacement operators of the defect,
associated with the defect deformation at the location x. And X9, X? are the scalar field
operators in the 6d (2,0) tensor multiplet theory. See [10] for work on 2d Wilson surface
operators and [ 11] for Wilson lines. But while the deformation measurement in the correlators
in (1) includes the quantum fluctuations, the deformations that we analyze in this note are truly
classical, obeying the BPS constraints due to k-symmetry.

In Section 2 of this note, we show that when we break the 1/16 BPS supersymmetry of the
codimension-2 brane solution from [9] by another factor of 1/2, the xk-symmetry constraint (8)
allows us to make the flux field h nonzero. Therefore, we start our calculation by considering
the projection conditions given in (12) which break the 11d spacetime susy by a factor of 1/32
and find the modified embedding conditions in (27) as a main result that allow the h field to
take non-zero value in the k-symmetry equation (8).

So this analysis tells us that making h field non-zero deforms the shape of the M5 world
volume breaking the susy by a factor of 1/2. We further suspect these deformations must
be occuring in the form of some 2d ridge-like spiked shapes emerging from the brane world
volume and extending in the orthogonal directions to the brane in 11 dimensions.

In section 3 of this note, we focus on recovering some higher supersymmetric cases from
the general solution given in (27). Since the derived solution in section 2 is very general, it
is very difficult to interpret any shape associated with a brane. This solution in (27) is also
expected to include a complicated geometry of a BPS brane-web formed out of intersections
of many M5 branes. By choosing examples from the embedding condition in (27) which are
more supersymmetric, we look for a simpler version of this equation. For example, a solution
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like!

FD(®,,®;,2,) = % =0, and FP(%,,9;,2,) = 2 0, (2)
0 2

belongs in this class and is a much simpler condition to express. In section 3.1, we show that
this solution preserves half of the supersymmetry, including the one suggested by the projection
conditions in (12). In our previous work [9], we have already understood that those M5 branes
that are half-BPS(and without 3-form flux) have a simpler world volume shape like: AdS5; x S 1
(or S° x S! for a compact worldvolume) and the corresponding defect is also of a simpler shape
of R x S3. In section 3, we will analyze how the world volume due to an Ansatz like in (2)
gets affected when the flux field h field is turned non-zero.

2 New M5 solutions with flux field

The covariant action of a single probe M5 brane, first given by Pasti, Sorokin and Tonin in [12],
is given below

= vV—8 ~ 1
Spst = Tsf d®x (\/_det[gmn +iH,,] — TgHmnHmn) - Tsf (A(E’) — 54(3) /\H3) , (3

Ts is the tension of the M5 brane
1

Ts = ———.
> (@2n)ls

4)

Here the second integral is the Wess-Zumino term where A® and A® are the pull-back of the
11d background gauge potential. In the action, H,,,, and H,,, are defined as

~ Emn rSqus
AT CTU S = o R

Hmn — Hmnp VP

(¢ is the Levi-Civita 6-tensor), and introduce an auxiliary field a with the normalized derivative

d,a
VP=+ (6)

v —gmag,ad,a .

The 3-form field H,,,, above is defined as
H; = dB, — A®, 7)

where B, is a 2-form gauge potential of the 6d (2,0) tensor multiple theory on the single M5
worldvolume. In the papers [13, 14], the authors show that the M5 action in equation (3) is
invariant under the k-symmetry transformation. The constraint that one obtains under this
fermionic symmetry is given by the equation written below

l.e==*x¢, (8)
where the projector is given by [15]
1 40
FK = \/?etg |:YT12345 + agmnpquYmnphqrsiI > (9)

Here ®;s and Z,s are the complexified coordinates of 11 dimensions described in appendix A.

4
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Y 212345 1S the product of six worldvolume I' matrices. h is the self-dual 3-form flux field (obeying
the h = 4 h condition) and the indices m,n, p,q, 1,s are the 6d coordinate indices. The h field
here is related to the field strength H; in equation (7) by the equations

4
Honp = (08 + Kihgny

K =h

Q

mpgh™? (10)

1- %Tr[k;k;] ,

€ in the equation (8) is the Killing spinor of the 11-dimensional spacetime given by the expres-
Slon 1 1 1 1 1 1 1

e=e 5 (Tog+117)P ei(F12+F45)ae 5 (T3 +T56)8 e 3Tordo e—§r14¢1 e—§F25¢2 e—§F36¢3
(11)

1 1 1 1
57170 ,3\I78 010 ) ¥ 5171081 ,—5 T
erY 7 62( 7) 271061072 895260’

€ solves the classical Killing spinor equation of the 11d background theory whose metric solu-
tion and the choice of coordinate frame vielbein we present in appendix A of this note.

2.1 General solution of deformed M5 brane from xk-symmetry constraint

In this subsection, we will analyze the general M5 brane solutions from [9] that preserve the
single 11d spacetime supersymmetry dictated by the projection conditions

1"14 €y = F25 €0 = F36 €y = _FO €y = ieO, 1"8960 = —F7w60 = iEO. (12)

After using all the projection conditions in €, it takes a simplified form
F G091 9295+ 616 (05 & _ sin
€ = 2 \WOTPITR2TPITeIT2 cosE—s1n§F7 €g- (13)

M5 worldvolume y matrices are related to the 11 dimensional I matrices as follows
Y, = e? L, index a runs over integer values 0,1,2,...,10, (14)

here we have introduced the notation ¢ for pull-backs of the 11d frame vielbein as
e = eﬁaiX“’.
Now we consider a generic embedding of the M5 so that the 11d coordinates:

¢o(7,01,09,03,04,05),0(7,01,...,05),...,¢93(7,01,...,05),...,&3(7,01,...,05), (15)

which are arbitrary functions of the worldvolume coordinates 7, 0;s. In this calculation, we
will actively use the pullbacks ¢?s to find the generic conditions.

In our analysis, we consider the self-dual flux 3-form field h to be proportional to the
worldvolume forms and its expression given by

gabc
h=.7-"(Xm)Tea/\eb/\ec, (16)

where F(X™) is some functional dependence on the 11d spacetime coordinates to be deter-
mined in this section.

We are mainly going to analyze those M5s that are codimension-2 in AdS; and wrap a 1d
curve on S*. A subclass of solutions of such M5 world volumes was also analyzed in section 4
of reference [9]. In that work, the branes had no flux field turned on and preserved atleast 2
supersymmetries given by the projections

F1460 = F25 €0 = F36 €y = _I_‘7m€0 = iEO. (17)

5
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Those solutions wrapped a circle along the &, direction on $*(with the pullback ¢’ zero).

In another work [16], we also analyzed the branes that were codimension-4 in AdS, and
wrapped an S® sphere in $* directions. Those solutions also had the world volume flux field
turned on and preserved at least 2 supersymmetries with one of them given from projections
in (12). See [17-19] for work on other similar codimension-4 branes wrapping S in $* di-
rections.

We will focus on the x-symmetry constraint in equation (8). The calculation method we
use in this section is based on the method in [20, 21] presented for a general class of % BPS
probe D3 brane solutions in AdSs x S carrying 5 non-zero angular momentum charges of the
10d spacetime.

For the class of solutions that we are analyzing, the following vielbein components are zero

¢/ =0, e =0. (18)

Therefore the 6-form y.1345 Will be a sum of 84 terms ((g)). Further e™"P1"y g, will
give additional contribution in k-symmetry constraint equation (8). From the first look, this
analysis seems to involve an additional 84 x 20 6-form terms. However, we will take the hint
from [9] and proceed accordingly to find a significant reduction in this number. First, we point
out that the volume form in the most general solution in [9] was given by the derived formula?

dvolg = v/—detg = A el0A (“’”’)/Z\(”“’). (19)

For the class of solutions in this note, this formula for the volume form becomes

14 4 625 4 636) A (14 1 25 4 36
dvolg = v/ —detg = P AlOA ( ) 2 ( ) . (20)

And therefore, for the self-dual field h we find that we have to take
h=FX™ (e0+em)/\(e14+225+e36) . 21)

So in the k-symmetry equation the term ¢™"P4"*y . h .. will be an addition of a lot less number
of terms! In appendix B we collect the 6-form constraints(a result from [9]) that these solutions
obey when the h field is zero. From now on we will analyze how much those 6-form constraints
modify when h field is nonzero.

Out of the 84 terms in y ;19345 and many more terms in ¢™"P4"

Ymnphgrs>» We start with
eoml—blo A\ (314 A 925 F1425 + 614 A\ 236 F1436 + 625 A 636 F2536) , (22)
+ flux terms

+ F(xX™) Z edber Al + F(X™) Z T, Aedef

a,b,c,de.f a,b,c,de.f
€{0,10,1,4,2,5} €{0,10,1,4,3,6}
+ F(X™) Z e?ber Al
a,b,c,de.f

€{0,10,2,5,3,6}

After acting on the Killing spinor € in (13) this combination should be equal to 4/—det g whose
value is given in equation (20). Notice the indices d, e, f in the above equation will only appear
in the combinations suggested by the value of the h field given in equation (21). So each of

2Here w and ¢ are the pullbacks of Kihler 2-forms on CP! and CP’, respectively, defined as follows: w = 8 Ae’
and @ = e At + A + S A
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these summations here will only contain 4 terms. We write the expanded form below (of flux
terms)

f(Xm)eom/\ 214 A 325 (F014 + le4 + F025 + ].—'225)
+ f(Xm)eoﬂ/\ 314 A 336 (F014 + Fm14 + F036 + 1—‘236) (23)
+ f(Xm)QOE/\ 325 AN 236 (FOZS + Fm25 + F036 + Fw36) .

After hitting the combination of (22) and (23) on € in (13) we find that the result is equal to
the volume form in (20) provided function F(X™) is of the fixed value

) 0 .0
1—sin® 1cose —sins
]:(Xm) — Sin = — 2 2 . (24)
0 0
2 cos 2 cos3 +sing

This functional dependence on the 11d coordinates is the same as the value that we found
in [16] where we analyzed a class of codimension-4 branes from the general solutions in [9].
This function vanishes when 8 is equal to % which is also consistent with the solutions of [9]
(with h = 0).

Modified 6-form constraints

Next, we analyze the combinations in I, where indices a, b,c,d,e,f € {0,1,4,2,5,9} and
€ {10,1,4,2,5,9}. When h was zero the sum of these combinations was zero(see second
equation in (B.1) for a = 8). In the presence of the h field, we see that the 6-form constraint
becomes stricter and is equal to

OANES A AP = 0,

_ (25)
ACAES Al AP =0.

Similarly, the remaining constraints in (B.1) are also modified accordingly when appropri-
ate combinations are considered for indices a, b,c,d, e, f in the matrix T},

0, ABIEPECAGD =0,
_ (26)
0, ¢OAEIAOAD=0 (fora,b,c=1,2,3,8).

By considering the remaining combinations in I, we have checked that the other 6-form con-
straints are unchanged and they are the same as the one given in the appendix equations (B.4),
(B.5) and (B.6).

Embedding solution

From this analysis, we have found that the functional conditions that determine the embedding
of this class of M5 solutions are given by the two arbitrary holomorphic constraints

FO(®y,81,8,,95,21,2,)=0 (I =1,2), 27)
satisfying the scaling differential equations
3
D18, FD = o0, > 6. FD = o, (28)
i=0 i=1,2
along with the condition

0 = constant & # g (29)

7


https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.004

e SciPost Phys. Core 9, 004 (2026)

Main result

Therefore from the analysis of the M5 branes that are codimension-2 in AdS,, we conclude
that — due to the F(X™) dependence given in (24) — when the flux field h is non-zero the
brane shifts from the location of 6 = 7. This solution preserves the same susy of the most
general solution of [9] given by the projections in (12)° but one less susy than the solution
subclass in section 4 of the same paper. The worldvolume again wraps the two U(1) Hopf fibre
directions in AdS, and S* generated by vector fields dual to ¢° and ¢1%, respectively. But the
scaling condition has now been modified to the stricter conditions given in (28).

Comments

In this analysis, we have also found that for the subclass of M5 branes analyzed in section 4 of
ref. [9], supersymmetry is broken by another half when the flux field h is non-zero. The 1-form
pullback ¢ was zero for that solution subclass.* Without the h field that subclass preserved an
additional supersymmetry given by 4 projections in equation (17). A very similar result was
obtained for the % BPS dual giant D3 brane solutions in the AdSs x S> spacetime in [22] where
additional 1/2 susy got broken when the world volume electromagnetic fluxes were turned
on. In [23] we showed that such % BPS dual giant D3 branes with compact worldvolumes, that
carry 3 non-zero angular momentum charges in the S° directions, belong in the same class of
solutions which also admits non-compact branes holographically dual to the 2d surface defects
in the 4d N =4 SYM theory.

3 Cases with higher supersymmetry

In the previous section, we have derived a class of general solution that carry non-zero 3-form
flux field strength h on their world volume. The embedding solution in (27) is very general and
includes various cases: from a complex web-like structure made of intersecting M5 branes to
simpler shapes like AdSs x S' whose deformations can be analysed with some intuitions when
the flux field is made to be non-zero. The AdS,/CF T¢ holographic duals of the M5 brane
examples(when h is zero) discussed in this section will be defects of topology R x S3. Later in
this section(in subsection 3.5), we will also comment on the consequences for the dual defects
when the 3-form h field is given non-zero values obtained in the equation (21).

3.1 Case: FW =@, =0;F@ =2,=0

In our first example of a simpler shape worldvolume, for the two general holomorphic condi-
tions in (27), we consider the conditions

F(d,,8,,8,,95,21,Z,) = &, =0,

(30)
FO(®y,®;,P,,P5,21,2,) = Zy = 0,
with 6 = fixed value. Under the static gauge choice
T—>¢0,O'1—>p,0'2—>/3,0'3—>¢2, 0'4—>¢3,O'5—>—€1, (31)

3In [9] the most general solution contained both types of probe M5s that were codimension-2 and codimension-
4in AdS;.

4Although, we haven’t put ¢® equal to zero, explicitly in the above text, it can be checked easily that even with
¢’ assumed to be zero, the steps presented above remain unaffected and an extra half of susy breaking due to (12)
is still necessary.
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the induced worldvolume metric is given by

ds? =—41%( cosh? p dp2 — dp? — sinh® p (dp2 + cos? B d 2 + sin> f d$?) )

(32)
+ *sin®0dE?.

This is of topology AdSs x S'. The x-symmetry constraint with no flux turned on looks like

YTO'10'20'3O'40'5 €= _detg €. (33)

After some cancellations, this is the same as

—To134610€ = €. (34)

With the current embedding conditions assumed ®; = 0, Z, = O(or a = 3, y = 0), we
consider writing the spinor € with the following notation

ce=¢e %(Fo4+F1Y)Pe%(F12+F45)§ e%ﬂ"zs““se)ﬁ e%rm’d’o e_%r‘14¢1 e—%rzs% e—%rse%

0 AR 0 0 ip: (35)
X COSE_F89ESH1§ e2 7% e = M COSE_FS‘?mSlnE e2 70 g,

after commuting the six product matrix [;34610 through the factor M of € in the x-symmetry
equation (34) we get in the Lh.s.

0 0) _1
M (COS E + F89E sin E) e 2F7m€1 FOZBSﬁQ €o- (36)

For the solution to be supersymmetric this must be equal to the r.h.s. in (34). One can check
that this happens to be true only when 6 = 7 and the following projection condition is imposed
on the constant spinor €, killing half of its components

T0235689 €0 = €0 - (37)

Since the product of all the 11d Gamma matrices is equal to 1(Ip123456878010 = 1), this is
equivalent to

[4710€0 = €0, (38)

which is the same as the projection condition for the half-BPS solutions analyzed in [9](with
V/Z{®; = c, as the embedding condition). Hence the solution under consideration is half-
BPS with projection condition of (37) when the 3-form flux field h is zero with its 6 location
at 5. Consistent with the half-BPS example of [9].

Turning the 3-form field h non-zero

Next, we make some of the components of the self-dual h field non-zero. We take the two of
the components to be

hepe, = —4al®sin@ coshp, hgp,6, = 4al®sinh® p sin2p, (39)

here ‘a’ is some arbitrary constant. = The two components follow the self-duality:
hipe, = *ghpg,e,- The k-symmetry constraint looks like this

1
T Fg[Y’rPﬁ¢2¢3§1 + erglh/j¢2¢3 - Yﬂ¢2¢3h1’p€1]€ = €. (40)
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After some algebra this simplifies to

I:_F01346Q —acoshp (me — F346) + asinhp (F14m — I‘036):| € = €, (41)

and after commuting all the 3-product I' matrices through the exponential factor M in € we
get following in the Lh.s. (after the factor M)

- 0 . 0 0 . 0
—acosfcoshp My 4, [Mgll (Fozm cos 5 + I3568910 SIN E) — Mg, (I‘356 cos 5 + Iog9 SiN E)] €0
. _ 0 . 0 7] . 0
—asinf coshp My 4. [Mgll (Fogm cos 3 + Iose8910 SIN E) + M, (F256 cos 3 Ih3go Sin E)] €0
_ 0 . 0 . 0
_ Méll [F023569 cos 57 asinhp (FOQY cos 77 I35680107 Sin E)] €9 (42)
.0 . 0 .0
+ Me, | Toa3s680 SIN 5 asinh p [ Ty35¢y cOS Ci ThgoY sin 3 €o-

I
Here Mz , My ., My, 4, are the exponential factors: 677951’ e Tor Poelzs b2 o~ Tor Poelss @3 pe-
spectively. With the help of some I'matrix algebra and the projection condition in (37) it can
be shown that this is equal to € (in the r.h.s.), only for 6 = % value.

This means turning on these flux components does not break the supersymmetry for the
probe M5 solution; it remains half-BPS and hence its world volume would not undergo any
deformation in the target 11d superspace. But this also requires the brane to be fixed at the
6 = 7 location.

3.2 Deforming the world volume by turning on the new fluxes

Next in this subsection, we will turn on those components of the flux field h suggested by the
analysis in the previous section 2.1 (whose values were obtained in equation (21)). These
flux components break some supersymmetry, giving us insight into how the shape of the brane
deforms when this happens. We take the 3-form flux field to be

h=(e°/\e1/\e4+e3/\26/\em)}". (43)
The x-symmetry constraint equation is

1

Tetg [Y¢opﬂ¢z¢3€ + (201346E)¢0pﬂ¢2¢35 (F014 + F%ﬂ) .7:]6 =e€. (44)

After some simplification, this becomes

0 .0
I:— F013462 + (F014 + F36E)F]M (COS 5 - F89E S E) Mgl € = €. (45)

After commuting all the T matrices in the L.h.s. through the exponential factor M, we get the
following

.0 1 0
Me, Tozsseso S 5 €0 — M, Toa3se10 COS = €0
0 0
+ Mg, [cos 3 (1“025 cos® B + Tpge sin® /5) F —sin EFSQ (F36 cos® B + Tg sin? [3) ]-"] €0
. @ . 0 .

+M€11 [sm El“ggw (1“025 cos? B+ Ty sin? [3) JF + cos EFE(F% cos? B+ Tys sin? /5) ]-'} €o (46)
. .0 6

+ My, 4, cOs B sin ff My, [sm §F89 (Tye + I35) + cos 5 (To2e + F035)] Feg

. . 0 0
+M¢2¢3 COSﬁ Slnﬁ Mgl1 |:Sln El—‘89£ (F026 + F035) — COoS E (1—‘26& + F35H):| FEO .

10


https://scipost.org
https://scipost.org/SciPostPhysCore.9.1.004

e SciPost Phys. Core 9, 004 (2026)

Table 1: Table showing the intersection directions of worldvolume of ; = 0 solution
with the AdS; boundary when fluxes are turned off and turned on, indicating the
deformations when h = (e°14 + ezsg) F value discussed in this subsection.

o | b1 | P2 | P | @ B I 6 X €1 | &2
M5y X X X X X X — — — — —
M54, —0:h=0 X - X X — X X - | = X —
M54, —0;n£0 X X X X X - | = X —

To show that this is equal to the r.h.s. in (45), the terms with the exponential factor Mgy, 4,
must vanish. So we focus on these terms first. After using the projection condition from (37)
and setting
9 _ 4int
_cosz—sing
=—7,

2 47)
COS 3 4+ sin 3

these terms can be written as
. 0 . 0 _
Mg, 4, cos Bsin 3 | cos 5 Tsing [Mg1 (To2e + Tozs) — M, (F26Q + F35E) ]60 . (48)

These will not vanish unless we impose another projection condition on €, breaking the susy
by another half
(1 + F2536) €p = 0. (49)

After taking care of My, 4, terms, we go to the remaining set of terms in the L.h.s. we wrote in
(46). We use the two independent projections from (37) and (49) to write the Lh.s. equal to

. 6 . 6 1 0 6 .0
Mg, | sin 3 + | cos 3 sin 3 Toas |€0— Mil Igo10 | cOS 3 cos 3 sin 3 Toos | €0, (50)
and this is not equal to the r.h.s. in (45)
0 _ . 0
(Mg1 cos 7 Mill 1“89& sin E) €05 (5D

unless we impose a third projection condition on €, breaking the susy to é BPS

FOZS €)= €p- (52)

3.2.1 Consequence of susy breaking and analysis of the deformations

From the k-symmetry constraint calculation for the solution Ansatz: ®; = 0; Z, = 0; we see

that if we want to place the probe brane at an arbitrary value of 6 coordinate, the flux field h

9 _sinl
222702 This makes h field equal to zero at § =
€os 3 +sin 5 2
and nonzero at any other location. When the flux field is equal to the one taken in (43) the

supersymmetry breaks to % due to the 3 independent projections given below

must be proportional to the factor F =

—Ipeq = Tps€g = I36€0 = Tgo€p- (53)

This analysis also tells us that it is impossible to have the solution Ansatz: ®; = 0; Z, = 0;
as a half-BPS probe away from the coordinate location & = 7. The supersymmetry have to
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be broken by at least another }‘ factor. And the brane solution is always a deformed one at
arbitrary 6 location.

The nature or shape of the deformation can be analyzed a bit if we look at the projection
conditions given in (53). One can realize that if we consider a common intersection of our
current solution with two of the solutions that we obtained in the past in [16], given by the
embedding conditions

M5(1:0dim4 : ¢ =0; &3 =0; (54)
M52 4ima @ @1 =0; &, = 0; (55)

the brane web made out of the intersection of these three will have the same susy due to the
projections in (53).

In principle, in this brane web, the world volume of the three constituting M5 branes need
not have to intersect with each other along a particular location or a common submanifold.
This web can be formed when each of the three component M5 brane worldvolumes start to
develop some 2-dimensional ridge-like spike deformations emerging out in the orthogonal di-
rections. Then those spikes join with each other at certain locations away from their respective
M5 worldvolume to form a complex web-like geometry preserving the 1/8 BPS supersymmetry
we see from the projection conditions in (53). See [25,26] for the work done on BPS con-
figurations with such multiple orthogonal spikes emerging and joining between parallel M5
branes. These spikes from the point of view of the gauge theory living on the worldvolume of
the probe M5 brane can be seen as some string-like %f BPS configurations, in which one or two
of the scalars of the 6d N = 2, 0 tensor multiplet develop singularities at the locations of those
strings and source the 3-form flux components for field h that we switched on in equation
(43).

The emergence of this picture can be further strengthened when we turn on the relevant
flux field components, separately, on the world volume of the two half-BPS M5 solutions in
(54). These solutions were derived in [16]. Both the solutions had a world volume topology
of AdS; x S3. They were holographic duals of codimension-4 defects in the boundary gauge
theory. And when we turn on the 3-form flux field on their world volume to be equal to

hz(eo/\es/\e9+e1/\e4/\em)}". (56)

We see that supersymmetry has to be broken for both of them in a particular way. The susy
has to be broken by another factor of 1/4. For the M 51 solution in (54) the deformed

codim4
brane configuration will be 1/8 BPS due to the three projection conditions

M5 o ime ° Iys€p = Igg€g = —I710€0 = —Ip€p. (57)
Whereas for the solution M 530 dima» the deformed brane configuration will be 1/8 BPS due to

the projection conditions

M52 4ia: T36€0 = [go€g = —Ty10€0 = —Tpé€p. (58)
In conclusion, our analysis in this subsection with the flux field h taken in (43) suggests that
the solution ®; = 0; Z, = 0; may exist in an M5 brane web configuration with its world-
volume deforming and developing 2d ridge-like spikes at certain locations from where h field
is sourced and then these spikes stretching in the directions transverse to the worldvolume
and intersecting with spikes coming out from the branes of (54). A clearer picture of this will
require a careful analysis of the 1/4 BPS configurations of the A/ = (2,0) field theory that
lives on the single probe M5. We will need to study the scalar field profiles near the endstrings
that source the h field at the base of these M2-spikes to get an accurate picture of the web;
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for example, see [24,26]. Looking at [25] for a supersymmetry analysis of a network of mul-
tiple endstrings of M2-spikes stretched between parallel M5 branes may also be useful. Apart
from this, perhaps one can also analyze the k-symmetry of the ridge-like spike deformations,
which are interpreted as open M2 branes ending on the probe M5 worldvolume. x symmetry
constraint for such incidence was obtained in this paper [28]. The anomaly-free action for
similar open-supermembranes was also discussed in these papers [29,30]. We will address
these questions soon in future work.

3.2.2 Making other components of the flux field non-zero

In the remainder of this subsection, we will turn on some other components of the flux field h
nonzero and consider
h=(CASAL + e At Al F. (59)

In k-symmetry analysis of this case, we will find that the supersymmetry has to broken further
by another factor of 1/2. So the M5 brane configuration with this value of flux field is 1/16
BPS and the projections are given in the equation below

—Toeo = Inseg = I3€0 = Igg€0 = —I710€0- (60)

We have put x-symmetry constraint analysis of this case in the appendix C. Here we would
like to compare the 1/16 susy with the susy preserved in the other cases discussed in later
subsections 3.3.1 and 3.3.2. One can see that this %6 BPS susy is the same as the susy preserved
by the solutions of subsections 3.3.1 and 3.3.2 when some particular components of the h
flux field are non-zero(given in equation (67) and (73), respectively). This means that after
turning on these other components of flux field h in (59), the brane solution develops spikes
in the other orthogonal directions and those spikes can join the similar spikes coming from
the solutions of 3.3.1 and 3.3.2(with same nonzero components of the h flux field). And these
deformed M5 branes with their spikes joined form a complex web-like geometry that preserves
the 1/16 susy of the 11d background theory given by the projections in equation (60).

3.3 Other case examples

In this subsection, we would like to analyze other simpler M5 brane Ansatz from the general
solution in (27) from section 2.1 and list their preserved supersymmetry. All of the probe M5
brane cases discussed in this subsection will have the worldvolume of topology AdSs x S' when
the fluxes are zero, and we will see how the supersymmetries are broken when the fluxes are
turned on; i.e. when the brane is moved from the coordinate position 6 = 7. Upon turning
on the fluxes, all the brane examples considered here will become part of a bigger web of
M5 branes with the web preserving the common supersymmetry of the individual constituent
brane (with fluxes nonzero).

3.3.1 Case F =%, =0;F@=2,=0

In this case example, the brane solution is again half-BPS when the flux field value is 0 and
fixed at the location & = 7. The projection condition for which is given below

Tb134610 €0 = €0 - (61)

This is the same as the supersymmetry preserved by the half BPS brane in the previous work [9]

\/Z_1¢2 = CO . (62)
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When we make the flux field non-zero by moving it away from 6 = 7 and take

h= (1 + B10) F, (63)

the supersymmetry needs to be broken by another factor of %. This makes this brane with the
above flux field value % BPS due to the impositions of the projection conditions®

—Ioeg =Tg€eq = I36€0 = Ig9€p. (64)

Remark: This 1/8-BPS brane configuration with the flux field (63) has all 4 of its supersym-
metries in common with the common supersymmetries of the two half-BPS solutions found in
our previous work [16]. The embedding conditions of those are given as follows

1 . — =

Mscodim4 : ¢, =0, @ =0, (65)
2 . — =

M52, ,: & =0, & =0. (66)

Further one can show that if we turn on some of the other components of the flux field h and
take it to be equal to
h= (% + ) F, (67)

the supersymmetry breaks by another factor of half to % BPS given by the projections
—Ioeq =Tg€0 = I36€9 = Igg€g = —I7106€0- (68)

3.3.2 Case FD=¢;=0;F®=2,=0

In this case example, the brane solution is again half-BPS when the flux field value is 0 and
fixed at the location 6 = 7. The projection condition for which is given below

0124510 €0 = €0 - (69)
This is the same as the supersymmetry preserved by the half BPS brane in the previous work [9]
VZ®; = cy. (70)

When we make the flux field non-zero by moving it away from 6 = 7 and take
h = (M + >0 F, (71)

the supersymmetry needs to be broken by another factor of %. This makes this brane with the
above flux field value é BPS due to the impositions of the projection conditions

—Ipeo = T4€60 = Ips€p = Tgo €. (72)
Further, if we change the flux field and make some other components non-zero to consider
h= (" + 24O F, (73)
the supersymmetry breaks by another factor of half to % BPS given by the projections

—Iheo = Ta€q = I36€9 = Igg€g = —I710€0.- (74)

>We collect the detailed step-by-step calculation with this flux field value in the appendix D.
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Table 2: We summarise the results for all three solution examples presented in this
section, considering various values for the flux field h and the supersymmetry pre-
served. To do the comparison, in the last two sets of rows we also write the results

of the general solution obtained in section 2.1.

Solutions h field values no. of susy | required projections
FV =9, =0; h=0 3 BPS 1460 =—Tr10€0
FO=2=0 | h=(1++) /ZZ080es

(¢2 =0) h= (014 + (3610) 7 % BPS 460 =—Ty1p€0

Ihs€o = I36€0 = Tgo€0
h= (06 + (1419) 7 & BPS Ti4€0 = [go€0 = —T710€0
Ihse9 = I36€0 = Igg€q
F) =9, =0; h=0 3 BPS Tys €0 = —Tr10 €0
F® = z,=0; h= (01 4 210) F 1 BPS Tys €0 = —T10 €0
(¢? =0) 460 = I36€0 = Ig9€g
h= ("2 + 1419) F 7= BPS Tyseo = Igo€o = —T710€0
460 = I36€0 = Ig9€g
FO =&, =0; h=0 3 BPS T36 €9 = —Ty10 €0
FP=27,=0; h= (1% + 210) F 3 BPS T36 €0 = —T710 €9
(2 =0) 460 = Iys€0 = Igo€g
h= (925 + (1419) F + BPS Ta€0 = Igo€0 = —T710€0
460 = Is€9 = Tgo€o
FO(2;,2,) =0; h=0 LBPS | Tyep=—Tye0=ic
F®=7,=0; 1460 = Dhs€o = D€
h=#F % BPS T4€0 = —Ty10€60 =1 €9
(as given in eqn (21)) T4€0 = Ihseq = T36€0
1460 = Tgo€q
FD(®;,2,)=0; h=0 L BPS Ti4€0 = —Tr10€0 = i €
FP(®;,2,)=0; h=#F 460 = Ihs€9 = I36€0

(as given in eqn (21))

[4€0 = Tgo€g
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3.4 Onshell action value

In this subsection, we will discuss the on-shell value of the actions for the examples we saw
in this section. The values for all the case examples here are the same, which was expected
since all of the AdSs x S world volumes undergo similar deformations when the h field is con-
sidered non-zero. All of these probe branes end in the AdS, boundary, at some 4-dimensional
submanifold R x ¥; where X5 denotes some compact space-like 3-surface.

We focus on the example &; = 0; Z, = 0; we compute the Lagrangian given by PST in
equation (3) onshell.

We choose the gauge fixing condition where we set the scalar ‘a’ to be

a=¢&;. (75)
For the on-shell embedding solution
o= g, 6 = constant, x =0, (76)

when we consider taking the flux field h to be
h = (2 4 3010 7. (77)

The Lagrangian density in (3) evaluates to the value

EPST‘ el (161%) T sin2p cosh p sinh® p £(0), (78)
on-she.
which can be written as a total derivative term,
N2 4
=|— 0) 3, (sin2p sinh
T on-shell (8713) f( ) P (Sln /5 o p) ’ 79)

here f(6) is some function of the fixed coordinate 6, which is a constant for the solution
under consideration. The action from Lpgr in (78) is divergent. It can be regularized by
using a boundary term at p = p.,. We saw that Lp¢r takes the similar onshell value and can
be written as a total derivative as in (79), for the other two case examples as well. And so
after adding the appropriate boundary term, we find that the action value is zero for all the
examples we discussed in this section

Spst = 0. (80)
reg.

3.5 Taking AdS, boundary limit and recovering the dual defects

From these probe M5 configurations, we can also learn about the holographic dual defects
in boundary gauge theory. For instance, in section 4 of reference [9], for a certain subclass
of embedding conditions that preserved at least 2 supersymmetry, we were able to determine
the nature of coupling of the dual codimension-2 defects to the field contents of the boundary
theory by taking the large value limit for AdS radial coordinate: r = 2lsinhp — 0.

In [9], we were able to determine how a complexified scalar in the boundary theory be-
comes singular at defect locations in the boundary theory. A case example that we considered
in [9] was given by the embedding conditions

1
Z12<I’1 = Cp> Zz = 0. (81)

Upon taking the large r limit in this condition, it tells us where the probe ends in the AdS,
boundary, which is also the location of the dual defect in the boundary gauge theory. The
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projection of this probe solution on the AdS boundary also gives us the topology of the defect,
which is R x §2 for this example. And it also tells us about the behaviour of a complexified
scalar in the boundary theory

Co

A= (82)

cosaei$r’
where A = r ei571 which is identified with a complex scalar field in the boundary theory. Here,
¢o is a complex parameter that tells how the defect couples with the ambient gauge theory. Our
first example ®; = 0; Z, = 0; analyzed in this section belongs to the case example of [9] if
we consider the parameter ¢, value to be zero. This means for this example the corresponding
dual defect in the boundary gauge theory doesn’t couple to the complex scalar field in the
usual way(as discussed in [3,23,31]). However, we must still be able to determine how the
dual defect couples to the other bosonic fields in the non-abelian N' = 2,0 tensor multiplet
theory. Since the embedding conditions

& =0, Z,=0, (83)

are not the only equations that describe this probe M5 brane example. There is also a non-
zero-valued flux field h associated with it (the one which was given in equation (39)).

We expect that the dual codimension-2 defect here will couple to the bosonic fields of the
boundary theory in the same way as the rigid surface defects of the 4d N' = 4 SYM theory
do in reference [4].° The rigid defects of [4] were the non-Abelian solutions of the same
BPS equations of Kapustin and Witten in [32] that were also solved by the Abelian surface
defects of [3]. For rigid surface defects, the complex scalar field and the gauge field of the
boundary gauge theory attain profiles that are weaker than the % pole singularity near the
defect locations(it is loé - singularity). Also see the recent papers [33,34], where the half-BPS
rigid defects are analysed and their AdS/CFT holographic dual D3 branes are also discussed.
In contrast to the non-rigid defects of [ 3], which preserve the bosonic SO(2,2)xS0(4)zxS0O(2)
subgroup of the SO(2,4) x SO(6)g symmetry(of the 4d SYM theory), the rigid defects preserve
the enhanced symmetry of SO(2,2) x SO(4)g x SO(2) x SO(2)y subgroup.

Our example in (83) will also map to the dual defect of such an enhanced symmetry, in
comparison to the defect coming from the brane in (81), where ¢, is non-zero. Due to the
¢y = 0 value, there is no coupling between the two circular directions ¢; and &, so the
defect coming from (83) will get to preserve an enhanced symmetry due to an extra SO(2)g
factor. The defect dual to the probe solution in (83) will preserve the bosonic symmetry of
S50(2,4) x SO(3)g x SO(2) x SO(2)g subgroup from the 6d superconformal symmetry.

In the example in subsection 3.1, we have also seen that the non-zero value of h field in
(43) causes the brane world volume to break the supersymmetry and, as a result, the space-
time symmetry to get broken down to a smaller isometry subgroup, suggesting the deformation
in the shape of the brane. In the probe M5 brane example here, we have 5 directions orthog-
onal to its worldvolume; 3 orthogonal directions in % and 2 orthogonal directions in AdS-;
the orientation and the stretching of the spiked deformations in orthogonal directions could
determine the change in coupling of the dual defect with bosonic fields in the boundary gauge
theory. After taking the large radius limit r — oo here (with h # 0), we will get a holographic
dual codimension-2 defect whose shape is now deformed from R x S® topology to some R x ©:3
topology. With the S3 deforming in such a way that there are spikes coming out of $° and
elongating in the two spacelike directions orthogonal to the defect in the 6d theory.

However, we first need a careful study of the deformation of the M5 worldvolume to get
a precise picture here. The analysis of the worldvolume gauge theory will be useful in this re-
gard. The quarter BPS configurations of the Abelian worldvolume theory with non-trivial scalar

®Codimension-2 defects of 6d A/ = 2,0 SCFT map to surface defects of 4d SYM theory upon doing compactifi-
cation on a suitable 2d Reimann surface [1,2].
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profiles will capture these spike-shaped deformations of the worldvolume in a precise manner.
The understanding of these spike-shaped deformations in the AdS, boundary limit(r — 00)
should also become useful for determining the change in the coupling of the dual defect with
other bosonic fields in the boundary gauge theory: the other three real scalar fields and the
2-form gauge potential field B,,,. While the deformations of its world volume along AdS,
directions would affect the coupling of the dual defect with the potential field B,,,; world vol-
ume deformations along S* directions would affect the coupling with the scalar fields. It would
also be useful to understand the quantity: displacement operator D,,(x) associated with these
codimension-2 defects [35].

4 Summary and conclusion

In this work, we considered some probe M5 brane solutions from a general class of solutions
derived in the previous work [9]. The solutions subclass considered here are codimension-2
in the AdS, directions and preserve at least 2 supersymmetries of 11d due to projections in
(17) when there are no fluxes present on the world volume. In section 2.1, we showed that to
turn on the fluxes for these solutions, the supersymmetry has to be broken by another factor
of 1/2. We found that the 3-form flux field h should always need to be proportional to the

functional factor of

6 )
. COS 5 — Sin 35

0 .6
CoSs 5 + sm 5

(84)
This makes the flux field zero whenever the coordinate 6 is equal to 5. The general embedding
conditions of [9] are also modified and become more constrained. The main result of this
section is the following embedding conditions in terms of two arbitrary holomorphic functions

satisfying some scaling conditions

FO(@y,8,,8,,85,21,Z,)=0 (I =1,2),

3

(85)
>, FD =0, > 8, FD = o.
i=0

i=1,2

Since the above solution is very general, it is very difficult to analyze how the shape of the
brane gets deformed when the flux field is turned on. In section 3, we consider examples of
the brane solutions that have the world volume of shape AdSs x S! when the flux field h is
zero. Then we turned h non-zero suggested by our calculations in section 2.1. We found that
when the flux field is equal to

h = (21 4+ 3010 F, (86)

the supersymmetry was broken by another factor of 1/4. This implies that the brane worldvol-
ume must be getting deformed by developing some 2d ridge-like spikes in one or two transverse
directions. The endlines of these spikes on the worldvolume should be sourcing the flux field
h. We also gave evidence that for the case example: ®; = 0;Z; = 0; and h field with this
value; and with susy broken by 1/8 factor, the world volume may form a complex web with
some other solutions we found in [16], given in equation (54). This web is made out of the
spikes that stretch between the three different types of M5 branes. Further when we turned
on some different components of the h field non-zero; h = (2036 + e14ﬂ) F, we found that
the supersymmetry breaks to 1/16 factor and the x-symmetry analysis suggests that this brane
example may become a part of a larger web structure with the examples of subsections 3.3.1
and 3.3.2 also becoming a part.

In the future, we would like to understand these spiked deformations from the viewpoint
of the abelian gauge theory that lives on the probe M5 world volume. These deformations
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should be captured by the scalar profiles of the BPS configurations in the gauge theory in a
precise manner [24-26]. In AdS boundary limit this can also tell us how the codimension-
2 holographic dual defect couples to the field content of the non-abelian A/ = 2,0 gauge
theory that exists in the boundary. While the worldvolume deformations along the $* may
determine the coupling of the dual defect with 3 of the real scalar of the boundary gauge
theory, the deformations along the AdS, may determine the coupling with the 2-form potential
field B,,,,(x). It will also be worthwhile to understand precisely how the probe with flux field
value in equation (39) would map to the half-BPS rigid defects of references [4], [33,34].

In future, following the method given in [7,10,11,27], we would also look to treat scalar
profiles -transverse to the brane world volume- around our original solution of AdSs x S!
worldvolume(when the new fluxes were zero) as small fluctuations and then calculate the M5
brane action. It will be interesting to compare this answer with the calculated on-shell value of
M5 brane action for the deformed BPS configurations given in equation (80) in section 3(when
the fluxes were non-zero). The calculated action from the two different ways mentioned above
will give the effective action associated with the 4d defect that exists in the boundary theory.
While the second action has the classical answer; the first action calculation will also include
the quantum corrections for the defect with the shape of R x §3.

This could also be taken to the next level. Since the deformed worldvolume configurations
that we analyzed here are classical, by again following the method of [7,10,11,27], we can
do the calculation of the effective action with 1-loop correction by allowing fluctuations in the
values of the embedding fields X™(t, 0;) and 3-form h around the field solutions we presented
in section 3.

Acknowledgments

The author would like to thank Sujay Ashok for helpful discussions and his valuable feedback
on earlier drafts of the manuscript. The author would also like to thank Nemani V. Surya-
narayana for some helpful discussions. The author is thankful to Nabamita Banerjee for the
valuable support.

Funding information This work is supported by the Science and Engineering Research
Board(SERB) project grant with the serial number: SERB/PHY/23-24/65. The author is also
grateful to the Institute of Mathematical Sciences, Chennai, for hospitality during a visit during
the progress of this work.

A Details of the 11-dimensional geometry

We consider the following metric of the eleven-dimensional AdS, x S* geometry in global
coordinates system

2 r? 2 dr? 2
dspys =—| 14+ |dt"+ ——< +1r°dQs, (A1)
412 (1 + r_)
42
with dQs = da? + cos? adqbf + sin? ot(dﬁ2 + cos? 3 dqb% +sin? 3 d¢§),

ds§4 =12 (d92 +sin?0(d y2 + cos? y dé% +sin? ¥ dé’%)) . (A.2)
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The global AdS-, coordinates above can be written in terms of the following complex coordi-
nates in C%3

®,=1lcoshpe'®, &, =Isinhp cosae'?,
. . (A.3)
&, =Isinhpsinacosfe'®2, &;=1Isinhpsinasinpe?:,
which define the AdS, part as the following locus in C1
—I@o[* + (1] + @] + [@5]* = —1%. (A4)

For the S° c $* we define the complex cooordinates describing it embedded in C? space
Ziy=cosy e, Zy=siny ef62, (A.5)
The frame vielbein that we use are the following

e® =2l (costh d¢o—sinh?p (cos2 adp; +sin? acos? B d¢, + sin asin? B d¢3)) R

el =2ldp, e?>=2lsinhpda, e3=2lsinhpsinadp,

e* =2l cosh p sinhp (cos2 adpg; +sin® acos? B dgg, + sin® asin® 8 d¢03) s (A.6)
e®> = 2lsinh p cosasina (cos2 B dgy+sin® B dpos — dqu) ,

e® = 2 sinh p sinacos B sin B (dpg3 —ddos)

where r = 2l sinh p, ¢y = é, and

e’ =1d60, e8=1sinOdy, e =1sin6 cos ysiny (d&; — d&,),

(A7)
e =1sing (coszx dE; +sin? y diz) .

With the above choice of frame vielbein, it becomes apparent that the AdS, part can be ex-

pressed as a U(1) Hopf fibration over a Kdhler manifold CP’. Here CP is a complex projective
space which is identified with the space of rays passing through the origin in the complex space
C!3. Similarly for the S® c §* part, the frame vielbein is chosen so that U(1) Hopf fibration
over a Kihler manifold CP! becomes manifest.

B 6-form constraints when h field is zero

From the terms in the first group, we have the following set of 6-form constraints

(L + ) AEIEPEC A =0, ®1)
(eo+e10)/\_"/\cb/\c6=0, fora,b,c=1,2,3,8, .
with the definition
El=¢l —iet, E2=¢2—ic°, ®.2)
E3=e?’—ie6, E8=eg—ie9, .
here we have also defined a real 2-form:
< 14, 25, 36 _ L(mTel , maE2 L w3ms) —
&= el* 425 1 ¢ —2(E E! + B2E2 + BB ) = . (B.3)

This 2-form is the pull-back of certain Kéhler forms onto the worldvolume of the brane. This
Kihler form is of the base manifold CP° when the AdS- is written as Hopf-fibration over CP.
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The terms with a factor ¢°2C give the constraints

eo/\em/\ﬁﬁ/\ézo,

- (B.4)
O AN OAEIE2E3E8 = 0.
The BPS differential 6-form constraints from the remaining set of terms are
E°EPAGAG=0, fora,b=1,2,3,8. (B.5)
The final constraint is the following:
AP NS =0, (B.6)

C « symmetry analysis with hgsg, h1419 COMponents

In this appendix section, we turn on some other components of the flux field h for the case
Ansatz: ®; = 0; Z, = 0 discussed in section 3.1. The flux field has the following components
nonzero

(%36 + 140) 7. (c.1)

After some simplifications x-symmetry constraint equation takes this look
0 . 0
I:— F013461_0 + (F036 + F14E).F]M COS E - F89l_0 Slnz Mgl € = €. (C2)

After commuting all the six-product and 3-product I' matrices through the exponential factor
M in the killing spinor the L.h.s. in the above equation (C.2) becomes

0
M Mg, cos 5( cosh? p (cos2 f3 Tose + sin® B Fozs) — sinh? p [y3s6 y)]—" €9
0
+M Mgl sin E(F0235689 - COSh2 P 1"89 (C052 /5 1"25 + Sin2 /5 F36) F— Sinh2 P F089 Y‘F)EO
_ 0 ) .
+M Méll cos 5( — To235610 + cosh? p (cos2 B Tas10 + sin? 3 F36m) F —sinh?p FOQY]:)EO

0
+M Mg_ll sin 5 F89Q( cosh? p (cos? B Tyze + sin’ f Tops ) — sinh® p Tyzse Y)]: €0

. 0 . 0
—M M¢2¢3M§1 COSh2 P COSﬁ Slnﬁl: COS 5 (F026 + F035) + sin E F89 (FZG + F35) ].F €o (CB)
_ . 0 . 0
+M M¢2¢3M§11 cosh? p cos f8 sin 8 [ cos 3 (Fzém + ngﬂ) — sin 5 Tg910 (To2s + Toss) ]}" €o
. 0 . 0
+M Mg, ¢, M, coshp sinhp cosﬂ[ cos 5 (T556 + Toase Y) — Sin El—‘gg (Tye + 5 y) ]]-' €
_ . 0 .0
+M M¢0¢2M£11 COShp Slnhp COos ﬁl: Cos E (FOZE + F5w'}/) + sin El—‘ggw (F356 + F0236 '}/) ]f €o
. . 0 . 0
—M Mgy, 4, Mg, coshp sinh p s1n/3[ cos 5 (Ty56 + Toass v) + sin Ersg (Tos + T v) ]]: €
-1 . . 0 .0
+M M¢>o¢3M§1 cosh p sinh p sm/&[ cos 5 (Fogm + I‘Gmy) + sin 5 Tg010 (Tose + To23s 7) ].7-" €p-

The terms in the first 4 lines of the above equation will combine to give the r.h.s. in (C.2) while
the terms with My, 4., Mg ¢, and My 4. factors will vanish among themselves respectively.
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Let’s focus on them one by one. We first consider M, 4, terms. We impose the projection
condition

To235689€0 = €05 (C4

and substitute for F to get

0 0
—M My, 4, cosh? p cos f8 sin 8 (cos 77 sin E)

(C.5)
X [Mgl (Tozs + Toss) — Mz (erg + Fss@) ]60,
which vanishes when we substitute our second projection condition
(1 + Iys36) €0 = 0, (C.6)

from section 3.2. Next we write the M, 4, terms. After using the two projections mentioned
above and substituting for F we get

0 0
MMy ¢, (cos 77 sin E) cosh p sinh p cos 3 )
X [Mgl (I356 + To236 7) + Mg_ll (F021_o + 1510 Y) ]60 ,

the above will vanish if we impose two more projection conditions breaking the supersymmetry
to the total factor of 1/16

Toas €0 = €0, I78910€0 = €0+ (C.8)
Along the similar lines the terms with M, 4. factor can also be shown to combine and vanish.

And after using the same 4 independent projection conditions in (C.4), (C.6), (C.8) one can
show that the terms in the first four lines in (C.3) combine to give

6 _ . 0
M (Mgl COS 5 — Mgll Fggm sin 5) €o> (Cg)

which is the r.h.s. in k symmetry constraint in (C.2).

D k-symmetry analysis of the example: &, = 0
The x-symmetry constraint when the fluxes are absent is

—To124510€ = €. (D.1)

After commuting I{);04510 through the exponential factor M in the Killing spinor € this con-
straint equation becomes

0 . 0 0 . 0
—-M ]_—‘01346& (COS E — ].—‘ng sin E) Mgl €y = M (COS E — ].—‘89& sin E) Mgl €o- (DZ)
This holds only at 6 = 7, when we impose the projection condition

I6134680 €0 = €o - (D.3)
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Turning on the new fluxes from section 2.1: Next, we consider the flux field h non-zero
and take

h= (L + B F. (D.4)

After some simplifications, the k-symmetry constraint condition takes the form given below

0 . 0
I: - F01245w + (F014 + FZSE)‘F]M (COS E — rggw s E) Mgl €p = €. (DS)

Next, we commute all the 6-product and 3-product I' matrices through the exponential factor
M in the Killing spinor to write the L.h.s as follows

. 0 e
Mg, ¢, cosasina Mg, [ (F016 + 1"034) cos 3 + Tgo (1"16 + 1"34) sin E]f €0

inaM; 0 N
— My, 4, cOSasin aMill[ (me + F34m) cos 5 ~ Isono (Tos + Toz4) sin E]f €o

0 0

+ Mg [F0134689 sin — + (F014 COS2 o+ F036 Sil’l2 a) cos —F
1 2 2

0 (D.6)

— Tgo (s cos® a + I, sin® a) sin 5 ]:]60

. 0 . o
N M€11 [F01346m cos 5 (st,m cos®a+ [410 sin? a) cos 5]-'
0
- Fgg (F014 COS2 a+ F036 Sin2 a) sin E]:]EO .

The r.h.s. in (D.5) is equal to

M(cos——l" s'n—e)M
i €p.
5 8910 5 & €o

R.h.s. has no term with a factor My 4. Therefore the terms in the first two lines in Lh.s. (D.6)
must combine and cancel. This will happen only if we impose another projection condition

F14 €y — F36 €o- (D7)

Next, we move to the terms in the last two lines of (D.6), after using the two projection con-
ditions: (D.3), (D.7) and substituting F =

cos % —sin % . .
osl 7o 0 tErms here combine to give
Cos 3 Sin 3

.0 6 . 0 1 0 g .6
Mg, |sin 3 + | cos 3 sin 2 Ih14 | €0 _M€1 Igo10 | cOS 3 cos 2 sin 3 I914 | €0 (D.8)
This will not give the r.h.s. in (D.5) unless we impose one more projection condition

F014 €)= €p- (D9)

Therefore this brane solution with the flux field value given in (D.4) is 1/8-BPS with the 3-
independent projections imposed given below

_FO 60 = F14 60 = F36 60 = F89 60. (D.].O)
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