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Abstract

We provide a brief but self-contained review of conformal field theory on the Riemann
sphere. We first introduce general axioms such as local conformal invariance, and derive
Ward identities and BPZ equations. We then define minimal models and Liouville theory
by specific axioms on their spectrums and degenerate fields. We solve these theories by
computing three- and four-point functions, and discuss their existence and uniqueness.
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1 Introduction

Since the time of Euclid, mathematical objects are defined by axioms. Axiomatic definitions
focus on the basic features of the defined objects, thereby avoiding alternative constructions
that may be less fundamental. For example, in conformal field theory, the axiomatic approach
(also called the conformal bootstrap approach) makes functional integrals unnecessary. We
will define Liouville theory and minimal models by a sequence of axioms, starting with local
conformal symmetry. Our axioms are necessary conditions. Their mutual consistency, in other
words the existence of Liouville theory and minimal models, will be tested but not proved.

In the first three sections, most axioms are common to all two-dimensional conformal
field theories. These axioms specify in particular how the Virasoro symmetry algebra acts on
fields, and the existence and properties of the operator product expansion. Next, we introduce
additional axioms that single out either Liouville theory, or minimal models. In particular, these
axioms determine the three-point functions. Finally we check that these uniquely defined
theories do exist, by studying their four-point functions. It is the success of such checks, much
more than a priori considerations, that justifies our choices of axioms.

This text aims to be self-contained, except at the very end when we will refer to [1] for
the properties of generic conformal blocks. For a more detailed text in the same spirit, see
the review article [2]. For a wider and more advanced review, and a guide to the recent
literature, see Teschner’s text [3]. The Bible of rational conformal field theory is of course
the epic textbook [4]. And Cardy’s lecture notes [5] provide an introduction to the statistical
physics applications of conformal field theory.

That these lectures are minimal does not just mean that they are relatively brief. This
also means that they omit many concepts and assumptions that are usually introduced in
two-dimensional conformal field theory, but that are not necessary for our purposes. Among
these concepts and assumptions, let us mention the existence of a vacuum state, the notion
of unitarity, the construction of fields as operators on the space of states, radial quantization,
and consistency on Riemann surfaces other than the sphere. Minimalism is valuable not only
for pedagogy, but also for research: we will follow shortcuts that may have been hard to see
when originally solving Liouville theory and minimal models, but that can now be used when
exploring other theories, for example non-diagonal theories [6].

2 The Virasoro algebra and its representations

2.1 Algebra

By definition, conformal transformations are transformations that preserve angles. In two
dimensions with a complex coordinate z, any holomorphic transformation preserves angles.
Infinitesimal conformal transformations are holomorphic functions close to the identity func-
tion,

z 7→ z + εzn+1 (n ∈ Z , ε� 1) . (2.1)
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These transformations act on functions of z via the differential operators

`n = −zn+1 ∂

∂ z
, (2.2)

and these operators generate the Witt algebra, with commutation relations

[`n,`m] = (n−m)`m+n . (2.3)

The generators (`−1,`0,`1) generate an s`2 subalgebra, called the algebra of infinitesimal
global conformal transformations. The corresponding Lie group is the group of conformal
transformations of the Riemann sphere C∪ {∞},

z 7→
az + b
cz + d

. (2.4)

Exercise 2.1 (Global conformal group of the sphere)
Show that the global conformal group of the sphere is PSL2(C), and includes translations, rota-
tions, and dilatations.

In a quantum theory, symmetry transformations act projectively on states. Projective rep-
resentations of an algebra are equivalent to representations of a centrally extended algebra.
This is why we always look for central extensions of symmetry algebras.

Definition 2.2 (Virasoro algebra)
The central extension of the Witt algebra is called the Virasoro algebra. It has the generators
(Ln)n∈Z and 1, and the commutation relations

[1, Ln] = 0 , [Ln, Lm] = (n−m)Ln+m +
c

12
(n− 1)n(n+ 1)δn+m,01 , (2.5)

where the number c is called the central charge. (The notation c1 stands for a central generator
that always has the same eigenvalue c within a given conformal field theory.)

Exercise 2.3 (Uniqueness of the Virasoro algebra)
Show that the Virasoro algebra is the unique central extension of the Witt algebra.

2.2 Representations

The spectrum, i.e. the space of states, must be a representation of the Virasoro algebra. Let us
now make assumptions on what type of representation it can be.

Axiom 2.4 (Representations that can appear in the spectrum)
The spectrum is a direct sum of irreducible representations. In the spectrum, L0 is diagonalizable,
and the real part of its eigenvalues is bounded from below.

Why this special role for L0? Because we want to interpret it as the energy operator. Since
the corresponding Witt algebra generator `0 generates dilatations, considering it as the energy
operator amounts to consider the radial coordinate as the time. We however do not assume
that L0 eigenvalues are real or that the spectrum is a Hilbert space, as this would restrict
the central charge to be real. The L0 eigenvalue of an L0 eigenvector is called its conformal
dimension.

Let us consider an irreducible representation that is allowed by our axiom. There must be
an L0 eigenvector |v〉 with the smallest eigenvalue ∆. Then Ln|v〉 is also an L0 eigenvector,

L0 Ln|v〉= Ln L0|v〉+ [L0, Ln]|v〉= (∆− n)Ln|v〉 . (2.6)

If n> 0 we must have Ln|v〉= 0, and |v〉 is called a primary state.
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Definition 2.5 (Primary and descendent states, level, Verma module)
A primary state with conformal dimension ∆ is a state |v〉 such that

L0|v〉=∆|v〉 , Ln>0|v〉= 0 . (2.7)

The Verma module V∆ is the representation whose basis is
¦

∏k
i=1 L−ni

|v〉
©

0<n1≤···≤nk
. The level

of the state
∏k

i=1 L−ni
|v〉 is N =

∑k
i=1 ni ≥ 0. A state of level N ≥ 1 is called a descendent state.

Let us plot a basis of primary and descendent states up to the level 3:

N

0

1

2

3

|v〉

L−1|v〉

L2
−1|v〉

L3
−1|v〉

L−2|v〉

L−1 L−2|v〉 L−3|v〉

(2.8)

We need not include the state L−2 L−1|v〉, due to L−2 L−1 = L−1 L−2 − L−3.
Are Verma module irreducible representations? i.e. do they have nontrivial subrepresen-

tations? In any subrepresentation of a Verma module, L0 is again diagonalizable and bounded
from below, so there must be a primary state |χ〉. If the subrepresentation differs from the
Verma module, that primary state must differ from |v〉, and therefore be a descendent of |v〉.

2.3 Null vectors and degenerate representations

Definition 2.6 (Null vectors)
A descendent state that is also primary is called a null vector or singular vector.

In the Verma module V∆, let us look for null vectors at the level N = 1. For n≥ 1 we have

Ln L−1|v〉= [Ln, L−1]|v〉= (n+ 1)Ln−1|v〉=
�

0 if n≥ 2 ,
2∆|v〉 if n= 1 .

(2.9)

So L−1|v〉 is a null vector if and only if ∆ = 0, and the Verma module V0 is reducible. Let us
now look for null vectors at the level N = 2. Let |χ〉= (L2

−1 + aL−2)|v〉, then Ln≥3|χ〉= 0.

Exercise 2.7
Compute L1|χ〉 and L2|χ〉, and find

L1|χ〉= ((4∆+ 2) + 3a) L−1|v〉 , L2|χ〉=
�

6∆+ (4∆+ 1
2 c)a

�

|v〉 . (2.10)

Requiring that L1|χ〉 and L2|χ〉 vanish, find the coefficient a, and show that

∆=
1
16

�

5− c ±
Æ

(c − 1)(c − 25)
�

. (2.11)
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In order to simplify this formula, let us introduce other notations for c and ∆. We define

the background charge Q , c = 1+ 6Q2 , up to Q→−Q , (2.12)

the coupling constant b , Q = b+
1
b

, up to b→±b±1 , (2.13)

the momentum α , ∆= α(Q−α) , up to reflections α→Q−α . (2.14)

The condition (2.11) for the existence of a level two null vector becomes

α= −
1
2

b±1 . (2.15)

To summarize, null vectors at levels 1 and 2 occur for particular values of ∆. The null vectors
at levels N ≤ 2 can be written as L〈r,s〉|v〉 where r, s are strictly positive integers such that
rs = N ,

N 〈r, s〉 ∆〈r,s〉 α〈r,s〉 L〈r,s〉

1 〈1,1〉 0 0 L−1

2
〈2,1〉 −1

2 −
3
4 b2 − b

2 L2
−1 + b2 L−2

〈1,2〉 −1
2 −

3
4b2 − 1

2b L2
−1 + b−2 L−2

(2.16)

The pattern goes on at higher levels [4]: null vectors occur at level N for finitely many dimen-
sions ∆〈r,s〉, with

α〈r,s〉 =
Q
2
−

1
2
(r b+ sb−1) . (2.17)

(See Exercise 4.10 for a derivation.) If ∆ /∈ {∆〈r,s〉}r,s∈N∗ , then V∆ is irreducible. If ∆=∆〈r,s〉,
then V∆ contains a nontrivial submodule, generated by the null vector and its descendent
states. For generic values of the central charge c, this submodule is the Verma module V∆〈r,s〉+rs.

Definition 2.8 (Degenerate representation)
The coset of the reducible Verma module V∆〈r,s〉 , by its Verma submodule V∆〈r,s〉+rs, is an irreducible
module R〈r,s〉, that is called a degenerate representation:

R〈r,s〉 =
V∆〈r,s〉
V∆〈r,s〉+rs

. (2.18)

In this representation, the null vector vanishes,

L〈r,s〉|v〉= 0 . (2.19)

The vanishing of null vectors will be crucial for solving Liouville theory and minimal models.

3 Conformal field theory

Now that we understand the algebraic structure of conformal symmetry in two dimensions, let
us study how the Virasoro algebra acts on objects that live on the Riemann sphere – the fields
of conformal field theory. (Technically, fields are sections of vector bundles over the sphere.)
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3.1 Fields

Axiom 3.1 (State-field correspondence)
For any state |w〉 in the spectrum, there is an associated field V|w〉(z). The map |w〉 7→ V|w〉(z) is

linear and injective. We define the action of the Virasoro algebra on such fields as

LnV|w〉(z) = L(z)n V|w〉(z) = VLn|w〉(z) . (3.1)

Definition 3.2 (Primary field, descendent field, degenerate field)
Let |v〉 be the primary state of the Verma module V∆. We define the primary field V∆(z) = V|v〉(z).
This field obeys

Ln≥0V∆(z) = 0 , L0V∆(z) =∆V∆(z) . (3.2)

Similarly, descendent fields correspond to descendent states. And the degenerate field V〈r,s〉(z)
corresponds to the primary state of the degenerate representation R〈r,s〉, and therefore obeys

L〈r,s〉V〈r,s〉(z) = 0 – for example, L−1V〈1,1〉(z) = 0 . (3.3)

Now let us specify how fields depend on z.

Axiom 3.3 (Dependence of fields on z)
For any field V (z), we have

∂

∂ z
V (z) = L−1V (z) . (3.4)

Moreover, in this Section 3 we tacitly assume that all our fields are locally holomorphic i.e.
∂
∂ z̄ V (z) = 0. The dependence on z̄ will be reintroduced and studied in Section 4.1.

Let us derive consequences of this axiom, starting with the z-dependence of the action L(z)n
of Virasoro generators on fields. On the one hand,

∂

∂ z

�

L(z)n V (z)
�

=
�

∂

∂ z
L(z)n

�

V (z) + L(z)n
∂

∂ z
V (z) . (3.5)

On the other hand, using our axiom, we find

∂

∂ z

�

L(z)n V (z)
�

= L(z)−1 L(z)n V (z) = −(n+ 1)L(z)n−1V (z) + L(z)n L(z)−1V (z) . (3.6)

This implies

∂

∂ z
L(z)n = −(n+ 1)L(z)n−1 , (∀n ∈ Z) . (3.7)

These infinitely many equations can be encoded into one functional equation,

∂

∂ z

∑

n∈Z

L(z)n

(y − z)n+2
= 0 . (3.8)

Definition 3.4 (Energy-momentum tensor)
The energy-momentum tensor is a field, that we define by the formal Laurent series

T (y) =
∑

n∈Z

L(z)n

(y − z)n+2
. (3.9)

In other words, for any field V (z), we have

T (y)V (z) =
∑

n∈Z

LnV (z)
(y − z)n+2

, LnV (z) =
1

2πi

∮

z
d y (y − z)n+1T (y)V (z) . (3.10)
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In the case of a primary field V∆(z), using eq. (3.4) and writing regular terms as O(1), this
definition reduces to

T (y)V∆(z) =
∆

(y − z)2
V∆(z) +

1
y − z

∂

∂ z
V∆(z) +O(1) . (3.11)

This is our first example of an operator product expansion.
The energy-momentum tensor T (y) is locally holomorphic as a function of y , and acquires

poles in the presence of other fields. Since we are on the Riemann sphere, it must also be
holomorphic at y =∞.

Axiom 3.5 (Behaviour of T (y) at infinity)

T (y) =
y→∞

O
�

1
y4

�

. (3.12)

To motivate this axiom, let us do some dimensional analysis. If z has dimension −1, then
according to eq. (3.4) L−1 has dimension 1, and T (y) has dimension 2. The dimensionless
quantity that should be holomorphic at infinity is therefore the differential T (y)d y2. At infinity
a holomorphic coordinate is 1

y and a holomorphic differential is d( 1
y ) = −

d y
y2 , so our axiom

amounts to T (y)d y2 = O( d y2

y4 ) being holomorphic.

3.2 Correlation functions and Ward identities

Definition 3.6 (Correlation function)
To N fields V1(z1), . . . , VN (zN ) with i 6= j =⇒ zi 6= z j , we associate a number called their

correlation function or N-point function, and denoted as
¬

V1(z1) · · ·VN (zN )
¶

. (3.13)

For example,
¬

∏N
i=1 V∆i

(zi)
¶

is a function of {zi}, {∆i} and c. Correlation functions depend

linearly on fields, and in particular ∂
∂ z1
〈V1(z1) · · ·VN (zN )〉=

¬

∂
∂ z1

V1(z1) · · ·VN (zN )
¶

.

Axiom 3.7 (Commutativity of fields)
Correlation functions do not depend on the order of the fields,

V1(z1)V2(z2) = V2(z2)V1(z1) . (3.14)

Let us work out the consequences of conformal symmetry for correlation functions. In
order to study an N -point function Z of primary fields, we introduce an auxiliary (N+1)-point
function Z(y) where we insert the energy-momentum tensor,

Z =

® N
∏

i=1

V∆i
(zi)

¸

, Z(y) =

®

T (y)
N
∏

i=1

V∆i
(zi)

¸

. (3.15)

Z(y) is a meromorphic function of y , with poles at y = zi , whose residues are given by eq.
(3.11) (using the commutativity of fields). Moreover T (y), and therefore also Z(y), vanish in
the limit y →∞. So Z(y) is completely determined by its poles and residues,

Z(y) =
N
∑

i=1

�

∆i

(y − zi)2
+

1
y − zi

∂

∂ zi

�

Z . (3.16)
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But T (y) does not just vanish for y → ∞, it behaves as O( 1
y4 ). So the coefficients of

y−1, y−2, y−3 in the large y expansion of Z(y) must vanish,

N
∑

i=1

∂zi
Z =

N
∑

i=1

�

zi∂zi
+∆i

�

Z =
N
∑

i=1

�

z2
i ∂zi
+ 2∆izi

�

Z = 0 . (3.17)

These three equations are called global Ward identities. They determine how Z behaves under
global conformal transformations of the Riemann sphere,

® N
∏

i=1

V∆i

�

azi + b
czi + d

�

¸

=
N
∏

i=1

(czi + d)2∆i

® N
∏

i=1

V∆i
(zi)

¸

. (3.18)

Let us solve the global Ward identities in the cases of one, two, three and four-point functions.
For a one-point function, we have

∂z

¬

V∆(z)
¶

= 0 , ∆
¬

V∆(z)
¶

= 0 . (3.19)

So one-point functions are constant, and non-vanishing only if ∆ = 0. Similarly, two-point
functions must obey

¬

V∆1
(z1)V∆2

(z2)
¶

∝ (z1 − z2)
−2∆1 , (∆1 −∆2)

¬

V∆1
(z1)V∆2

(z2)
¶

= 0 . (3.20)

So a two-point function can be non-vanishing only if the two fields have the same dimen-
sion. For three-point functions, there are as many equations (3.17) as unknowns z1, z2, z3, and
therefore a unique solution with no constraints on ∆i ,

® 3
∏

i=1

V∆i
(zi)

¸

∝ (z1 − z2)
∆3−∆1−∆2(z1 − z3)

∆2−∆1−∆3(z2 − z3)
∆1−∆2−∆3 , (3.21)

with an unknown proportionality coefficient that does not depend on zi . For four-point func-
tions, the general solution is

® 4
∏

i=1

V∆i
(zi)

¸

=

 

∏

i< j

(zi − z j)
δi j

!

G

�

(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

�

, (3.22)

where G is an arbitrary function, and δi j are such that
∑

j 6=i δi j = −2∆i , where δi j =
i> j
δ ji .

The six numbers (δi j)i< j are subject to only four equations, leaving two undetermined combi-
nations. Changing these combinations amounts to a redefinition G(z)→ zλ(1− z)µG(z).

So the three global Ward identities effectively reduce the four-point function to a function
of one variable G – equivalently, we can set z2, z3, z4 to fixed values, and recover the four-point
function from its dependence on z1 alone.

Exercise 3.8 (Conformal symmetry of four-point functions)
Let us define V∆(∞) = limz→∞ z2∆V∆(z). Check that this is finite when inserted into a two-

or three-point function. More generally, show that this is finite using the behaviour (3.18) of
correlation functions under z→−1

z . Show that there is a (unique) choice of δi j such that

G(z) =
¬

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
¶

. (3.23)

We have been studying global conformal invariance of correlation functions of primary
fields, rather than more general fields. This was not only for making things simpler, but also
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because correlation functions of descendents can be deduced from correlation functions of
primaries. For example,

¬

L−2V∆1
(z1)V∆2

(z2) · · ·
¶

=
1

2πi

∮

z1

d y
y − z1

Z(y) =
N
∑

i=2

�

1
z1 − zi

∂

∂ zi
+

∆i

(zi − z1)2

�

Z , (3.24)

where we used first eq. (3.10) for L−2V∆1
(z1), and then eq. (3.16) for Z(y). This can be

generalized to any correlation function of descendent fields. The resulting equations are called
local Ward identities.

3.3 Belavin–Polyakov–Zamolodchikov equations

Local and global Ward identities are all we can deduce from conformal symmetry. But corre-
lation functions that involve degenerate fields obey additional equations.

For example, let us replace V∆1
(z1) with the degenerate primary field V〈1,1〉(z1) in our N -

point function Z . Since ∂
∂ z1

V〈1,1〉(z1) = L−1V〈1,1〉(z1) = 0, we obtain ∂
∂ z1

Z = 0. In the case
N = 3, having ∆1 =∆〈1,1〉 = 0 in the three-point function (3.21) leads to




V〈1,1〉(z1)V∆2
(z2)V∆3

(z3)
�

∝ (z1 − z2)
∆3−∆2(z1 − z3)

∆2−∆3(z2 − z3)
−∆2−∆3 , (3.25)

and further imposing z1-independence leads to



V〈1,1〉(z1)V∆2
(z2)V∆3

(z3)
�

6= 0 =⇒ ∆2 =∆3 . (3.26)

This coincides with the condition (3.20) that the two-point function



V∆2
(z2)V∆3

(z3)
�

does not
vanish. Actually, the field V〈1,1〉 is an identity field, i.e. a field whose presence does not affect
correlation functions. (See Exercise 4.6.)

In the case of V〈2,1〉(z1), we have

�

L2
−1 + b2 L−2

�

V〈2,1〉(z1) = 0 so that L−2V〈2,1〉(z1) = −
1
b2

∂ 2

∂ z2
1

V〈2,1〉(z1) . (3.27)

Using the local Ward identity (3.24), this leads to the second-order Belavin–Polyakov–
Zamolodchikov partial differential equation

�

1
b2

∂ 2

∂ z2
1

+
N
∑

i=2

�

1
z1 − zi

∂

∂ zi
+

∆i

(z1 − zi)2

�

�®

V〈2,1〉(z1)
N
∏

i=2

V∆i
(zi)

¸

= 0 . (3.28)

More generally, a correlation function with the degenerate field V〈r,s〉 obeys a partial differential
equation of order rs.

Exercise 3.9 (Second-order BPZ equation for a three-point function)
Show that



V〈2,1〉V∆2
V∆3

�

6= 0 =⇒ 2(∆2 −∆3)
2 + b2(∆2 +∆3)− 2∆2

〈2,1〉 − b2∆〈2,1〉 = 0 . (3.29)

Up to reflections of momentums, show that this is equivalent to

α2 = α3 ±
b
2

. (3.30)

In the case of a four-point function, the BPZ equation amounts to a differential equation
for the function of one variable G(z), which therefore belongs to a finite-dimensional space of
solutions.
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Exercise 3.10 (BPZ second-order differential equation)
Show that the second-order BPZ equation for G(z) =

¬

V〈2,1〉(z)V∆1
(0)V∆2

(∞)V∆3
(1)
¶

is
�

z(1− z)
b2

∂ 2

∂ z2
+ (2z − 1)

∂

∂ z
+∆〈2,1〉 +

∆1

z
−∆2 +

∆3

1− z

�

G(z) = 0 , (3.31)

4 Conformal bootstrap

We have seen how conformal symmetry leads to linear equations for correlation functions:
Ward identities and BPZ equations. In order to fully determine correlation functions, we need
additional, nonlinear equations, and therefore additional axioms: single-valuedness of correla-
tion functions, and existence of operator product expansions. Using these axioms for studying
conformal field theories is called the conformal bootstrap method.

4.1 Single-valuedness

Axiom 4.1 (Single-valuedness)
Correlation functions are single-valued functions of the positions, i.e. they have trivial mon-

odromies.

Our two-point function (3.20) however has nontrivial monodromy unless∆1 ∈
1
2Z, as a result

of solving holomorphic Ward identities. We would rather have a single-valued function of the
type |z1 − z2|−4∆1 = (z1 − z2)−2∆1(z̄1 − z̄2)−2∆1 . This suggests that we need antiholomorphic
Ward identities as well, and therefore a second copy of the Virasoro algebra.

Axiom 4.2 (Left and right Virasoro algebras)
We have two mutually commuting Virasoro symmetry algebras with the same central charge,

called left-moving or holomorphic, and right-moving or antiholomorphic. Their generators are
written Ln, L̄n, with in particular

∂

∂ z
V (z) = L−1V (z) ,

∂

∂ z̄
V (z) = L̄−1V (z) . (4.1)

The generators of conformal transformations are the diagonal combinations Ln + L̄n.

Let us point out that we do not use the widespread notation f (z, z̄) for a generic function, and
f (z) for a locally holomorphic function (i.e. a function such that ∂

∂ z̄ f (z) = 0). This notation
comes from a complexification of the Riemann sphere that makes z and z̄ independent. For
us, z̄ is always the complex conjugate of z, so the notation f (z, z̄) would be redundant.

Let us now consider left- and right-primary fields V∆i ,∆̄i
(zi). According to eq. (3.21), the

three-point function of such fields is
® 3
∏

i=1

V∆i ,∆̄i
(zi)

¸

∝ (z1 − z2)
∆3−∆1−∆2(z̄1 − z̄2)

∆̄3−∆̄1−∆̄2 × · · · . (4.2)

Single-valuedness as a function of zi constrains the spins si =∆i − ∆̄i ,

si + s j − sk ∈ Z , (i 6= j 6= k) . (4.3)

This implies in particular 2si ∈ Z. In other words, any primary field V∆,∆̄(z) must obey

∆− ∆̄ ∈
1
2
Z . (4.4)

The simplest case is ∆= ∆̄, which leads to the definition
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Definition 4.3 (Diagonal states, diagonal fields and diagonal spectrums)
A primary state or field is called diagonal if it has the same left and right conformal dimensions.
A spectrum is called diagonal if all primary states are diagonal.

From now on we will use the notation V∆(z) for the diagonal field V∆,∆(z).

4.2 Operator product expansion and crossing symmetry

Axiom 4.4 (Operator product expansion)
Let (|wi〉) be a basis of the spectrum. There exist coefficients C i

12(z1, z2) such that we have the
operator product expansion (OPE)

V|w1〉(z1)V|w2〉(z2) =
∑

i

C i
12(z1, z2)V|wi〉(z2) . (4.5)

In a correlation function, this sum converges for z1 sufficiently close to z2.

While the linear equations of Section 3 relate N -point functions to other N -point function,
OPEs allow us to reduce N -point functions to (N − 1)-point functions. The price to pay for
this reduction is the introduction of OPE coefficients. Using OPEs iteratively, we can actually
reduce any correlation function to a combination of OPE coefficients, and two-point functions.
(We stop at two-point functions because they are simple enough for being considered as known
quantities.)

Let us study some properties of OPE coefficients. Assuming that the spectrum is made of
diagonal primary states and their descendent states, the OPE of two primary fields is

V∆1
(z1)V∆2

(z2) =
∑

∆∈S

C∆1,∆2,∆|z1 − z2|2(∆−∆1−∆2)
�

V∆(z2) +O(z1 − z2)
�

, (4.6)

where the subleading terms are contributions of descendents fields. In particular, the z1, z2-
dependence of the coefficients is dictated by the behaviour (3.18) of correlation functions
under translations zi → zi + c and dilatations zi → λzi , leaving a zi-independent unknown
factor C∆1,∆2,∆. Then, as in correlation functions, contributions of descendents are deduced
from contributions of primaries via local Ward identitites.

Exercise 4.5 (Computing the OPE of primary fields)
Compute the first subleading term in the OPE (4.6), and find

O(z1 − z2) =
∆+∆1 −∆2

2∆

�

(z1 − z2)L−1 + (z̄1 − z̄2)L̄−1

�

V∆(z2) +O((z1 − z2)
2) . (4.7)

Hints: Insert
∮

C dz(z − z2)2T (z) on both sides of the OPE, for a contour C that encloses both z1
and z2. Compute the relevant contour integrals with the help of eq. (3.11).

Exercise 4.6 (V〈1,1〉 is an identity field)
Using ∂

∂ z1
V〈1,1〉(z1) = 0, show that the OPE of V〈1,1〉 with another primary field is of the form

V〈1,1〉(z1)V∆(z2) = C∆V∆(z2) , (4.8)

where the subleading terms vanish. Inserting this OPE in a correlation function, show that the
constant C∆ actually does not depend on ∆. Deduce that, up to a factor C = C∆, the field V〈1,1〉
is an identity field.
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We will now express three- and four-point functions in terms of OPE coefficients, and
deduce constraints on these coefficients. Inserting the OPE in a three-point function of primary
fields, we find

® 3
∏

i=1

V∆i
(zi)

¸

=
∑

∆∈S

C∆1,∆2,∆|z1 − z2|2(∆−∆1−∆2)
�




V∆(z2)V∆3
(z3)

�

+O(z1 − z2)
�

, (4.9)

= C∆1,∆2,∆3
|z1 − z2|2(∆3−∆1−∆2)

�

|z2 − z3|−4∆3 +O(z1 − z2)
�

, (4.10)

assuming the two-point function is normalized as 〈V∆(z1)V∆(z2)〉 = |z1 − z2|−4∆. It follows
that C∆1,∆2,∆3

coincides with the undertermined constant prefactor of the three-point function
(4.2). This factor is called the three-point structure constant, and we have

® 3
∏

i=1

V∆i
(zi)

¸

= C∆1,∆2,∆3
|z1 − z2|2(∆3−∆1−∆2)|z1 − z3|2(∆2−∆1−∆3)|z2 − z3|2(∆1−∆2−∆3) .

(4.11)

Let us now insert the OPE in a four-point function of primary fields:
¬

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
¶

=
∑

∆∈S

C∆1,∆2,∆|z|2(∆−∆1−∆2)

×
�¬

V∆(0)V∆3
(∞)V∆4

(1)
¶

+O(z)
�

, (4.12)

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
|z|2(∆−∆1−∆2)

�

1+O(z)
�

. (4.13)

The contributions of descendents factorize into those of left-moving descendents, generated
by the operators Ln<0, and right-moving descendents, generated by L̄n<0. So the last factor
has a holomorphic factorization such that

¬

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
¶

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
F (s)∆ (z)F

(s)
∆ (z̄) . (4.14)

Definition 4.7 (Conformal block)
The four-point conformal block on the sphere,

F (s)∆ (z) = z∆−∆1−∆2
�

1+O(z)
�

, (4.15)

is the normalized contribution of the Verma module V∆ to a four-point function, obtained by
summing over left-moving descendents. Its dependence on c,∆1,∆2,∆3,∆4 are kept implicit.
The label (s) stands for s-channel, we will soon see what this means.

Conformal blocks are in principle known, as they are universal functions, entirely determined
by conformal symmetry. This is analogous to characters of representations, also known as
zero-point conformal blocks on the torus.

Exercise 4.8 (Computing conformal blocks)
Compute the conformal block F (s)∆ (z) up to the order O(z), and find

F (s)∆ (z) = z∆−∆1−∆2

�

1+
(∆+∆1 −∆2)(∆+∆4 −∆3)

2∆
z +O(z2)

�

. (4.16)

Show that the first-order term has a pole when the Verma module V∆ has a null vector at level
one. Compute the residue of this pole. Compare the condition that this residue vanishes with the
condition (3.26) that three-point functions involving V〈1,1〉 exist.
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Our axiom 3.7 on the commutativity of fields implies that the OPE is associative, and that
we can use the OPE of any two fields in a four-point function. In particular, using the OPE of
the first and fourth fields, we obtain

¬

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
¶

=
∑

∆∈S

C∆,∆1,∆4
C∆2,∆3,∆F

(t)
∆ (z)F

(t)
∆ (z̄) , (4.17)

where F (t)∆ (z) = (z − 1)∆−∆1−∆4

�

1 + O(z − 1)
�

is a t-channel conformal block. The equal-
ity of our two decompositions (4.14) and (4.17) of the four-point function is called crossing
symmetry, schematically

∑

∆s∈S

C12sCs34

2
s

3

1 4

=
∑

∆t∈S

C23t Ct41

2

t

1

3

4

. (4.18)

This equation holds if the sums on both sides converge, that is if z is sufficiently close to both
0 and 1,

0 1 ∞

s-channel t-channel

(4.19)

Given the spectrum S, crossing symmetry is a system of quadratic equations for the structure
constant C∆1,∆2,∆3

. Requiring that this system has solutions is a strong constraint on the spec-
trum. In diagonal theories, crossing symmetry implies the existence of arbitrary correlation
functions on the sphere [7], and not just of four-point functions.

4.3 Degenerate fields and the fusion product

Crossing symmetry equations are powerful, but typically involve infinite sums, which makes
them difficult to solve. However, if at least one field is degenerate, then the four-point function
belongs to the finite-dimensional space of solutions of a BPZ equation, and is therefore a
combination of finitely many conformal blocks. For example,

¬

V〈2,1〉(z)V∆1
(0)V∆2

(∞)V∆3
(1)
¶

is a combination of only two holomorphic s-channel conformal blocks. These two blocks are a
particular basis of solutions of the BPZ equation (3.31). They are fully characterized by their
asymptotic behaviour near z = 0 (4.15), where the BPZ equation allows only two values of∆,
namely ∆ ∈ {∆(α1 −

b
2 ),∆(α1 +

b
2 )}. The explicit expressions of these blocks are

F (s)
α1−

b
2

(z) = zbα1(1− z)bα3 F(A, B, C , z) , F (s)
α1+

b
2

(z) = F (s)
α1−

b
2

(z)

�

�

�

�

α1→Q−α1

, (4.20)

where F(A, B, C , z) is the hypergeometric function with parameters










A= 1
2 + b(α1 +α3 −Q) + b(α2 −

Q
2 ) ,

B = 1
2 + b(α1 +α3 −Q)− b(α2 −

Q
2 ) ,

C = 1+ b(2α1 −Q) .

(4.21)
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Another basis of solutions of the same BPZ equation is given by two t-channel blocks, which
are characterized by their power-like behaviour near z = 1. Their explicit expressions are

F (t)
α3−

b
2

(z) = zbα1(1− z)bα3 F(A, B, A+ B − C + 1, 1− z) ,

F (t)
α3+

b
2

(z) = F (t)
α3−

b
2

(z)

�

�

�

�

α3→Q−α3

. (4.22)

The presence of only two s-channel fields with momentums α1 ±
b
2 , and the constraint

(3.30) on momentums in the three-point function



V〈2,1〉Vα2
Vα3

�

, both mean that the operator
product expansion V〈2,1〉(z)Vα1

(0) involves only two primary fields Vα1±
b
2
(0).

Axiom 4.9 (Fusion product)
There is a bilinear, associative product of representations of the Virasoro algebra, that encodes

the constraints on OPEs from Virasoro symmetry and null vectors. In particular,

R〈1,1〉 ×Vα = Vα , R〈2,1〉 ×Vα =
∑

±
Vα± b

2
, R〈1,2〉 ×Vα =

∑

±
Vα± 1

2b
. (4.23)

The fusion product can be defined algebraically [8]: the fusion product of two representations
coincides with their tensor product as a vector space, where however the Virasoro algebra does
not act as it would in the tensor product. (In the tensor product, central charges add.)

Using the associativity of the fusion product, we have

R〈2,1〉 ×R〈2,1〉 ×Vα =R〈2,1〉 ×

�

∑

±
Vα± b

2

�

= Vα−b + 2 · Vα +Vα+b . (4.24)

Since the fusion product ofR〈2,1〉×R〈2,1〉 with Vα has finitely many terms,R〈2,1〉×R〈2,1〉 must
be a degenerate representation. On the other hand, eq. (4.23) implies that R〈2,1〉 ×R〈2,1〉 is
made of representations with momentums α〈2,1〉 ±

b
2 = 0,−b. The degenerate representation

with momentum 0 isR〈1,1〉. CallingR〈3,1〉 the degenerate representation with momentum −b,
we just found

R〈2,1〉 ×R〈2,1〉 =R〈1,1〉 +R〈3,1〉 , R〈3,1〉 ×Vα = Vα−b +Vα +Vα+b . (4.25)

It can be checked that R〈3,1〉 has a vanishing null vector at level 3, so that our definition of
R〈3,1〉 from fusion agrees with the definition from representation theory in Section 2.3.

Exercise 4.10 (Higher degenerate representations)
Show that there exist degenerate representations R〈r,s〉 (for r, s ∈ N∗) with momentums α〈r,s〉

(2.17), such that

R〈r,s〉 ×Vα =
r−1
∑

i=0

s−1
∑

j=0

Vα+α〈r,s〉+i b+ j b−1 , (4.26)

R〈r1,s1〉 ×R〈r2,s2〉 =
r1+r2−1
∑

r3
2
=|r1−r2|+1

s1+s2−1
∑

s3
2
=|s1−s2|+1

R〈r3,s3〉 , (4.27)

where the superscript in
2
= indicates that the corresponding sum runs by increments of 2.

The knowledge of such fusion products will be crucial for defining and studying minimal mod-
els, whose spectrums are made of degenerate representations.
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5 Minimal models and Liouville theory

Let us start the investigation of specific conformal field theories.

Definition 5.1 (Conformal field theory)
A (model of) conformal field theory on the Riemann sphere is a spectrum S and a set of corre-

lation functions
¬

∏N
i=1 V|wi〉(zi)

¶

with |wi〉 ∈ S that obey all our axioms, in particular crossing
symmetry.

Definition 5.2 (Defining and solving)
To define a conformal field theory is to give principles that uniquely determine its spectrum and

correlation functions. To solve a conformal field theory is to actually compute them.

In this Section we will define minimal models and Liouville theory. In Section 6 we will solve
them.

5.1 Diagonal minimal models

Definition 5.3 (Minimal model)
A minimal model is a conformal field theory whose spectrum is made of finitely many irreducible
representations of the product of the left and the right Virasoro algebras.

Although there exist non-diagonal minimal models [4], we focus on diagonal minimal models,
whose spectrums are of the type

S =
⊕

R
R ⊗ R̄ , (5.1)

where R and R̄ denote the same Virasoro representation, viewed as a representation of the
left- or right-moving Virasoro algebra respectively.

Axiom 5.4 (Degenerate spectrum)
All representations that appear in the spectrum of a minimal model are degenerate.

It is natural to use degenerate representations, because in an OPE of degenerate fields, only
finitely many representations can appear. Conversely, we now assume that all representations
that are allowed by fusion do appear in the spectrum, in other words

Axiom 5.5 (Closure under fusion)
The spectrum is closed under fusion.

Let us assume that the spectrum contains a nontrivial degenerate representation such as
R〈2,1〉. Fusing it with itself, we getR〈1,1〉 andR〈3,1〉. Fusing multiple times, we get (R〈r,1〉)r∈N∗
due to R〈2,1〉 ×R〈r,1〉 = R〈r−1,1〉 +R〈r+1,1〉. If the spectrum moreover contains R〈1,2〉, then it
must contain all degenerate representations.

Definition 5.6 (Generalized minimal model)
For any value of the central charge c ∈ C, the generalized minimal model is the conformal field

theory whose spectrum is

SGMM =
∞
⊕

r=1

∞
⊕

s=1

R〈r,s〉 ⊗ R̄〈r,s〉 , (5.2)

assuming it exists and is unique.
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So, using only degenerate representations is not sufficient for building minimal models.
In order to have even fewer fields in fusion products, let us consider representations that are
multiply degenerate. For example, if R〈2,1〉 = R〈1,3〉 has two vanishing null vectors, then
R〈2,1〉×R〈2,1〉 =R〈1,1〉 has only one term, as the termR〈3,1〉 is not allowed by the fusion rules
of R〈1,3〉.

In order for a representation to have two null vectors, we however need a coincidence of
the type ∆〈r,s〉 = ∆〈r ′,s′〉. This is equivalent to α〈r,s〉 ∈ {α〈r ′,s′〉,Q − α〈r ′,s′〉}, and it follows that
b2 is rational,

b2 = −
q
p

with

�

(p, q) ∈ N∗ ×Z∗

p ∧ q = 1
i.e. c = 1− 6

(q− p)2

pq
. (5.3)

For any integers r, s, we then have the coincidence

∆〈r,s〉 =∆〈p−r,q−s〉 . (5.4)

In particular, for 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ q − 1, there exists a doubly degenerate repre-
sentation R〈r,s〉 = R〈p−r,q−s〉. The diagonal spectrum built from representations of this type
is

Sp,q =
1
2

p−1
⊕

r=1

q−1
⊕

s=1

R〈r,s〉 ⊗ R̄〈r,s〉 , (5.5)

where the factor 1
2 is here to avoid counting the same representation twice. This spectrum is

not empty provided the coprime integers p, q are both greater than 2,

p, q ≥ 2 , (5.6)

which implies in particular b,Q ∈ iR and c < 1. For other values of p, q, it turns out that no
minimal models exist.

Exercise 5.7 (Closure of minimal model spectrums under fusion)
Show that Sp,q is closed under fusion. If you are brave, compute the fusion products of the

representations that appear in Sp,q. If you are very brave, show that p, q ≥ 2 is a necessary
condition for the existence of a finite, nontrivial set of multiply degenerate representations that
closes under fusion.

Definition 5.8 (Diagonal minimal model)
For p, q ≥ 2 coprime integers, the (p, q) minimal model is the conformal field theory whose

spectrum is Sp,q, assuming it exists and is unique.

For example, the minimal model with the central charge c = 1
2 has the spectrum S4,3,











∆〈1,1〉 =∆〈3,2〉 = 0 ,

∆〈1,2〉 =∆〈3,1〉 =
1
2 ,

∆〈2,1〉 =∆〈2,2〉 =
1
16 .

⇐⇒ the Kac table

2 1
2

1
16 0

1 0 1
16

1
2

1 2 3

(5.7)

5.2 Liouville theory

Definition 5.9 (Liouville theory)
For any value of the central charge c ∈ C, Liouville theory is the conformal field theory whose

spectrum is

SLiouville =

∫

Q
2+iR+

dα Vα ⊗ V̄α , (5.8)

and whose correlation functions are smooth functions of b and α, assuming it exists and its unique.
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Let us give some justification for this definition. We are looking for a diagonal theory whose
spectrum is a continuum of representations of the Virasoro algebra. For c ∈ R it is natural to
assume ∆ ∈ R. Let us write this condition in terms of the momentum α,

∆ ∈ R ⇐⇒ α ∈ R∪
�

Q
2
+ iR

�

,
0 Q

2

α (5.9)

From Axiom 2.4, we need ∆ to be bounded from below, and the natural bound is

∆min =∆
�

α=
Q
2

�

=
Q2

4
=

c − 1
24

. (5.10)

This leads to α ∈ Q
2 + iR. Assuming that each allowed representation appears only once

in the spectrum, we actually restrict the momentums to α ∈ Q
2 + iR+, due to the re-

flection symmetry (2.14). We then obtain our guess (5.8) for the spectrum, equivalently
SLiouville =

∫∞
c−1
24

d∆ V∆ ⊗ V̄∆. We take this guess to hold not only for c ∈ R, but also for
c ∈ C by analyticity.

Other guesses for the lower bound may seem equally plausible, in particular ∆min = 0.
In the spirit of the axiomatic method, the arbiter for such guesses is the consistency of the
resulting theory. This will be tested in Section 6.3, and the spectrum SLiouville will turn out to
be correct.

Let us schematically write two- and three-point functions in Liouville theory, as well as
OPEs:

¬

Vα1
Vα2

¶

= B(α1)δ(α1 −α2) , (5.11)
¬

Vα1
Vα2

Vα3

¶

= Cα1,α2,α3
, (5.12)

Vα1
Vα2
=

∫

Q
2+iR+

dα
Cα1,α2,α

B(α)

�

Vα + · · ·
�

, (5.13)

where the expression for the OPE coefficient
Cα1,α2,α

B(α) in terms of two- and three-point structure
constants is obtained by inserting the OPE into a three-point function. It would be possible
to set B(α) = 1 by renormalizing the primary fields Vα, but this would prevent Cα1,α2,α3

from
being a meromorphic function of the momentums, as we will see in Section 6.2.

In order to have reasonably simple crossing symmetry equations, we need degenerate
fields. But the spectrum of Liouville theory is made of Verma modules, and does not involve
any degenerate representations. In order to have degenerate fields, we need a special axiom:

Axiom 5.10 (Degenerate fields in Liouville theory)
The degenerate fields V〈r,s〉, and their correlation functions, exist.

By the existence of degenerate fields, we also mean that such fields and their correlation func-
tions obey suitable generalizations of our axioms. In particular, we generalize Axiom 4.4 by
assuming that there exists an OPE between the degenerate field V〈2,1〉, and a field Vα. However,
according to the fusion rules (4.23), this OPE leads to fields with momentums α± b

2 , and in
general α ∈ Q

2 + iR 6=⇒ (α± b
2 ) ∈

Q
2 + iR. We resort to the assumption in Definition 5.9 that

correlation functions are smooth functions of α, and take Vα to actually be defined for α ∈ C
by analytic continuation. (Or for α in a dense open subset of C, if there are singularities.) This
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allows us to write the OPE

V〈2,1〉Vα ∼ C−(α)Vα− b
2
+ C+(α)Vα+ b

2
, (5.14)

where we introduced the degenerate OPE coefficients C±(α).

6 Four-point functions

Let us determine the three-point structure constant by solving crossing symmetry equations.
We begin with the equations that come from four-point functions with degenerate fields. These
equations are enough for uniquely determining the three-point structure constant.

6.1 Single-valued four-point functions

The four-point function G(z) =
¬

V〈2,1〉(z)V∆1
(0)V∆2

(∞)V∆3
(1)
¶

obeys second-order BPZ equa-
tions in z and z̄. The most general solution of these two equations can be written in terms of
the s-channel conformal blocks F (s)

α1±
b
2

of Section 4.3 as

G(z) =
∑

i, j=±
c(s)i j F

(s)
α1+i b

2

(z)F (s)
α1+ j b

2

(z̄) . (6.1)

Let us determine how single-valuedness constrains the coefficients c(s)i j . Our conformal blocks
have singularities at z = 0,1,∞, and single-valuedness is equivalent to G(z) having trivial
monodromy around z = 0,1. Our s-channel decomposition is convenient for studying the
monodromy around z = 0: near this point, each one of the two s-channel conformal blocks
F (s)
α1±

b
2

(z) behaves as a power of z (4.15), with its own exponent. For a generic value of α1, the

difference of their two exponents is not integer, and F (s)
α1−

b
2

(z)F (s)
α1+

b
2

(z̄) is not single-valued

near z = 0. On the other hand, the two terms F (s)
α1±

b
2

(z)F (s)
α1±

b
2

(z̄) are single-valued. We

conclude that c(s)+− = c(s)−+ = 0. Similarly, if we decompose the same four-point function in the
t-channel basis of conformal blocks,

G(z) =
∑

i, j=±
c(t)i j F

(t)
α1+i b

2

(z)F (t)
α1+ j b

2

(z̄) , (6.2)

then single-valuedness near z = 1 requires c(t)+− = c(t)−+ = 0. Now the s- and t-channel bases of
solutions of the BPZ equation must be related by a change of basis,

F (s)
α1+i b

2

(z) =
∑

j=±
Fi jF

(t)
α1+ j b

2

(z) , (6.3)

for some matrix Fi j that is well-known in the case of our hypergeometric conformal blocks
(4.20). Inserting this change of basis in our s-channel decomposition (6.1) of G(z), we find a
t-channel decomposition, with the coefficients

c(t)i′ j′ =
∑

i, j=±
c(s)i j Fii′F j j′ . (6.4)

Inserting our single-valuedness conditions c(t)+− = 0 and c(s)−+ = c(s)+− = 0 in this relation, we
deduce

c(s)++
c(s)−−
= −

F−+F−−
F++F+−

. (6.5)
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Using the known formula for Fi j , this is explicitly

c(s)++
c(s)−−
=

γ(C)γ(C − 1)
γ(A)γ(B)γ(C − A)γ(C − B)

with γ(x) =
Γ (x)
Γ (1− x)

, (6.6)

where the combinations A, B, C of the momentums α1,α2,α3 are given in eq. (4.21).
This concludes the mathematical exercise of finding single-valued solutions of the hyper-

geometric equation. Now, in the case of Liouville theory, let us determine the coefficients c(s)i j
in terms of OPE coefficients and three-point structure constants. Using the degenerate OPE
(5.14) and the three-point function (5.12), we find

α1

α1 −
b
2

α2

〈2, 1〉 α3

c(s)−− = C−(α1) Cα1−
b
2 ,α2,α3

α1

α1 +
b
2

α2

〈2,1〉 α3

c(s)++ = C+(α1) Cα1+
b
2 ,α2,α3

(6.7)

Then eq. (6.6) becomes a shift equation for the dependence of Cα1,α2,α3
on α1,

C+(α1)Cα1+
b
2 ,α2,α3

C−(α1)Cα1−
b
2 ,α2,α3

=
γ(b(2α1 −Q))γ(1+ b(2α1 −Q))

∏

±,± γ(
1
2 + b(α1 −

Q
2 )± b(α2 −

Q
2 )± b(α3 −

Q
2 ))

. (6.8)

In order to find the three-point structure constant Cα1,α2,α3
, we need to constrain the degen-

erate OPE coefficients C±(α). To do this, we consider the special case where the last field is
degenerate too, i.e. the four-point function

¬

V〈2,1〉(z)Vα(0)Vα(∞)V〈2,1〉(1)
¶

. In this case, using
the degenerate OPE (5.14) twice, and the two-point function (5.11), we find

α

α− b
2

α

〈2,1〉 〈2, 1〉

c(s)−− = C−(α) B(α− b
2 ) C−(α)

α

α− b
2

α

〈2, 1〉 〈2,1〉

c(s)++ = C+(α) B(α+ b
2 ) C+(α)

(6.9)

Then eq. (6.6) boils down to

C+(α)2B(α+ b
2 )

C−(α)2B(α− b
2 )
=
γ(b(2α−Q))
γ(−b(2α−Q))

γ(−b2 − b(2α−Q))
γ(−b2 + b(2α−Q))

. (6.10)

Moreover, if we had the degenerate field V〈1,2〉 instead of V〈2,1〉 in our four-point functions, we
would obtain the equations (6.8) and (6.10) with b→ 1

b . Next, we will solve these equations.
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6.2 Determining three-point structure constants

In order to solve the shift equations for Cα1,α2,α3
, we need a function that produces Gamma

functions when its argument is shifted by b or 1
b .

Exercise 6.1 (Upsilon function)
For b > 0, show that there is a unique (up to a constant factor) holomorphic function Υb(x) that
obeys the shift equations

Υb(x + b)
Υb(x)

= b1−2bxγ(bx) and
Υb(x +

1
b )

Υb(x)
= b

2x
b −1γ( x

b ) . (6.11)

For ib > 0, show that the meromorphic function

Υ̂b(x) =
1

Υi b(−i x + i b)
, (6.12)

obeys shift equations that differ from eq. (6.11) by b···→ (i b)···.

The function that solves the exercise can be written as

Υb(x) = λ
(Q

2−x)2

b

∞
∏

m,n=0

f

� Q
2 − x

Q
2 +mb+ nb−1

�

with f (x) = (1− x2)ex2
, (6.13)

where λb is an unimportant b-dependent constant. The solution is unique for b > 0, because
the ratio of two solutions would be a continuous function with aligned periods b and 1

b , and
such a function must be constant if b2 /∈Q. In the complex plane, the periods b and 1

b indeed
look as follows:

i

0 1

b > 0
c ≥ 25

b ∈ C
c ∈ C

i b > 0
c ≤ 1

(6.14)

The formula (6.13) for Υb(x) actually makes sense not only for b > 0, but for ℜb > 0. This
defines the functions Υb(x) and Υ̂b(x) forℜb > 0 andℜi b > 0 respectively, such that they are
analytic in b.

Let us now solve the shift equation (6.8) using the function Υb. We write the ansatz

Cα1,α2,α3
=

N0
∏3

i=1 N(αi)

Υb(α1 +α2 +α3 −Q)Υb(α1 +α2 −α3)Υb(α2 +α3 −α1)Υb(α3 +α1 −α2)
,

(6.15)

where N0 is a function of b, and N(α) is a function of b and α. The denominator of this ansatz
takes care of the denominator of the shift equation, which therefore reduces to an equation
that involves the dependence on α1 only,

C−(α1)N(α1 −
b
2 )

C+(α1)N(α1 +
b
2 )
=

b4b(2α1−Q)

γ(b(2α1 −Q))γ(1+ b(2α1 −Q))
. (6.16)

Combining this equation with the shift equation for B(α) (6.10), we can eliminate the un-
known degenerate OPE coefficients C±(α), and we obtain

�

N2B−1
�

(α− b
2 )

(N2B−1) (α+ b
2 )
= b8b(2α−Q)γ(−b(2α−Q))

γ(b(2α−Q))
γ(−b2 − b(2α−Q))
γ(−b2 + b(2α−Q))

. (6.17)
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Together with its image under b→ b−1, this equation has the solution
�

N2B−1
�

(α) = Υb(2α)Υb(2α−Q) . (6.18)

Therefore, we have only determined the combination N2B−1, and not the individual functions
B and N that appear in the two- and three-point functions. This is because we still have
the freedom of performing changes of field normalization Vα(z) → λ(α)Vα(z). Under such
changes, we have B→ λ2B and N → λN , while the combination N2B−1 is invariant. Invariant
quantities are the only ones that we can determine without choosing a normalization, and the
only ones that will be needed for checking crossing symmetry.

It can nevertheless be convenient to choose a particular field normalization, when com-
paring different approaches to Liouville theory, or when considering specific applications. The
normalization should then be chosen so that the structure constants have nice properties. For
example, we should not choose the normalization such that B(α) = 1, which would cause
N(α) (and therefore Cα1,α2,α3

) to have square-root branch cuts. We could rather adopt the
field normalization such that N(α) = Υb(2α), which makes the three-point structure constant
meromorphic as a function of the momentums. We also choose N0 = 1, and we obtain the
DOZZ formula (for Dorn, Otto, A. Zamolodchikov and Al. Zamolodchikov),

Cα1,α2,α3
=

Υb(2α1)Υb(2α2)Υb(2α3)
Υb(α1 +α2 +α3 −Q)Υb(α1 +α2 −α3)Υb(α2 +α3 −α1)Υb(α3 +α1 −α2)

.

(6.19)

For the original derivation of this formula from the Lagrangian formulation of Liouville theory,
and the discussion of the formula in various limits, see [9].

The DOZZ formula holds if c /∈] −∞, 1] i.e. ℜb > 0. On the other hand, doing the
replacement Υb→ Υ̂b, we obtain a solution Ĉ that holds if c /∈ [25,∞[ i.e. ℜi b > 0, together
with the corresponding functions B̂ and N̂ . The solution of the shift equations is unique if b
and b−1 are aligned, i.e. if b2 ∈ R. Therefore, for generic values of the central charge, both C
and Ĉ are solutions, and there are actually infinitely many other solutions. In order to prove
the existence and uniqueness of Liouville theory, we will have to determine which solutions
lead to crossing-symmetric four-point functions.

Our shift equations for three-point structure constants, and their solutions, are valid not
only for Liouville theory, but also for (generalized) minimal models. In such models, the
momentums α〈r,s〉 belong to a lattice with periods b and 1

b , so they are uniquely determined
by the shift equations. The solution is given by C or Ĉ , which coincide. (Actually C has poles
when αi take degenerate values, one should take the residues.) This shows that (generalized)
minimal models are unique, but not yet that they exist.

6.3 Crossing symmetry

We have found that (generalized) minimal models are unique, while Liouville theory is unique
at least if b2 ∈ R. We will now address the question of their existence.

Using the Vα1
Vα2

OPE (5.13), let us write the s-channel decomposition of a Liouville four-
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point function,

α2

α

α3

α1 α4

¬

Vα1
(z)Vα2

(0)Vα3
(∞)Vα4

(1)
¶

=

∫

Q
2+iR+

dα
Cα1,α2,α

B(α)
Cα,α3,α4

F (s)α (z)F
(s)
α (z̄)

(6.20)

(We have a similar expression with B, C → B̂, Ĉ whenever the solutions B̂, Ĉ exist.) Let us
accept for a moment that Liouville theory is crossing-symmetric if the central charge is such
that the shift equations have unique solutions C or Ĉ , i.e. for c ≥ 25 or c ≤ 1 respectively. The
integrand of our s-channel decomposition is well-defined, and analytic as a function of b, in
the much larger regions c /∈]−∞, 1] and c /∈ [25,∞[ respectively. If the integral itself was
analytic as well, then crossing symmetry would hold in these regions by analyticity.

In order to investigate the analytic properties of the integral, let us first extend the integra-
tion half-line to a line,

∫

Q
2+iR+

→ 1
2

∫

Q
2+iR. This is possible because the integrand is invariant

under α→ Q − α: the conformal blocks are invariant because they are functions of the con-
formal dimension (2.14), and the combination B(α)−1Cα1,α2,αCα,α3,α4

of structure constants is
invariant as a consequence of Υb(α) = Υb(Q − α). Let us then study the singularities of the
integrand. We accept that the conformal blocksF (s)α (z) have poles when α= α〈r,s〉 (2.17), the
momentums for which the s-channel representation becomes reducible [1]. We now plot the
positions of these poles (blue regions) relative to the integration line (red), depending on the
central charge:

0 α0 Q 0 α0 Q 0 α0

Q

c ≥ 25 c /∈]−∞, 1]∪ [25,∞[ c ≤ 1

(6.21)

When c varies in the region c /∈]−∞, 1], the poles never cross the integration line. Therefore,
the four-point function built from C is analytic on c /∈]−∞, 1]. So if Liouville theory exists for
c ≥ 25, then it also exists for c /∈]−∞, 1], with the same structure constant C . On the other
hand, if c ≤ 1, then the poles are on the integration line, and actually the line has to be slightly
shifted in order to avoid the poles. We cannot analytically continue the four-point function
from the region c ≤ 1 to complex values of c, because this would make infinitely many poles
cross the integration line. So the structure constant Ĉ is expected to be valid for c ≤ 1 only.

That is how far we can easily get with analytic considerations. Let us now seek input
from numerical tests of crossing symmetry, using Al. Zamolodchikov’s recursive formula for
computing conformal blocks [1]. (See the associated Jupyter notebook, and the article [10].)
We find that Liouville theory exists for all values of c ∈ C, with the three-point structure
constants Ĉ for c ≤ 1, and C otherwise. We also find that generalized minimal models exist
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for all values of c, and minimal models exist at the discrete values (5.3) of c ≤ 1 where they
are defined. And we can numerically compute correlation functions with a good precision.

Historically, Liouville theory was first defined by quantizing a classical theory whose equa-
tion of motion is Liouville’s equation. That definition actually gave its name to the theory.
(That definition does not cover the case c ≤ 1: using the name Liouville theory in this case,
while natural in our approach, is not universally done at the time of this writing.) It can be
shown that our definition of Liouville theory agrees with the historical definition, either by
proving that the originally defined theory obeys our axioms, or by checking that both def-
initions lead to the same correlation functions, in particular the same three-point structure
constants. See [3] for a guide to the literature on the construction of Liouville theory by quan-
tization.
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