SC|| SciPost Phys. Lect. Notes 112 (2026)

Les Houches lectures on non-perturbative topological strings

Marcos Marino

Département de Physique Théorique et Section de Mathématiques,
Université de Geneve, Geneve, CH-1211 Switzerland

1 Part of the 2024-08: Quantum Geometry - Mathematical Methods for
ECOLE DE Gravity, Gauge Theories and Non-Perturbative Physics collection
PHYSIQUE Session 124 of the Les Houches School, August 2024
PES HOUCHES published in the Les Houches Summer School Lecture Notes series

Abstract

In these lecture notes for the Les Houches School on Quantum Geometry I give an intro-
ductory overview of non-perturbative aspects of topological string theory. After a short
summary of the perturbative aspects, I first consider the non-perturbative sectors of the
theory as unveiled by the theory of resurgence. I give a self-contained derivation of re-
cent results on non-perturbative amplitudes, and I explain the conjecture relating the
resurgent structure of the topological string to BPS invariants. In the second part of
the lectures I introduce the topological string/spectral theory (TS/ST) correspondence,
which provides a non-perturbative definition of topological string theory on toric Calabi-
Yau manifolds in terms of the spectral theory of quantum mirror curves.
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1 Introduction

This is a written version of the lectures I gave at Les Houches school on Quantum Geometry, in
August 2024. My goal in these notes, as in the original lectures, is to provide an introduction
to non-perturbative aspects of the topological string. Before embarking on this topic it is useful
to have a general view of what is meant by a “non-perturbative” approach, so let me start these
notes with a discussion of perturbative versus non-perturbative physics in quantum theories.

1.1 Perturbative and non-perturbative physics

Observables in physical theories are often functions F(g) of a control parameter g or “coupling
constant”. There are many situations in which determining F(g) for arbitrary values of g is in
practice difficult. If F(g) is known for a reference value of g (which I will take to be g = 0),
one can try to use perturbation methods to understand what happens when g is near this
reference value, i.e. when g is small. The outcome of these methods is a perturbative series
in g, of the form

p(8)=> a,g". (1

n>0
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(In these lectures, p(g) will denote a formal power series.) However, more often than not,
the series obtained in perturbation theory are factorially divergent, i.e. the coefficients grow
like a,, ~ n!. This means that the series ¢(g) does not define a function in a neighbourhood of
g = 0. Rather, ¢(g) provides an asymptotic approximation to F(g), in the sense of Poincaré,
and we write

F(g)~w(g). 2)

Extracting physical information on F(g) from its asymptotic expansion ¢(g) has been an im-
portant problem in physics and mathematics. A standard technique is to use an optimal trun-
cation of the asymptotic series, but this only gives approximate results. In some cases one can
obtain exact results by an appropriate resummation of the perturbative series, and by adding
non-perturbative effects.

In the above discussion I have assumed that, in our theory, F(g) can be mathematically
defined as an actual function, at least for some range of values of g. If this is the case, F(g)
is called a non-perturbative definition of our observable. Usually the perturbative series p(g)
can be obtained from the non-perturbative definition. However, as one considers quantum
theories of increasing complexity, non-perturbative definitions become harder to obtain. Let
us discuss various possible scenarios and their realizations in physical theories.

In the best possible scenario, we have a rigorous mathematical definition of the function
F(g), an algorithmic procedure to calculate it for a wide range of values of g, and a method
to obtain a perturbative expansion for small g. This is often the case in quantum mechanics.
Let us consider for example a non-relativistic particle in a potential of the form,

q2
V=" + gq”, (3)

where the coupling constant g is the strength of the anharmonic, quartic perturbation. A
typical observable in this system is e.g. the energy of the ground state Ey(g). When g > 0 this
function is defined rigorously by the spectral theory of the self-adjoint Schrédinger operator

p?

H= 5 T V(a), 4
where q, p are canonically conjugate Heisenberg operators. We also have numerical tech-
niques, like Rayleigh—Ritz methods, to compute this ground state energy. Finally, the rules of

stationary perturbation theory give a power series in g for Ey(g), of the form

3
p(@)=c-+———g +... 5)

It can be shown that this gives indeed an asymptotic expansion for E,(g). Moreover, one can
use Borel resummation techniques to recover the exact Ey(g) from ¢(g) (see e.g. [1] for a
review and references).

In the second best scenario, one has a method to obtain perturbative expansions, and an
non-rigorous algorithmic procedure to calculate F(g) non-perturbatively. This is the typical
situation in quantum field theory (QFT). One of the main achievements in QFT is the de-
velopment of renormalized perturbation theory, which produces mathematically well-defined
formal power series in a coupling constant g. For some observables we can also obtain a non-
perturbative definition by using a lattice regularization of the path integral, and then taking
the continuum limit. This latter procedure is in general not mathematically rigorous, but in
practice seems to leads to well-defined and explicit numerical results. There is a branch of
mathematical physics, called constructive QFT, whose goal is to provide mathematically rig-
orous non-perturbative definitions of observables, akin to what can be achieved in quantum
mechanics. Recently there have been some advances in constructive QFT by using probabilistic
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techniques, but progress in that front has been slow and mostly in low dimensions. There are
special cases in QFT in which we can obtain non-perturbative approaches by other means. For
example, in integrable quantum field theories one can use the Bethe Ansatz and form factor
expansions to obtain non-perturbative definitions of some observables. In some theories with
a large N expansion one can sometimes obtain exact results as a function of the renormalized
coupling constant, albeit order by order in a series in 1/N. An additional difficulty of QFTs is
that the relationship between the perturbative and the non-perturbative approaches is more
complicated than in quantum mechanics, and showing that the perturbative series provides
an asymptotic expansion of the available non-perturbative definitions becomes non-trivial.

The case of string theories is even more challenging, since they are defined only by pertur-
bative expansions, and non-perturbative definitions simply do not exist in general. One can
try to construct string field theories, i.e. spacetime actions whose Feynman rules reproduce
ordinary perturbation theory. There are simpler examples of string theories in low dimensions
where one can use a sort of lattice regularization in terms of matrix integrals in order to de-
fine exact observables. Another class of examples concerns superstring theories on Anti-de
Sitter (AdS) backgrounds, which are expected to be dual to a superconformal QFT. In these
backgrounds, the non-perturbative definition of string theory amounts to the non-perturbative
definition of the dual QFT.

Therefore, both in QFT and in string theory we have in principle a systematic approach
to compute formal power series in the coupling constant, through the rules of perturbation
theory. We have a harder time in obtaining non-perturbative, exact definitions of observables.
This problem becomes particularly acute in string theory. In view of this, it might be a good
idea to try to extract as much information as possible from the perturbative series itself, as
’t Hooft advocated [2]. It turns out that there is a framework to do this which was started
in the late 1970s-early 1980s by various physicists, and it was later formalized by the math-
ematician Jean Ecalle under the name of theory of resurgence. The basic idea of the theory
of resurgence is that one can obtain non-perturbative results by appropriate resummations of
formal series. However, in order to do that one needs to go beyond the perturbative sector
and to consider non-perturbative effects, which mathematically are formal power series with
an additional exponentially small dependence on the coupling constant. Some of these non-
perturbative effects (but in general not all) turn out to be hidden in the perturbative series,
and one can learn something about the non-perturbative aspects of the theory by extracting
these effects from perturbation theory.

In these lectures, our starting point will be a perturbative series ¢(g), and the search for
“non-perturbative” aspects will refer to either of the following two problems:

1. Non-perturbative effects: given ¢(g), can we obtain an explicit description of the non-
perturbative effects which are hidden in the perturbative series?

2. Non-perturbative definition: given p(g), is it possible to construct a well-defined function
F(g) which has ¢(g) as its asymptotic expansion?

These two problems are logically independent and they have a different flavour. The first
problem has a unique solution. It is encoded in the so-called resurgent structure associated to
the perturbative series ¢(g) (resurgent structures were introduced in [3] and their definition is
presented in the Appendix A). However, obtaining explicit descriptions of resurgent structures
turns out to be a very difficult problem, even in simple quantum theories. The second problem
clearly does not have a unique solution, since there are infinitely many functions with the same
asymptotic expansion. Therefore, the relevant question is whether there is a way to pick up a
particular non-perturbative definition as the one which is physically relevant, or perhaps the
one which is more interesting mathematically.


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.112

SC|| SciPost Phys. Lect. Notes 112 (2026)

Although the two problems above can be addressed separately, they are also related, in the
sense that once a solution to the second problem has been found and a non-perturbative defini-
tion is available, one can ask whether it can be reconstructed by using the resurgent structure,
i.e. by using the non-perturbative effects obtained in the solution to the first problem.

1.2 Non-perturbative topological strings

Topological string theory can be regarded as a simplified model of string theory, more complex
than non-critical string theories, but still simpler than full-fledged string theories. Topological
string theories are interesting for various reasons. They provide a physical counterpart to
the theory of enumerative invariants for Calabi-Yau (CY) threefolds, and they have led to
many surprising results in that field. Through the idea of geometric engineering [4], they are
closely related to A/ = 2 supersymmetric gauge theories in four and five dimensions. They
have multiple connections to classical and quantum integrable models, as seen in e.g. [5-8].
Finally, they lead to simpler but precise realizations of large N dualities, in which the large
N dual can be a matrix model [9-12], a Chern-Simons gauge theory [13], or, as we will see
in these lectures, a one-dimensional quantum-mechanical model [14,15]. For these reasons,
there have been various efforts to understand non-perturbative aspects of topological strings
from different perspectives. In these lectures I will address this problem by first considering the
resurgent structure of topological strings, as proposed in question 1 above, and then addressing
the question 2 of finding an interesting non-perturbative definition.

I have tried to preserve three aspects of the original lectures. First, there are many refer-
ences to the other lectures of the school, and the interested reader can consult the webpage
https://houches24.github.io for further information. Second, I have included many exercises
which complement the exposition. Mathematica programs with solutions to some of the ex-
ercises can be found in my webpage https://www.marcosmarino.net/lecture-notes.html. Fi-
nally, although the lectures are detailed, they are also informal and pedagogical, and the focus
is often on detailed case studies, rather than on general constructions.

The structure of these lectures is the following. I will first review some properties of per-
turbative topological strings in section 2. In section 3 I address their resurgent structure, and
I will essentially answer question 1 above in the case of topological string theory. In section 4,
I provide a possible answer to question 2 in the case of toric CY threefolds, namely, I consider
a well-defined function, obtained from a quantum-mechanical problem, whose asymptotic ex-
pansion conjecturally reproduces the perturbative series of the topological string. Appendix A
is a quick summary of the theory of resurgence. Appendix B lists some properties of Faddeev’s
quantum dilogarithm which are used in the lectures.

2 Perturbative topological strings

In this section I give some background on perturbative topological strings. This is a big subject
which would require many lectures in itself, so I cannot cover all the details. Useful references
on topological string theory and mirror symmetry include [16-21]. Various aspects of the
mathematical approach to topological strings have been presented in the lectures of M. Liu in
this school. What I do in this section is essentially to provide a list of properties of topological
string theory which will be useful later on.

Topological string theory, as I mentioned above, can be regarded as a toy model of string
theory. Since a string theory is a quantum theory of maps from Riemann surfaces to a target
manifold, we have so specify first our target. This will be a CY threefold, i.e. a complex,
Kahler, Ricci-flat manifold of complex dimension three (other choices are possible, but have
been studied less intensively). I will denote such a target by M, and I would like to emphasize
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that M does not have to be compact. In fact, non-compact CY threefolds will be very important
for us, for various reasons.

The starting point to construct topological string theory is the NV = 2 supersymmetric
version of the non-linear sigma model, with target space M. This model can be topologically
twisted to obtain a topological field theory in two dimensions [22]. Topological string theory
is then obtained by coupling the resulting twisted theory to topological gravity, in the way
explained in [23,24]. There are however two different ways of twisting the non-linear sigma
model, known as the A and the B twist [25,26], and this leads to two different versions of
topological string theory, which are usually called the A and the B model. These models are
sensitive to different properties of M. The A model is sensitive to the Kiahler parameters of
M, which specify the (complexified) sizes of the two-cycles in M. There are h'(M) = b,(M)
Kéhler parameters in total, where hP*4(M) are the Hodge numbers of M, and b;(M) are its Betti
numbes. We will denote these parameters by t;, i = 1,...,s, where s = h"}(M), and we will
gather them in a vector t = (tq, ..., t,). The B model is sensitive to the complex parameters of
M, which specify its “shape”, and there are

by(M)

hbA (M) =
(M) 5

1 (6)
complex moduli in total. We will denote them by z;,i =1,..., h'2(M).

Mirror symmetry is a duality or equivalence between the A model on the CY manifold
M and the B model on the mirror CY M*. This means in particular that there is a map be-
tween the Kéhler and the complex moduli of the mirror manifolds, which we can write as
t; = ti(21,...,%), i = 1,...,s. This map is usually called the mirror map, and we will see
explicit examples below.

Topological string theory and mirror symmetry were formulated originally for compact CY
manifolds. However, there is a class of CY manifolds, called toric manifolds, which admit a
torus action and are non-compact. An example of such a toric CY is given by the total space
of the canonical bundle of P?,

X = O(=3) - P?, 7

which appeared in the lectures by V. Bouchard [27] and also by M. Liu. Other examples of toric
manifolds are obtained by considering the total space of the canonical bundle of appropriate
algebraic surfaces, like P! x P!, In spite of their non-compactness, it is possible to define the
A model on toric CY manifolds [4,28,29]. In particular, there is a version of mirror symmetry
for toric CY manifolds called local mirror symmetry which is particularly simple and useful. We
will discuss some aspects of local mirror symmetry in more detail below.

The only observable of topological string theory on a CY threefold is the partition function,
or its logarithm the free energy. The latter can be calculated as a perturbative series by sum-
ming over connected Riemann surfaces. The contribution of a genus g Riemann surfaces to
the free energy will be denoted by F,, and it is a function of the Kahler (respectively, complex)
moduli in the A (respectively, B) model.

2.1 The A model

To solve topological string theory perturbatively, one has to calculate F, for all g > 0. Let us
describe how to do this calculation in the A model. Since the theory is topological, one can
show that it just “counts” instantons of the twisted non-linear sigma model with target M. The
instantons are in this case holomorphic maps from the Riemann surface of genus g to the CY
M,

f: Z, oM, (8)
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Figure 1: A pictorial representation of a holomorphic map from a Riemann surface
%, into a CY M.

see Fig. 1 for a pictorial representation. Let [S;] € Hy(M,Z), i = 1,...,s, be a basis for the
two-homology of M, with s = b,(M) as before. The maps (8) are classified topologically by
the homology class

£LEQ1= D di[S] € Hy(X,2), ©)
i=1

where d; are integers called the degrees of the map. We will put them together in a degree
vector d = (dy,...,d;). The “counting” of instantons is given by the Gromov-Witten (GW)
invariant at genus g and degree d, which we will denote by N;, and is given by an appropriate
integral over the space of collective coordinates of the instanton, or moduli space of maps,
as explained in M. Liu’s lectures (see also [18] for definitions and examples). Note that GW
invariants are in general rational, rather than integer, numbers.

The genus g free energies F,(t) can be computed as an expansion near the so-called large
radius point t — 00, involving the GW invariants at genus g and at all degrees. They are given
by formal power series in "%, i = 1,...,s, where t; are the Kihler parameters of M. They
also involve additional contributions, which are polynomials in the t;. At genus zero, the free

energy reads
S

1
_ —d-t
Fo(t) = g Z aijktitjtk +ZNO,de . (10)
i,j,k=1 d
In the case of a compact CY threefold, the numbers a;;; are interpreted as triple intersection
numbers of two-classes in X, and one usually adds an additional polynomial of degree two in
the Kahler parameters, but we will not busy ourselves with these details here. At genus one,
one has

S
Fl(t) = Z bi t; + ZNl,de_d't . (1 1)
i=1 d

In the compact case, the coefficients b; are related to the second Chern class of the CY manifold
[30]. At higher genus one finds

Fo®)=cox+ Y Nyae™®t,  g>2. (12)
d

Here, y is the Euler characteristic of M in the compact case, and a suitable generalization
thereof in the non-compact case. The constant term CoX in (12) is the contribution of constant
maps to the genus g free energy. The coefficient c, is given by an integral over the moduli
space of Riemann surfaces [24], whose value can be obtained by using string dualities [31] or
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by a direct calculation [32],

B (—1)87'BygBy,—
7 45g—2)(2g—2)!"
Let us mention that the infinite sums defining the free energies are sums over instantons of
the underlying topological sigma model. The exponent d - t/Es2 is the action of an instanton
whose topological class is labelled by the degrees d, and we have included the string length
{,, which is usually set to one.

Although the genus g free energies have been written in (10), (11), (12) as formal power
series, they have a common region of convergence near the large radius point t; — 0o, and
therefore they define actual functions F,4(t), at least near that point in moduli space. The total
free energy of the topological string is formally defined as the sum,

(13)

Ft;g) =Y g% 2F,(t). (14)

g=>0

This can be further decomposed as

Ft;g) =FP(t;g)+ > > Ny qe *g%72, (15)
g=20 d
where . .
1 -
F®)(t; ¢,) = 6a2 Z QjjibiLjty +Z biti + 1 chgszg 2 (16)
&5 i, jk=1 i=1 g>2

is the polynomial part of the free energies. The variable g, called the topological string coupling
constant, is in principle a formal variable, keeping track of the genus of the Riemann surface.
However, in string theory this constant has a physical meaning, and measures the strength of
the string interaction: when g, is very small, the contribution to the free energy is dominated
by Riemann surfaces of low genus; as g, becomes large, the contribution of higher genus
Riemann surfaces becomes important.

If we fix the value of t inside the common radius of convergence of the free energies, the
sum over genera in (14) defines a formal power series in the string coupling constant, whose
coefficients F,(t) are functions of the moduli. Understanding the detailed properties of this
series will be one of the central goals of these lectures. There is strong evidence that the series
F,(t), at a fixed value of t, diverges doubly-factorially,

Fo(t) ~ (28)1, (17)

therefore the total free energy (14) does not define a function of g; and t. The factorial di-
vergence of the genus expansion is typical of perturbative series in quantum theories, as we
mentioned in the introduction. In the case of string theory, it was first noted for the bosonic
string in [33]. Shenker argued in [34] that the behavior (17) should be a generic feature of
any string theory, due to the growth of the “Feynman integrals” on the moduli space of Rie-
mann surfaces of genus g that compute the relevant string theory amplitudes. Very recently,
the double-factorial growth was proved in [35] for the free energies obtained from topological
recursion.

Remark 2.1. In quantum field theory one typically distinguishes between two different sources
for the factorial growth of perturbation theory. The first source is due to the growth of Feynman
diagrams and is related to instantons. The second source is due to the integration over mo-
menta in some special diagrams, and the corresponding Borel singularities are called “renor-
malons”. In the case of string theory this distinction becomes more subtle. Since there is only
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one diagram at each genus, we could say that the factorial growth of string theory is due to
integration over moduli, and therefore is of the renormalon type. At the same time, as pointed
out in [34], one can use Feynman diagrams to study these integrals, and relate them in many
cases to instanton configurations in matrix models.

2.2 The Gopakumar-Vafa representation

The expression in the r.h.s. of (15) is a double expansion, in both degrees and genera. To
define the total free energy (14) we first sum over all the degrees at fixed genus, to obtain the
functions F, (t), and then we sum over genera. As we will see, this is the natural answer that
one obtains from mirror symmetry and the B-model. But perhaps one could try to exchange
the order of summations, i.e. to sum over all genera for a fixed d, and them sum over all
degrees. This representation can be obtained by using the results of Gopakumar and Vafa
in [36], who reformulated the total free energy of topological string theory by using a physical
realization in type IIA superstring theory and M-theory. Let us consider the double expansion
in (15) involving the GW invariants,

DD Ngge dtg 2, (18)

g=0 d

Then, [36] found that this series can be re-expressed as

oo
1 wg, 282
FV(t;g,) = Z Z Z ;ng (2 sin —55 ) e vdt, (19)

g0 d w=1

where nd are the so-called Gopakumar-Vafa (GV) invariants. In contrast to the GW invariants,

they turn out to be integer numbers. They can be interpreted, roughly, as Euler characteristics
of moduli spaces of D2 branes in the CY manifold (see e.g. [37] for a detailed discussion with
examples). One important property of the GV invariants is that, for a given degree d, there is
a maximal genus g,.,(d) such that ng =0 for g > gpax(d).

Exercise 2.2. Show that the expression (19) leads to the following formula for F,(t) [37]. For
g =0, g =1, one has

Fo(t) = F(()p)(t) + Z ng Liz (e74Y),
d

o) nd (20)
_p 0, dl: (.—d
Fi(t)=F(t)+ ; (E + nl) Li; (e791),
while for g > 2 one has
(=187 1B,,nd  2(—1)8nd -2
—r® g™0 2 _ & d d|r: —dt

Fo() = FP(1) +Zd:( 22(2g —2)] + 2z o= S e g | Lis g (e™). (2D

In these expressions,
k
) Z
Lin(2) =) o (22)
k=1

is the polylogarithm function of order n. O

It follows from (21) that if one knows the GW invariants N,/ 4 with g’ < g,d <d,onecan
determine uniquely the GV invariant ncgl, and viceversa. In that sense, the two sets of invariants
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contain the same information. Let us note that there exist direct mathematical constructions
of the GV invariants as well, see e.g. [38].

The GV representation of the total free energy gives another view on the problem of resum-
mation. It is clear that we can now write the non-trivial part of the total free energy, involving
the GW invariants, as

FV(t8)= ) Fu(g)e ™, (23)
m
where . pe
— Lod(gg, W8 \E™
Fm(gs)_z Z an(ZSln 5 ) . (24)
¢>0m=wd

Note that, due to the vanishing property of the GV invariants mentioned above, the sum over
g in (24) is finite. One could think that (23) can perhaps be summed, as a series now in the
variables e~%. It turns out that the properties of this series depend crucially on the value of
g, If g, is real, the series is not even well-defined. This is due to the inverse square sines
appearing in (19), which lead to singularities when g, € 2nQ. If g,/(2m) is rational, there
is a minimum degree m_;, such that infinitely many coefficients F,,(g,) with m > m,;, are
singular at that rational value. As a consequence, given any real value of g, there is a multi-
degree starting from which infinitely many coefficients F,,(g,) can be made arbitrarily large.
This is clearly a pathological situation. One could still try to make sense of the r.h.s. of (23)
for complex values of g,. However, in that case there is evidence that the coefficients Fp,(g;)
grow with Gargantuan speed, even worst than factorial. For example, in the case of local P?,
introduced in (7), one has b,(M) = 1 (corresponding to the P! inside P?) and therefore there
is a single degree. Explicit computations suggest that [39,40]

log|F(g)l ~m*, m>1, (25)

at least when |g| is not too small, |g,| 2 1. This growth seems to be the consequence of two
facts. First, for complex g, the sin factors in the GV formula become hyperbolic functions and
they lead to contributions in F,,(g;) of the form c28, with |c| > 1 for |g,| = 1. Second, the
maximal genus of a curve of degree m in a CY grows like g(m) ~ m?, as a consequence of
Castelnuovo theory [41], which is precisely the behavior in (25).

Therefore, when g, is real the series (23) does not make sense, and when g; is complex it
makes sense, but it diverges wildly. This underappreciated fact shows that in general the GV
representation of the free energy does not define topological string theory non-perturbatively.

Exercise 2.3. M. Liu’s lectures have introduced the topological vertex of [42], which can be
used to compute the coefficients F,,(g,) efficiently in the case of local P2. One finds, for the
very first valuesof m=1,2,3,

3q2
Fig)=—""7T"73,
T (1)
3¢ (4¢* +7¢* + 4)
Fy(gs) = 21 (26)
10q'2 +27q*° + 54q¢°® + 62¢° + 54q* +27¢ + 10
FS(gs) = 5

(¢°—1)?

where q = €'$/2, Write a computer program which calculates these coefficients, and extract
from them the very first GV invariants of this geometry. Verify the asymptotic behaviour (25).
O

10
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Remark 2.4. There is a special class of toric CY manifolds which can be used to engineer five-
dimensional SU(N) gauge theories [4,43]. For these manifolds, the gauge theory instanton
partition function (reviewed in N. Nekrasov’s lectures in this school) provides a rearrangement
of the GV expansion which is expected to converge for complex g, (in the case of SU(2), this
is proved in [44]). However, it is still singular if g, € 2nQ.

2.3 An example: The resolved conifold

Before going on, let us consider what is perhaps the simplest example of a topological string
theory, on the non-compact CY manifold known as the resolved conifold. This manifold is a
plane bundle over the two-sphere:

X=0(-1)ao0(-1)—-P. 27)

There is a single modulus t, which in the A-model is the (complexified) area of the PL. A
calculation of the Gromov-Witten invariants in [32] shows that there is a single non-zero GV
invariant in this geometry, with g = 0 and d = 1, and equal to ncl) = 1. The all-genus free
energy of the topological string, in the GV representation, is then simply given by

0 1 —wt

FV(t;8)= » ——

w=1

_— (28)
w 4sin? (*5)
The full free energy differs from this expression in a cubic polynomial in ¢t which is not im-

portant for the discussion. Up to such a polynomial, one finds for the free energies at fixed
genus,

Fo(t) = Lig(e™),

Fi(t) = = Lig(e7),

12 (29)
(—1)7'Byg .
Fg(t): W_zz)g!]-'l3—2g(e_t)? g22.

These can be obtained from the general expression (21) by taking into account that all GV
invariants vanish except ncl) = 1. It is easy to see that the sequence F,(t) grows doubly-
factorially with the genus, by using the formula

1

Liz g(e™") =T(2g —2) Z kit %2

keZ

(30)

which is valid for g > 2 and e™* # 1.
An even simpler topological string theory can be obtained when we look at the limit of
Fg(t) as t — 0 and we keep the most singular terms. One finds,

A2 3
R =% (log(x)— 5) Lo,
F1(2) = = log(1) + O(1), 31)
_ 28 422
F) =5 o0, g2,

where A =it. The point t =0 (or A = 0) is a special point in the moduli space of the resolved
conifold, in which the area of the P! shrinks to zero size, and the free energy is singular. Such a
point in moduli space is called a conifold point. Conifold points arise generically in the moduli
space of CY manifolds, and they will play an important role in what follows.

11
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2.4 The B model

The problem of calculating the free energies in the B model is very different, since the twisted
sigma model localizes to constant maps [25], so the calculation is in a sense “classical”. In
the case of genus zero, the problem is completely solved by calculating the periods of the
holomorphic 3-form Q on the CY M*, as explained in the pioneering paper [45]. One chooses
a symplectic basis of three-cycles,

Al B, I=0,1,...,s, (32)
which satisfy
(a',a") = (B',B’) =0,
I J I (33)
(A JBJ> = _<BI7A ) = 5J:
where I,J =0,1,...,s and (-,-) is the intersection pairing in H;(M™*). Integration of Q over

these cycles gives the A and B periods,

X’:f Q, f,:f Q. (34)
Al B;

The periods are used to define a projective prepotential F,(X!) by the relations

_ 9%

F = .
= axI

(35)
We can now construct the so-called flat coordinates t, as affine coordinates corresponding
to the projective coordinates X': we choose a nonzero period, say X°, and we consider the
quotients
Xa

“= X0
Since the projective prepotential is homogeneous, we can define a quantity F(t) (called the
prepotential) which only depends on the coordinates t,:

t a=1,...,s. (36)

Fo(x") = (X°)*Fy(1). (37)

The prepotential gives the genus zero free energy of the topological string, in the B model.

According to mirror symmetry, the B model on M* is equivalent to the A model on the
mirror manifold M. In particular, there is an appropriate choice of the symplectic basis of
three-cycles such that the corresponding flat coordinates give the mirror map, i.e. the t, can
be regarded as complexified Kidhler coordinates on M. For that choice, the prepotential defined
above agrees with the genus zero free energy of the A model on M. In particular, the expansion
of that prepotential around the large radius point leads to the GW invariants of the mirror CY.
This is the classical setting of mirror symmetry as first discovered in [45].

As we mentioned above, in the case of toric CY manifolds we have a simpler setting for
mirror symmetry, called local mirror symmetry. The equation for the mirror of a toric CY turns
out to be of the form

uv = P(e*,e”), (38)

where P(e*,e”) is a polynomial in the exponentiated variables x, y. There is a precise al-
gorithm to obtain this polynomial, starting with the description of a toric CY manifold as a
symplectic quotient, see e.g [28,46]. The geometry of the threefold (38) is encoded in the
Riemann surface X described by P,

P(e*,e¥)=0. (39)

12
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It can be shown that, for the CY (38), the periods of 2 reduce to the periods of the differential

A= y(x)dx, (40)

on the curve (39) [4,28]. In addition, one can set X° = 1. The flat coordinates t and the genus
zero free energy Fy(t) in the large radius frame are determined by choosing an appropriate

symplectic basis of one-cycles on the curve, A,, B,, a=1,...,¢gs, and one finds
JF,
ta=§ A, °:§ A, i=1,...,8%, (41)
A, at, B,

where g5 is the genus of the mirror curve. We note that, in general, s > g5, and there are
additional s — g5, moduli of the CY that are obtained by considering in addition residues of
poles at infinity (these additional parameters are sometimes called mass parameters).

Another important consequence of using the B model is that there is in fact an infinite
family of flat coordinates and genus zero free energies, depending on the choice of a basis
of three cycles. Different choices are related by symplectic transformations. This structure is
present in the general, compact case, but in order to make things simpler, I will focus on the
local case and in addition I will assume that g5, = 1. Then, a symplectic transformation of the
cycles induces the following transformation of the periods,

(ECRC O e

adb—PBy=1. (43)

where

This transformation is a combination of an SL(2,R) transformation and a shift. The shift is
due to the fact that in the local case there is a constant period, independent of the moduli,
which can mix with the non-trivial periods. The genus zero free energy transforms as,

Fo() = Fo(£) = S(t, ), (44)
which is a generalized Legendre transform. The function S(¢, t) has the form
S(t, 1) = A% + utt + vE2 + ac + bt. (45)

The coefficients appearing in this polynomial can be related to the parameters appearing in
(42) by imposing that F,(t) is independent of t,

JdF, 0§ .
—— =——=2At+uf+a 6
ot ot HET @ (46)
and by using that
9F, 23S
== 47
at at “47

By comparing these two equations to the equations for f and 8;F, from (42), one eventually
obtains
S(t,f)=—£t2+ltf—gfz—gt+(ga—b)f. (48)
2r v 2 Y
In this derivation I have assumed that y # 0. The different choices of genus zero free energy
(or of flat coordinate f in (41)) are usually called choices of frame. They are all related by this
type of transformations, and they contain the same information.

13
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The local case has additional advantages due to the “remodeling” or BKMP conjecture
[10,47] mentioned in the lectures by V. Bouchard [27]. According to this conjecture (now a
theorem), the higher genus free energies can be obtained through the topological recursion of
Eynard-Orantin [48], applied to the spectral curve (39), endowed with the differential (40).
As a consequence, it can be shown that, under a symplectic transformation, the total free
energy changes by a generalized Fourier transform [49] (this was first postulated in [50]). Let
us write down the result in the simple case with g5, = 1. One has

eXp(f(f;gs)=feXP(F(t;gs)—éS(t, f)) dt, (49)

S

where the function S(t,t) implementing the transform is given by (48). The integral in the
r.h.s. of (49) has to be understood formally, since the total free energy appearing in the inte-
grand is itself a formal power series. To obtain the transformation properties of the genus g
free energies, we evaluate the integral in the r.h.s. of (49) in a saddle point approximation for
g, small. At leading order we recover the generalized Legendre transform (44), and in partic-
ular the condition for a saddle point is precisely (46). The evaluation at higher orders leads to
explicit transformation properties for the higher genus free energies, see [50] for examples.

As we mentioned above, in the moduli space of CY manifolds there are generically conifold
loci, which are characterized by the shrinking of a three-cycle with the topology of a three-
sphere S, and lead to a vanishing period (in the local case we have a vanishing one-cycle in the
mirror curve). Like before, we will restrict for simplicity to CYs with a one-dimensional moduli
space, where the conifold locus is just a conifold point. There is a particularly important frame
in topological string theory defined by the property that the local coordinate is the vanishing
period at the conifold point (up to an overall normalization). This frame is called the conifold
frame. It turns out that the genus g free energies in that frame have the universal behaviour
(31) near the conifold point, for an appropriate normalization of the vanishing period A. This is
an important property of topological strings first noted in [51], where a physical explanation of
this behaviour was also proposed. In the case of the resolved conifold, the conifold coordinate
A coincides (up to a factor of i) with the large radius coordinate t measuring the size of the
P! in the geometry, but in general they are different, and related by a non-trivial symplectic
transformation. We will see an example in the next section.

2.5 A more complicated example: Local P?

In order to better understand the B model approach to topological string theory, it is useful to
look at a rich example. An all-times favourite is the mirror to the local P? CY manifold. Useful
information on local P? can be found in many papers, like e.g. [28,52]. The corresponding
mirror curve is given by

ef+e’+e ¥V +x=0. (50)

Here, « is a complex variable parametrizing the complex structure of the curve. It is also useful
to introduce
z=K"3, (5D

The curve (50) is in fact an elliptic curve in exponentiated variables.

Exercise 2.5. Use the transformation

bY —a/2
ex:_g+_a/,
2 X+c (52)
e =
X+c’
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Figure 2: The moduli space of local P?, with the three special points z = 0 (large
radius), z = —1/27 (conifold) and z = oo (orbifold).

to put the curve (50) in Weierstrass form,
Y2 =4x%—g,X —g;. (53)
Calculate g, and g3, and verify that the discriminant of the curve is given by

1+427x3

A(x) = (54

O

The exercise above shows that there are three special points in the curve (50). The first one
isz =0, or k = 00. As we will see in a moment, this is the large radius point of the geometry,
when the complexified Kahler parameter is large. The second special point is 2 = 00, or
k = 0. This is the so-called orbifold point, where the theory can be described as a perturbed
topological CFT. Finally, we have the point

1

z2=——,
27

(55)
where the discriminant (54) vanishes and the curve is singular. This is a conifold point, sim-
ilar to the point t = 0 in the resolved conifold. The moduli space of local P2, with these
three special points, is represented in Fig. 2 as a Riemann sphere. This sphere is divided in
two hemispheres by the “equator” |z| = 1/27, which passes through the conifold point (55).
The upper hemisphere, which includes the large radius point z = 0, can be regarded as the
“geometric” phase of the model, where the topological string can be represented in terms of
embedded Riemann surfaces. In the lower hemisphere, around the orbifold point z = 0o, the
GW expansion around z = 0 does no longer converge, and one should use a more abstract
picture in terms of a perturbed topological CFT coupled to gravity. See [53] for a discussion
of the physics and mathematics of these moduli spaces.

The periods (41) are functions of z. The most convenient way to calculate these periods, as
is well-known in mirror symmetry, is to find an ODE, or Picard-Fuchs (PF) equation, satisfied
by all the periods. In the case of local P2, the PF equation reads [28]

(0 —32(36 +2)(360 +1)0) 11 =0, (56)
where
0 —zi (57)
S Tdg’
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and IT is a period. This equation has three independent solutions, which can be calculated
explicitly with the Frobenius method: a trivial, constant solution; a logarithmic solution @ (2);
and a double logarithmic solution @,(z). If we introduce the power series,

B1()= Y 3R Y,

()3
jz1
(58)
~ 18 T(3j)
@(s) = ]le Tt e YU+ DI
where v (z) is the digamma function, we have
@ (z) =log(z) + @, (2), 59

@,y(z) = logz(z) +2@,(z)log(z) + @4(2).

It is easy to see that the series in (58) have a radius of convergence |z| = 1/27, determined
by the position of the conifold point. One can write @ ;(2) as a generalized hypergeometric

function,

~ 5
@1(2) =—62 4F3 (1, 1, g, 5; 2,2,2; —272) . (60)

We can now ask which combinations of the periods above lead to the complexified Kiahler
parameter and genus zero free energy determining the GW expansion (10). It turns out that
the single logarithmic solution gives t, while the double logarithmic solution leads to the
derivative of Fy(t) (up to an overall factor). More precisely, we have

@,(2)

t =—w(z), 0,Fy(t) = 5

(61)
Note that as z — 0, we have e " ~ z — 0, so this is the large radius limit, as we mentioned
before. From (61) we can compute the genus zero free energy as
t3 45 244 12333
A2 20 ST 3 —4t

Fo(t) =—++ Be_t -

—5¢
18 8 9 64 TOE). (62)

It can be seen from the PF equations that the convergence radius of the series (59) atz =0
is set by the conifold singularity at 2 = —1/27. This means in particular that the radius of
convergence of the genus zero free energy (62) is set by the value of t at the conifold point
[29,45], which in this case is given by [54]

1 9 : i .
t (—2—7) = Elm (le(e /3)) + i, (63)

where the choice of sign is due to the choice of branch cut of log(z). As noted above, it is

expected that this radius of convergence is common to all genus g free energies.

Exercise 2.6. Derive (62) from (58), (59) and (61). Verify the result with the topological
vertex expansion in Exercise 2.3. O

The choice of periods in (61) defines the large radius frame. Let us now consider the
conifold frame. In order to construct it, we have to find an appropriate conifold coordinate.
This must be a combination of periods which vanishes at the conifold point and having good
local properties there. In the case of local P2, this coordinate is given by

A) = 4%[ (0(2)—7%), (64)
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where

w(2) = log?(—2) + 21og(—2)@(2) + @y(2). (65)

The conifold frame is then defined by the periods

or 3 3’ 66)
3 i T
A=—0Fp* —t——.
21 27 2

OF; 2m 2w
L

The second relation is of course a consequence of (64). The choices of signs in (66) are
correlated with the choice of branch cut of log(z) for —1/27 < z < 0, and they have been
made in such a way that A and J, F§ are real in that interval. The genus zero free energy in
the conifold frame can be computed explicitly and it has the form,

2

1 A 3 A3 24 7A° 5291°
() D) v
oM =527 log| 3573 3673 | 7776 | 8748043 62985600

This is precisely the universal behavior obtained in (31) for the genus zero free energy (we
have chosen the normalization of A so that it agrees with the canonical conifold coordinate,
leading to the first equation in (31)). With some additional work, one can check that the
higher genus free energies satisfy as well (31). As an example, the genus one and two free
energies have the local expansion,

+0(17). (67

1 5X A2 513 28314 3)°
F{(M)=——log(A) + - - + 1 0(2°),
12 7243 7776 1749643 8398080 566870443 68)
. 1 A 318772 23913 191512% s
FS(M)=— + - + - +0(1%).
24012 648043 125971200 2834352043 28570268160

As we will see later, we will be able to recover these series (and more) from a non-perturbative
definition of the topological string on local P?.

3 Resurgence and topological strings

Since the sequence of topological string free energies F,(t) is factorially divergent, one can
have a first handle on non-perturbative aspects by using the theory of resurgence (a short
review of this theory can be found in the Appendix). This program was first proposed in
[47,55,56], and it has experienced many interesting developments in recent years. The first
thing we can ask is: what is the resurgent structure of the topological string? The resurgent
structure of a factorially divergent series, as we recall in the Appendix A, is the collection of
trans-series and Stokes constants associated to the singularities of its Borel transform. Mod-
ulo some assumptions on endless analytic continuation of this transform, this is a well posed
mathematical problem with a unique answer. The resurgent structure gives the collection of
all non-perturbative sectors of the theory which can be obtained from the study of perturbation
theory. From the point of view of physics, this gives candidate trans-series that complement the
perturbative series and that can be used to obtain non-perturbative answers via Borel resum-
mation. However, as we will see, the resurgent structure is interesting in itself, since the Stokes
constants turn out to be, conjecturally, non-trivial invariants of the CY: the Donaldson-Thomas
(DT) or BPS invariants.
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4miA

2\

\4

Figure 3: The singularities of the Borel transform (70) are located at non-zero integer
multiples of 2miA. In the figure we show the Stokes ray through the singularities
2nil A with £ € Z..

3.1 Warm-up: The conifold and the resolved conifold

The problem of determining the resurgent structure of the topological string free energies
is very difficult, due to the lack of explicit expressions for the genus g free energies. There
are however two cases where one can determine this structure analytically: the conifold free
energies (31), i.e. the leading singularities of the topological string free energy near a conifold
singularity, and the free energies of the resolved conifold (29). These two examples were first
worked out by S. Pasquetti and R. Schiappa in [57] and they turn out to be fundamental
ingredients in the full theory.
Let us start with the conifold free energies. We consider the formal power series

Byg
(&) =D bygg27?,  byy=—A, (69)

It turns out to be more convenient to use the Borel transform (A.2). One finds,

5(0) = bag  ogs_ Bag 2-2g y2¢—3
PO T

(70)
_1) 1 oA 1

= - -
12 2 s n2( <
¢ ¢ 4 sinh (ﬁ)
(Note that the other version of the Borel transfom defined in (A.3), which is often used in the
literature, is given by a primitive of this function, and that is why it is difficult to obtain an

explicit expression for it.)
The singularities of the Borel transform (70) are located at

{=2milA, ¢ € Z\{0}, (71)

see Fig. 3. They are double poles. Let us consider the Stokes ray going through the singularities
with £ > 0, at the angle 6 = 7/2. The discontinuity of the lateral Borel resummations for that
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angle is simply computed by the sum of residues at those poles:

si(p)(gs) —s_(¢)(gs) = —ZHiZ Res;_onira (@(g)e—i/gs)

(=1
2
i {1(A) 1} —tA/ 72)
=— | =)+ peYE,
27T€21 L\ g, 14
where
A=2miA. (73)

If we consider the singularities in the negative imaginary axis, we find the same result, but
with negative £. By comparing the second line in (72) to (A.15), we can read the trans-series:

1 (1 1
o) =57 (2)+fee, tenvon. &

From now on we will focus on the trans-series for positive £, although the results can be
extended to the ones with negative £. We will normalize these trans-series as in (74), therefore
in (72) the corresponding Stokes constant is one. In more complicated CY manifolds there are
amplitudes of the form (74) with non-trivial Stokes constants, as we will see in a moment.

From a physicist perspective, the second line of (72) looks like a sum over multi-instantons
with action 4. We will refer to (74) as a Pasquetti-Schiappa {-instanton amplitude. The ex-
pansion around each instanton is truncated at next-to-leading order in the coupling constant
gs- The sum over £ > 0 can be performed in closed form and one finds,

(G4—1D(p)= i {Liz (e/&) — gélog(l —e_A/gS)} =log @, (— A

g ans) ; (75)

where we have expressed the result in terms of the Stokes automorphism introduced in (A.18).
This automorphism captures the discontinuity associated to all the singularities A, £ € Z~,
along the Stokes ray given by the imaginary axis. We have denoted it by & 4. In the last
step in (75) we have used (B.12) to identify this function as Faddeev’s non-compact quantum
dilogarithm &, (x), evaluated at b = 1. Faddeev’s quantum dilogarithm is a remarkable special
function introduced in [58], which appears in many contexts in modern mathematical physics.
In Appendix B we list some of its properties, which will be also useful in section 4. Since & 4
is an automorphism, its action on Z.,, = e¥ is multiplicative:

A
S (Zcon) =9 (_%) Zeon - (76)

Remark 3.1. Writing the Stokes automorphism in terms of Faddeev’s quantum dilogarithm al-
lows for a compact notation, but there is a deeper reason for it. In the local case, the topological
string admits a deformation or refinement by using the so-called Omega background [43,59].
This deformation can be parametrized by a complex number b, and the undeformed or un-
refined case corresponds to the value b = 1. It turns out that the formula (75) admits a
generalization to the refined a case, in which the r.h.s. involves Faddeev’s dilogarithm for
arbitrary b; see [60] for the details.

As we mentioned above, the results for the conifold are very useful, and make it possible
to obtain the trans-series for the resolved conifold immediately. The reason is that, thanks
to (30), we can write the resolved conifold free energies as an infinite sum of conifold free
energies:

BZg
Fo()= > 2 (ie+2mm)?> %,  g>2. 77)
g P
mezZ 2g(2g _2)

19


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.112

SC|| SciPost Phys. Lect. Notes 112 (2026)

ot + An?i

\ 4

27t

Figure 4: The singularities of the Borel transform in the case of the resolved conifold
are located at non-zero integer multiples of 27t + 4%im, where m € Z. As m goes
through Z, the singularities form towers. The Stokes rays are somewhat similar to
the feathers in a peacock’s tail, hence the name “peacock patterns” for this structure
of singularities (the picture on the right was made by Mallory Cessair and is courtesy
of Wikimedia Commons).

Therefore, the singularities of the Borel transform are of the form £.A,,, where £ € Z\{0} and
the “action” A4,, is labelled by an additional integer m:

A, =21t +4n%im, mez. (78)

The corresponding trans-series are also of the Pasquetti-Schiappa form. A plot of the very
first singularities is shown in Fig. 4. Note that they are organized in infinite towers, and the
singularities in each tower are obtained by changing the value of m in (78). The Stokes rays
going through the singularities £.4,, for a fixed m and { € Z.; accumulate along the imaginary
axis. Such a pattern of Borel singularities is common in topological string theory on local CY
manifolds, but also in complex Chern-Simons theory. Graphically, the set of Stokes rays going
through Borel singularities is similar to the tail of a peacock, and for this reason these patterns
were called “peacock patterns” in [61].

There is a simple extension of this result which is also useful. It was first discussed in
[57,62,63] and further developed in [64]. Let us consider the expression (21) for g > 2,
which is valid for the free energies in the large radius frame, and near the large radius point
Re(t;) > 1. The first term in the second line is a sum of free energies for the resolved conifold,
and it is easy to see that it is the only term growing factorially with g. Therefore, we expect
that, close enough to the large radius point, we will have a sequence of Borel singularities at

Agm=2nd-t+ 4mim, meZz, (79)

where d are the values of the degrees which lead to a non-zero GV invariant ng. The trans-
series associated to these singularities are of the form

ng @4, (8)- (80)

Therefore, ng (which is an integer) has to be interpreted as the Stokes constant associated to
the sequence of singularities (79), and the corresponding Stokes automorphism can be written

as )
AT
G4 (Zig) = |:<I>1 (—an )] 2R (81)

S
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where A is given by (79), and we have denoted the partition function in the large radius frame
by Z;r. Explicit numerical calculations show that the Borel singularities (79) indeed do occur,
and their Stokes constants are given by the genus zero GV invariants [63,64].

Exercise 3.2. Let us consider the constant map contribution (13). Show that it can be written
as

B, e
g 22
C,=——o N (2mm)%> 28, (82)
¢ 2g(2g-2) mZ::l
Deduce that, if
Yem(gs) = Z ngSZg—Z > (83)
g=2

one has the discontinuity formula

i 1A 1) _
s+(¢cm)(gs) _5—(§Pcm)(gs) = _% ZZI: O'(E) {Z (g) + 6_2} € tAgs > (84)
where
¢ 2
A=4m2i, a(@):Z(—) . (85)
ml|l m
This result was derived in [64] with a different technique. Conclude that
00 -1
LA

GA (Zcm) = !:! |:<I>1 (_ans)] Zcm’ (86)

where Z, = e¥em,

3.2 The general multi-instanton trans-series

In the examples of Stokes automorphisms considered so far, the location of the Borel singular-
ities for the free energies or partition function has the following property: A is proportional
to the flat coordinate of the frame in which we were computing the partition function, up to a
shift by a constant. In addition, the Stokes automorphism acts multiplicatively on the partition
function. In general, we expect A to be given by a linear combination of periods of the CY. In
other words, and restricting ourselves to the local case with g5 = 1 for simplicity, we expect
to have

OF,
A:ca—:+dt+4n2im, meZz. (87)

This expectation was first stated in [65], based on previous insights on instantons in matrix
models [66]. Additional arguments and evidence for this principle were given in [52,67]. In
addition it was emphasized in [64] that, with appropriate normalizations, Borel singularities
are integer linear combinations of periods. This means that ¢ and d in (87) are universal
constants, times integers.

Let us now give a simple argument for obtaining the trans-series associated to a general
Borel singularity, of the form (87). If ¢ = 0, the instanton action is the flat coordinate t, up to
a shift, and we expect the Stokes automorphism to act multiplicatively, i.e.

G 4(Z(t)) =exp [% (Liz (e_A/gS) — gAlog(l —e_A/gS)):| Z(t). (88)

S

Here, S is a Stokes constant. We know from (75) that this formula is true for the Borel sin-
gularity at the conifold frame (73), with S = 1, and for the Borel singularities (79) at large
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radius, with S = ng. It was conjectured in [64] that the formula (88) holds for arbitrary Borel
singularities (87) with ¢ = 0, and further tests were presented.

Let us now suppose that ¢ # 0, and let us consider a frame where the flat coordinate t
is the instanton action A given in (87). This frame is called in [60, 64] an A-frame, and is
defined by the transformation

()= D)) (o).

where a, 8 are such that ad — 8¢ = 1, and o is a shift. We can now invert this transformation
and use the general formula (48), to find

y tt  d 2 y
S(E, t):——+—t2+4n lmt+s(t), (90)
C 2c C
where a a
s(f) = —fz+(a—4ﬂ:21m—)f. (91)
2c c

The partition functions Z(t; g,), Z(f; g,) are then related by (49). We note that we can write

d 47%im \ ~
Z(t;8) =exp| ———t*— ——t | Z(t; g,), (92)
2cg; cg:
where ) )
= ~ . tt st -
Z(t;8) = | Z(t;g)exp —2—(—2) dt. (93)
cg; 8;

We will now assume that the Stokes automorphism acting on Z(t; g;) is obtained as a Fourier
transform of the Stokes automorphism acting on Z(t; g;). This is very natural, since the action
of the Stokes automorphism can be regarded as a trans-series generalization of the perturba-
tive partition function, and the Fourier transform acting on the perturbative sector extends
naturally to the full trans-series. At the same time, since A is a flat coordinate in the f frame,
the action of the Stokes automorphism on Z(f; g,) is multiplicative, according to the conjecture
explained above. We conclude that

SaZ(t;g)) = J & 4(Z(F; g))e S0/ at

d , 4n?im gsC S
(- 4 g, (-595) 2.

(94)

We have used here the standard property that insertions of t inside the Fourier transform can
be traded by derivatives. We can also write this as

&2 =[o(-552)] 20580, ©5)

This formula was derived in [64, 68, 69] by using a more complicated method, based on the
holomorphic anomaly equations of [24], which has the advantage that it applies to compact
CY manifolds as well. The derivation presented here, in a slightly less general form, can be
found in [70].

We can write (95) more explicitly as

S A(Z(t; g,)) = exp [% (Liy (Ce &%) — cg,3, log (1 —Ce‘cgsaf))] Z(t;g),  (96)

22


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.112

SC|| SciPost Phys. Lect. Notes 112 (2026)

where we have introduced a parameter C to keep track explicitly of the exponentially small
corrections. By expanding the r.h.s. of this equation in powers of C we find

= iS = 7 .
Z(t;g,)+ Zl_nc (1+cg8,F(t—cgs; gs)) ef(t=cesss) 4 O(C?). 97)
The action of the Stokes automorphism on the free energy follows from

G A(F(t;g,)) =1log& 4(Z(t; g,)). (98)

where F(t; g,) =logZ(t; g,). We can introduce the multi-instanton sectors of the free energy
as

SA(F(t;g))—F(t:8,) =1 ) ,C'FO(t; g,), (99)
£>1

and we find that the first instanton sector is given by
0 S 7 Flt—cg.g)-F(t:g)
FO(t8) = 5— (14088, F(t —cgi g,)) et mroas Tt (100)
Higher instanton sectors can be obtained in a straightforward way.

Let us make some comments on the structure of the formula (100). First of all, the total
free energy F(t; g,) differs from F(t; g,) only in its genus zero piece, i.e. we have

= d 4ni
Fo(t) = Fo(t) + — 2 + 1 (101)
2c c
and is such that R
JFy(t
A= 2Rl (102)
ot
In particular, the exponential factor in (100) has the g; expansion
exp (F(t —cgs; ) —F(t;8,)) =e V& (1+0(gy)) (103)

so (100) is manifestly a non-perturbative correction. The exponent in (103) can be interpreted
as the difference between the free energies of two different backgrounds, or points in the
moduli space of the CY: the background t, and the background t —cg,, in which t is shifted. It
is easy to see that in the /-th instanton sector the shift is given by t —£{cg,. This is very similar
to the structure of multi-instantons in Hermitian matrix models [34, 55, 71, 72], in which the
¢-th instanton sector is obtained by tunnelling ¢ eigenvalues. Since, with the appropriate
normalizations, c is an integer, this suggests that t has an underlying discrete structure and it
is “quantized” in units of g,. Such a quantization is typical of topological string theories with
large N duals, in which the CY modulus is interpreted as a 't Hooft parameter and has the form
Ng,, where N is the rank of the matrix model [9,11,13]. We will elaborate on this in section
4.

The result that we have derived for the Stokes automorphism is valid for local CY manifolds
with a single modulus, but it has an obvious generalization to general CYs [64, 69]. In this
case, it is more convenient to use the projective free energies
2—-2g

§, (XN =(X")""F, (v, (104)

generalizing the projective prepotential (37). Let us introduce a charge vector y = (c!,d;),
where I =0,1,...,s, which generalizes the numbers c,d, m appearing in (87). The location
of a Borel singularity is given by

A, = Fr+dx', (105)
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where summation over the repeated indices is understood. If all ¢! = 0, the Stokes automor-
phism is given by the formula (88). If not all the c’s vanish, one first defines a new genus zero
free energy by

a3
_ 199%0
A, =c X1 (106)
as in the local case. It can be written as
— 1
-So(XI):go(XI)'i‘EaIJXIXJ, aUCI :dJ, (107)

which is the counterpart of (101) (the final formulae will not depend on the choice of a;;, but
only on ¢!, d;.) One also has to define a new genus one free energy

§1(XI)=31(XI)—(2X—4—1)10gX0, (108)
where we recall that y is the Euler characteristic of the CY M. This is a new ingredient in
the compact case which was found in [64]. The redefinitions of the genus zero and one free

energies lead to a new total free energy which will be denoted by 3l g,). It is given by

30T g) = &7 (X ) + 51 (X + > g 2725, (x1). (109)

g=2

Then, one has the following generalization of (95),

cla Sr
S (2)= [% (—%)] Z, (110)

where we have denoted Z = e, S, is the Stokes constant corresponding to the ray of singu-

larities A, { € Z, and

0

- ox!’
It is also useful to consider the dual partition function and the action of the Stokes auto-

morphism (110) on it. The dual partition function is a discrete Fourier transform of the usual

partition function, and it diagonalizes the operator action appearing in (110). It depends on

an additional set of variables p;, I =0,1,...,n, and it is given by

& (111)

(X, ppg) = o2 X P dientlaz(xI+ilg;g,). (112)
Lezn

Let us now introduce the following quantity, associated to a charge vector y
X, =o(r)exp |:—Kgs_1 (dIXI —pIcI)] , (113)

where o(y) = (—1)‘1161. It is an easy exercise to show that the action of the Stokes automor-
phism on this function is given by [69]

G4, (T(XI,PI;gs)) (114)
iS, ; iS, I iS,
= exp ﬂLa(y)(XT) T X — ﬂgsc IOg(]. _X'r): Pr— ﬁgsdl log(l _X'y); & |
where L.(z) is the twisted Rogers dilogarithm

L.(z) = Liy(2) + %log(e_lz) log(1—2). (115)
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The formula (114) agrees with the wall-crossing formula obtained in a very different context
in [73]. A remarkable aspect of (114) is that it induces a shift on the coordinates X', p; of the
dual partition function. It is easily seen that this can be written as a transformation acting on
a X, of the form

Sy
X, —X,(1-x,) =" (116)
where
(r.7") =dic" = c'q; (117)

is the symplectic pairing between the two charge vectors. The equation (116) describes the
transformation of quantum periods under a Stokes automorphism, and it is known in that
context as the Delabaere-Dillinger-Pham (DDP) formula [74, 75], see e.g. [76] for recent
developments and references to previous literature (the DDP transformation is also known as
a cluster transformation, or a Kontsevich-Soibelman symplectomorphism, depending on the
context).

Remark 3.3. We have not been careful about the normalization of the charge vector 7, but it
can be seen that (27i) "1 (y,7’), which appears in the exponent of (116), is an integer; see [69]
for details.

The formulae above for the instanton amplitudes and Stokes automorphism -(100), (110),
and (114)- have a wide range of applications. They can be derived from the holomorphic
anomaly equations of [24] and the conifold behavior (31) at the singular loci of moduli
space [64,68], therefore they apply to topological strings on arbitrary CY threefolds. Since the
free energies obtained from topological recursion satisfy the holomorphic anomaly equations
when the spectral curve has genus greater or equal to one [49], it follows that their resurgent
structure is governed by the formulae above, provided they exhibit conifold behavior. This is
in particular the case for multi-cut Hermitian matrix models, and as shown in [70, 77], the
expressions (100), (110) give the general form of large N instantons in matrix models, gen-
eralizing the one-cut case worked out in [55,72]. It is important to note that the formulae
(100), (110), are testable, since according to elementary resurgence results (reviewed in Ap-
pendix A), the large genus behaviour of the sequence of free energies F, is governed by the
instanton with the smallest action (in absolute value). This has been verified in detail in many
examples, starting from the work [52,67] (where the very first terms of the g, expansion of
(100) were first found), and more recently in [64, 68]. The formula (114) can be checked
independently [69] in the case of the dual partition function obtained from topological recur-
sion in [ 78], which is a formal tau function of the Painlevé I equation (this has been reviewed
in the lectures by K. Iwaki in this school). Related results in the case of supersymmetric gauge
theory partition functions have been obtained in [79].

3.3 BPS states and the resurgent structure of topological strings

In the last section we have derived general results for the trans-series associated to the different
Borel singularities, but we still need to know the precise location of the singularities and the
corresponding Stokes constants.

The positions of the Borel singularities for the topological string free energies depend on
the value of the moduli of the CY. As we move in moduli space, the singularities change their
position and sometimes change discontinuously. This phenomenon was first observed in [74],
in the resurgent structure of quantum or WKB periods associated to the Schrodinger equation.
This discontinuous change will be referred to as wall-crossing, since it is indeed related to wall-
crossing phenomena for BPS states in supersymmetric gauge theory [80-82], as reviewed in
A. Neitzke lectures, and in the theory of Donaldson-Thomas invariants [83].
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In the theory of BPS states or Donaldson-Thomas invariants on a CY threefold, the BPS
states are characterized by a charge y € T', where T is an appropriate lattice. For example, for
a compact CY threefold M in the A-model one has

'=H%(M,Z), (118)

and its rank is 2(s + 1), where we recall that s = h*2(M). If we choose a basis for this lattice,
we can write 7 in terms of two pairs of vectors of rank s + 1, with entries, y = (¢!, d;), where
I =0,1,...,s. In the context of type IIA superstring theory, the BPS states are obtained by
wrapping a D2p brane around a cycle of even dimension 2p inside the CY threefold, leading
to a four-dimensional BPS particle in the uncompactified directions. We can think of c°, d, as
D6 and DO brane charges, respectively, and of ¢%, d,, a =1,...,s, as D4 and D2 brane charges,
respectively. The central charge corresponding to such an element of I' is given by

Z, = F+dx', (119)

where summation over the repeated indices is understood. Let us note that, in the case of toric
CY manifolds, D6 branes decouple, and the charge 7 is specified by 2s + 1 integers which we
will denote by ¢?, d, and m, with a =1,...,s. The central charge reads then

F,
O +d,t, +4m?im. (120)

ol
Z7,=c“a

a

There is of course a B model, mirror description of BPS states on the mirror manifold
M™ (or, physically, in the type IIB superstring compactified on M*) in which the lattice is
I' = H3(M*,Z). Given a point in moduli space, one can define BPS or DT invariants associated
to a charge 7, which we will denote by Q,. The spectrum of BPS states is the set of charges
7 for which Q, # 0. The invariants £, (and therefore the spectrum of BPS states) can jump
discontinuously as we move in moduli space, and this is the phenomenon of wall-crossing.

Example 3.4. A simple example of BPS spectrum and invariants occurs in Seiberg-Witten
(SW) theory [80]. In the CY setting, this example arises as a B model description of the BPS
states on the local CY manifold described by the so-called SW curve

¥? 4+ 2cosh(x) = 2u. (121)

We note that the variable x appears in exponentiated form, but not the variable y. The moduli
space is parametrized by the complex number u (this is the famous u-plane of SW theory), and
there are two independent periods which can be chosen to be

a(u) = Z—‘f«/u_ﬂE(%)

i 11 1 (122)
i —u
=—(u—1)F, | =, =,2; .
ap(@) = 5= 1P (.52 75
The lattice of charges here has rank two, and we will write a charge 7 as
7=eTm)s (123)

where v, ,, refers to the electric (respectively, magnetic) charge. Then, the central charge is
given by

Z,(w) =27 (y.a(w) +ymap(w)), (124)
where we have introduced an appropriate normalization factor 27 for the periods. The spec-
trum of BPS states in this theory has been investigated intensively, see e.g. [80-82,84], and has
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Figure 5: The curve of marginal stability in the u-plane, defined by the equation
(125).

been described in detail in the lectures by A. Neitzke in this school. First of all, the spectrum
depends on the value of the modulus u. Inside the so-called curve of marginal stability, defined
by
dp
m(“2)=o, (125)

a
we have the so-called strong coupling spectrum: the only stable states have charges

TM = (O) 1): TD = (1: 1)5 (126)

corresponding to a magnetic monopole and a dyon, respectively. Outside this curve, we have
the so-called weak coupling spectrum, consisting of a W-boson and a tower of dyons, with
charges, respectively,

rw =(1,0), r,=(n1), nez. (127)

See Fig. 5 for a plot of the curve of marginal stability in the u-plane. States with charges —r
also belong to the spectrum. The corresponding DT invariants have the values

Qo =2an=1, (128)

in the strong coupling region, while in the weak coupling region we have
oy =1,  Quo=-2. (129)
O

Let us now reconsider the information obtained on the resurgent structure of the topolog-
ical string, in section 3.1, in the light of the theory of BPS states and invariants. For the free
energies in the large radius frame, and near the large radius point, the resurgent structure
includes Borel singularities at the positions (79). These can be identified with central charges
of BPS states due to DO-D2 branes, with charges r = (0,...,0,d;), where I =0,1,...,s and
dy = m is identified with the DO charge. Their Stokes constants are given by the GV invariants

Tlg = QTZ(O,...,O,d,) B d= (dl, ceey ds) B (130)

and as indicated in (130) they can be identified with the DT invariant for a DO-D2 BPS state
(see e.g. [85]). In addition, for the free energies in the conifold frame, the resurgent structure
near the conifold locus includes a BPS state which becomes massless at the conifold point, with
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DT invariant equal to 1. This is also expected from the work [86,87], where it was pointed out
that the conifold behavior of the free energies is due to a single BPS hypermultiplet becoming
massless at the conifold locus. In the local case this is typically a D4 state, while in the compact
case (e.g. in the quintic CY) it is often a D6 state.

Additional evidence for the connection between Borel singularities and BPS states comes
from the constant map contribution to the topological string free energies in (12). As shown
in Exercise 3.2, this contribution leads to Borel singularities at

Ay =4n?il, LE€Z., (131)

which can be identified with the central charge of a bound state of £ DO-branes. The corre-
sponding charge vector is v, = (0,...,0,¢,0,...,0). From (86) one can read that the Stokes
constant is given by

Sy, =—x =9, (132)

for all £ € Z.,. In this formula we have included the prefactor y multiplying the constant
map contribution in (12). This result was obtained in [88] (in that paper they considered the
resolved conifold with y = 2 but of course their result generalizes trivially to any CY). As noted
in (132) the value of the Stokes constant agrees again with the result for the DT invariant of
¢ DO-branes.

These results give evidence that the Borel singularities at a given point of moduli space can
be identified with central charges of BPS states at that point. Moreover, the Stokes constants
have to be identified with BPS or DT invariants. This can be formulated as the following

Conjecture 3.5. The resurgent structure of the topological string free energy can be charac-
terized as follows:

1. The total topological string free energy in a given frame is a resurgent function. Its
Borel singularities are integer linear combinations of the CY periods, as in (105). These
singularities are determined by a charge vector 7, and their location is given by the
central charge (119) of a BPS state with the same charge vector (up to a normalization).

2. The singularities display a multi-covering structure: given a singularity A, all its integer
multiples £.A,, £ € Z\{0}, appear as singularities as well. The Stokes automorphism for
the singularities occurring along a half-ray (A, £ € Z is given by (88) (for the case
in which all ¢! = 0) or (110) (for the case in which not all ¢! vanish).

3. The Stokes constant S, appearing in these Stokes automorphisms is the BPS or DT in-
variant 2, associated to the BPS state with central charge A, .

This conjecture concerns the resurgent structure of the topological string free energies
in a fixed frame. However, it follows from the description that the Borel singularities and
Stokes constant do not depend on the frame. Let us clarify this point. The free energies in a
given frame F, are not globally defined on the moduli space, and they are analytic only on
a region, typically centered around a special point, like the large radius point or the conifold
point. At a point in the moduli space where the free energies in two different frames are
well-defined, they have conjecturally the same resurgent structure, determined by the BPS
structure at that point. However, the form of the Stokes automorphism might be different,
depending on whether the frame is an .A-frame or not. As an example of this, let us consider
the Borel singularity associated to the massless BPS state at the conifold point, which appears
in the resurgent structure of the free energies in the conifold frame. According to the above,
it should be also present in other frames, like e.g. the large radius frame, and indeed there is
ample numerical evidence that this is the case [52, 63, 64, 68].
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Figure 6: A numerical approximation to the Borel singularities of the free energies
Fg(t) in the large radius frame, for local P2, and for z = —10%. To obtain this
approximation, we first consider the sequence of free energies up to g = 120, and
then we determine and plot the poles of the diagonal Padé approximant to its Borel
transform. The singularity in the positive imaginary axis corresponds to (73) and is
due to the D4 state that becomes massless at the conifold. It occurs at 2miA ~ 37.5i.
Since 27t &~ 57.9 + 272, the other singularities in the plot correspond to the tower
(79) withd =1, m =0,1,—2. As expected, singularities appear in pairs .4, —A.

The invariance of the Borel singularities and Stokes constants under a change of frame is
natural from the point of view of the generalized Fourier transform relating different frames:
we can gather the information on the resurgent structure in a trans-series, i.e. in a collection
of non-perturbative corrections to the perturbative partition function. The Stokes constants
are coefficients in this trans-series, and the location of the Borel singularities can be read from
the exponentially small terms in g,. Under a change of frame, the full trans-series transforms
under a generalized Fourier transform. This does not change the coefficients of the trans-
series, nor the instanton actions appearing in the exponentially small terms in g, as we saw

ine.g. (103).
As an illustration of the above description, we show in Fig. 6 a numerical calculation of the
Borel singularities for the free energies of local P? in the large radius frame, for z = —107%,

which is rather near the large radius point z = 0. As expected, we can see the very first
singularities in the tower (79) due to D2-DO BPS bound states, with 27t ~ 57.9 + 27%i. We
can also see the singularity (73) in the imaginary axis at 27iA ~ 37.5i, which is due to the D4
BPS state which becomes massless at the conifold. The instanton associated to this singularity
governs the large order behavior of the genus g free energies for a wide range of values of z
in the “geometric” phase |z| < 1/27, including the value shown in Fig. 6. We note that this
numerical calculation detects only the singularities which are closer to the origin. In order
to see more singularities, one has to use more terms in the series and more sophisticated
numerical techniques.

One of the ingredients of conjecture 3.5 is that the non-perturbative sectors of the topo-
logical string are associated to BPS states which are obtained by wrapping D-branes around
cycles in the CY manifold. The role of D-branes in providing a source for exponentially small
non-perturbative effects in the string coupling constant was already emphasized in [89], and
it was verified explicitly in the context of non-critical strings [90,91], where non-perturbative
effects can be obtained via a resurgent analysis of the string equations in double-scaled matrix
models [92]. The conjecture 3.5 extends this picture to topological strings on CY threefolds.
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Figure 7: The Borel singularities of F(t) in SW theory, inside the curve of marginal
stability with u = 1/2 (left), and outside the curve with u = 5/2 (right). The black
dots in the figure in the left occur at the values 2rap, 27(a + ap), and corresponds
to the monopole and dyon state, respectively. The black dots in the figure in the right
occur at the value 27ta (on the positive real axis), corresponding to the W-boson, at
the value 2map (on the imaginary axis), corresponding to the manopole, and at the
values 27t(a + ap) (above and below the positive real axis, respectively). The latter
correspond to the dyons (1,+1), which are the first states in the tower.

This conjecture 3.5 was built up in various works. The construction of explicit trans-series
was started in [52,57,67]. General explicit formulae for the local case and the general case
were obtained in [64,68], respectively. A compact formula for the Stokes automorphism based
on these developments was worked out in [69]. The connection between Stokes constants
and BPS invariants was anticipated in [93]. A first formulation of the conjecture (in a special
limit) was proposed in [3], stimulated by a similar connection discovered in complex Chern—
Simons theory in [61,94,95]. The conjecture was shown to hold for the resolved conifold
in [88,96,97]. The general formulation above can be found in [60, 69,70]. In [60,98] the
conjecture is generalized to the refined topological string and to the real topological string,
respectively.

There is both direct and indirect evidence for the conjecture 3.5. Important indirect evi-
dence for the conjecture comes from comparison with a different line of work, studying the
geometry of the hypermultiplet moduli space in CY compactifications (see [85] for a review).
It was found in [73, 99] that there is a natural action of the so-called Kontsevich-Soibelman
automorphisms on the topological string partition function, which involves the DT invariants
of the CY. As noted in [69], this action turns out to be identical to the Stokes automorphism
that we have just described, e.g. in (114), provided the Stokes constants are identified with
DT invariants.

There is additional indirect evidence for the conjecture 3.5 for local CY manifolds. In this
case one can consider WKB, or quantum periods associated to the quantum version of the
curve (39), in which x, y are promoted to Heisenberg operators (we will come back to this
subject in section 4). These periods define a different topological string theory, usually called
the Nekrasov-Shatashvili (NS) topological string [7]. The quantum periods associated to the
quantum mirror curve are also factorially divergent power series, and one can study their resur-
gent structure (see e.g. [76] for references to the extensive literature on the subject). In [100]
it was argued that, in the local case, the Stokes constants appearing in the resurgent structure
of the standard topological string are the same ones appearing in the resurgent structure of
the quantum periods. The latter should be directly related to DT invariants, as expected from
the 4d results of [101].

More evidence for the conjecture comes from direct comparisons between calculations of
Stokes constants, and calculations of BPS invariants. As we saw above, one of the simplest
examples of a BPS spectrum and invariants is the one appearing in SW theory, which displays
already a non trivial wall-crossing structure. One can associate to this theory a sequence of
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topological string free energies F,, g > 0, in many different ways, e.g. by considering topo-
logical recursion as applied to the SW curve (121). Can we match the BPS structure to the
resurgent structure of these topological string free energies? This was answered in the affir-
mative in [70], by a numerical study of the sequence of free energies F,. It is convenient to do
this in the so-called magnetic frame, in which the flat coordinate is chosen to be t = —iap(u)
(we recall that ap(u) is defined in (122)). If the conjecture 3.5 is correct, we should find a
very different structure of singularities in the Borel plane depending on whether u is inside or
outside the curve of marginal stability. Inside the curve, we should find two Borel singularities
(together with their reflections), corresponding to the monopole and dyon states. Outside the
curve, we should find the monopole, the W particle, and a tower of dyons. This is precisely
what is obtained in a numerical analysis, as shown in Fig. 7. Since this is a numerical ap-
proximation, we only see the very first dyons in the tower (i.e. the ones with lowest masses).
In addition, a detailed numerical calculation in [70] confirms the values of the DT invariants
(128), (129).

We conclude then that the resurgent structure of the topological string is governed by the
DT theory of the CY, and in particular gives a new perspective on the DT invariants and their
wall-crossing. We should point out that the existence of some sort of relation between general
BPS invariants and the topological string free energies has been suspected for a long time. It
features for example in the so-called OSV conjecture [102], which equates the BPS invariants
with a certain integral involving the topological string partition function. However, since this
integral is not well-defined it is difficult to make sense of the OSV conjecture. In particular, it
is not clear why the integral of the topological string partition function should undergo wall-
crossing. The conjecture 3.5 is in contrast well-defined and can be tested. One of the key
insights in the conjecture 3.5 is to relate the BPS invariants to the resurgent structure of the
topological string, which does undergo wall-crossing, as it has been known in related examples
since the work of [74].

4 Topological strings from quantum mechanics

In this final section we will explore the question of finding a non-perturbative completion
of the topological string, i.e. of finding a well-defined function whose asymptotic expansion
reproduces the perturbative free energy as its asymptotic series. In contrast to the problem
of resurgent structures, which has a unique solution, non-perturbative completions are not
unique unless we impose additional constraints. For example, under some mild assumptions,
one can obtain non-perturbative completions by just considering (lateral) Borel resummations
of the asymptotic series. One can enrich this simple completion by adding trans-series. Since
general trans-series have arbitrary coefficients, the resurgent analysis of the previous section
gives an infinite family of completions. Reality constraints can restrict the values of these co-
efficients, but it is clear that we need some additional physical input in order to make progress
and select a specific non-perturbative completion.

In physical theories, the ultimate arbiter on the correct non-perturbative completion should
be comparison to experiment. In topological string theory we don’t have such an arbiter
(at least for the moment being), and there have been many different proposals for a non-
perturbative completion in the literature. Some of these proposals are not fully satisfactory
since they do not provide evidence that the would-be non-perturbative functions are actually
well-defined. In this section we will consider a non-perturbative proposal which is based on
a well-defined quantity, and leads to a rich mathematical structure with many implications. It
is motivated by deep physical insights, related to large N dualities and to the quantization of
geometry.
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4.1 Warm-up: The Gopakumar-Vafa duality

Perhaps the simplest non-perturbative completion of a topological string free energy is the GV
duality between the resolved conifold and Chern-Simons (CS) theory on the three-sphere [13].
It displays some of the properties of the more general non-perturbative completion that we will
introduce in this section, so we will present a brief summary. A more complete treatment can
be found in [19,103].

The inspiration for [13] came from large N dualities between gauge theories and string
theories. This is an old idea that goes back to the work of ’t Hooft on the 1/N expansion and
was later implemented in the AdS/CFT correspondence. According to these dualities, a gauge
theory with gauge group U(N) and gauge coupling constant g, is equivalent to a string theory
with the same coupling constant. The string theory description emerges in the so-called ’t
Hooft limit, in which N is large but the 't Hooft parameter t = N g, is kept fixed, i.e.

N — oo, g, —0, t =Ng, fixed. (133)

In this regime, the observables of the gauge theory have a 1/N expansion, i.e. an asymptotic
expansion in inverse powers of 1/N (note that, since Ng, is fixed, an expansion in 1/N is
equivalent to an expansion in g,). For example, in the case of the vacuum free energy of the
gauge theory, we have

F(g,,N)~ > Fy(£)g%72. (134)
g=0

The quantities F,(t) are then conjectured to be genus g free energies in a dual string theory,
and the ’t Hooft parameter t corresponds to a geometric modulus in string theory. If this is
indeed the case, then the gauge theory quantity F(g,, N) provides a non-perturbative definition
of the total free energy of the string theory. In contrast to what happens in the matrix models
of non-critical strings reviewed in C. Johnson’s lectures, in large N dualities, like the AdS/CFT
correspondence and the Gopakumar-Vafa duality, it is not necessary to take a double-scaling
limit, i.e. to tune the 't Hooft parameter to a special value.

Let us also note that, from the point of view of the gauge theory, the modulus is given
by a positive integer times the coupling constant, so it is in a sense “quantized” (a similar
phenomenon was already noted in the formula (100)). As N becomes large, the discreteness
of the 't Hooft parameter should become inessential. More precisely, we expect that in the
't Hooft limit a geometric, continuous description of this parameter will emerge, so that we
can identify it with a modulus. This is sometimes interpreted as saying that the continuous or
geometric description “emerges” in the large N limit, out of a microscopic description which
is not geometric —somewhat similar to the continuous or fluid description of a many-particle
system in the thermodynamic limit. We will see below examples of this phenomenon.

In [13], Gopakumar and Vafa found a beautiful realization of a string/gauge theory duality
in the realm of topological theories. They considered U(N) Chern—Simons theory, a topological
field theory in three dimensions studied and essentially solved by Witten in [104]. Witten
found in particular a closed formula for the partition function of this theory on the three-
sphere S%, which reads,

N/ZN_]' .\ N—j
2%(g,N) = (£2) ﬂ(zm%) . (135)

21 =1

In this expression, g, is the CS coupling constant, which is related to the so-called CS level

k € Z by the equation
27

k+N’

& = (136)
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A relatively simple computation done in [13] and reviewed in [19] shows that the free energy
F(g,,N) =1og Z5(g,,N) has an asymptotic expansion of the form (134), with

£3 2

F, (t)——12+z +?—§(3)+L13(e 9,

t—mi 1 1 . _
FP8(6) =— sq TS D+ S loggs+ SLin(e™), (137)
(—1)57'B,
CS _ g —t

Fg (t)—26g+—2 (2 2)| 13_ zg(e ) g22

In these equations,
t =ig.N, (138)

and c, is given in (13). These are the free energies of the resolved conifold (29), up to a poly-
nomial piece in t which can be regarded as the perturbative part of the free energy. Therefore,
at least at the level of free energies, there is a large N duality between topological strings on
the resolved conifold, and U(N) Chern-Simons gauge theory on the three-sphere.

Let us note that the exact CS free energy is a function of a positive integer N and the
coupling g,. The expression (135) is manifestly well-defined, as required by a non-perturbative
approach. It makes sense in principle for any complex value of g, although the free energy
is singular for some special values of g;. In the topological string side, the 't Hooft parameter
is identified with a complexified Kédhler parameter and it can be any complex number, as long
as Re(t) > 0 (in fact, one can consider more general values of t by a so-called flop transition
to a different CY phase). This is an example of how a ’t Hooft parameter in a gauge theory
becomes a geometric modulus. The non-perturbative completion provided by the gauge theory
is in principle restricted to values of g, of the form (136), and values of t for which t/g, = iN.

It turns out that the partition function (135) can be written as a matrix integral [103,105],

ZCS( N) 12N(N2 Y | | —_— e N—* : | | (2 sinh i j) 139)
gs, 21 Zi 14 i , 9
s 2 (

i<j

where 1 = ig,. This can be regarded as a deformation of the Gaussian matrix model, in which
the standard Vandermonde interaction between eigenvalues gets deformed to a sinh interac-
tion. This type of matrix models appears naturally in the localization of three-dimensional
supersymmetric field theories [106] (see [107] for a review).

The Gopakumar—Vafa duality has a natural generalization by performing a quotient of both
sides by an ADE discrete group I'. In the case of I' = Z,, one finds a duality between CS theory
on the lens space S*/ Z, = L(p,1), and topological string theory on certain CY geometries
which engineer SU(p) gauge theories. This duality has been verified in detail in [108] when
p = 2 by exploiting a matrix model representation of the partition function, similar to the one
in (139), see [109] for additional verifications and generalizations.

However, in its current form, these Gopakumar—Vafa-like dualities apply only to special
toric CY geometries. We will now consider a different duality that holds conjecturally for
any toric CY: the topological string /spectral theory (TS/ST) correspondence. In this correspon-
dence, the topological string theory is not captured by a field theory, but by a one-dimensional
quantum-mechanical model. We will end up however with matrix model representations for
the topological string partition function, similar to (139).

4.2 Quantum mirror curves and non-perturbative partition functions

The TS/ST correspondence was originally triggered by the observation that the genus zero
free energy of a local CY manifold looks like a leading order WKB computation for a quantum
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system whose classical phase space is defined by the mirror curve (39). This suggests that the
higher genus corrections might be understood as the result of an appropriate quantization of
this curve [6].

What does “quantization of the curve” means? Since the natural Liouville form on the
phase space (39) defined by the curve is ydx, the natural way to to proceed is to promote x, y
to canonically conjugate Heisenberg operators x, y, satisfying the commutation relation

[x,y]=ih. (140)

Mirror curves involve exponentiated variables, so their quantization involves the Weyl opera-
tors e?, ePY obtained by exponentiation of Heisenberg operators. The equation for a mirror
curve is a linear combination of terms of the form exp(ax + by), and as it is well-known the
quantization of such a term suffers from ordering ambiguities. These can however be fixed by
using Weyl’s prescription (see e.g. section 3.2 of [110]),

eax+by N eax+by . (141)

We can therefore try to promote the equation of the curve to an operator, but this is in principle
ill-defined since the equation is invariant under multiplication by exp(Ax + uy), with A, u
arbitrary. To fix this new ambiguity, we have to write the curve in a canonical form, which in
the case of mirror curves of genus one is given by

Py(e*,e”) = Z cjeaf“bfy +x=0, (142)
j
where k is the modulus. This is the form that we have used in e.g. (50). We now define the
operator associated to the toric CY by

Ox = > ;e by, (143)
j

For example, in the case of local P2, we simply obtain
Op: =€ +e¥ +e 7Y (144)

(A small comment on notation: when the toric CY is the canonical bundle of a complex sur-
face S, we will denote Oy instead of Oy). Another frequently used example is local F,. The
resulting operator in this case is

Op, =e*+&e ™ +e’+e7, (145)

where & is a mass parameter of the CY, and is in principle complex. Let us point out that, in the
case of mirror curves of genus gy, there are g5 different operators associated to the moduli
ki, j=1,--+,8y, due to the fact that there are g5, different ways of writing the curve in the
form (142), see [15] for a detailed explanation.

What kind of operators are the Oy ? First of all, since the momentum operator is exponen-
tiated, it acts as a translation operator on wavefunctions,

ey (x) =Y (x —aih). (146)

Therefore, the operators Oy are finite difference operators. Next, we will regard these opera-
tors as acting on the Hilbert space = L2(R). Their domain consists of functions in H which
can be extended to a strip R x Z in the complex plane, where 7 is an interval depending on
the operator. These functions should be square integrable along the lines R +iy, y € 7.
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Table 1: Numerical spectrum of the operator (144) forn=0,1,...,4, and i = 2.

En

2.56264206862381937
3.91821318829983977
4.91178982376733606
5.73573703542155946
6.45535922844299896

AN W DNR~= Ol

Once we have defined these operators on a Hilbert space, we can ask all the usual questions
that we ask in spectral theory or in quantum mechanics. Are they actually self-adjoint? If yes,
what are their spectral properties? It turns out that, generically, the operators obtained from
mirror curves with g5. > 1 are self-adjoint and have a discrete spectrum. The discreteness of
the spectrum was first shown numerically in some examples [111], and then it was proved
in[12,112,113] as a consequence of a stronger result. Namely, it was shown that, for a large
family of toric CYs X, the inverse operator

px =0y! (147)
exists and is of trace class, i.e. it satisfies
Trpy < 00. (148)

This implies that the spectrum of py is discrete, with an accumulation point at the origin. It
follows that the spectrum of Oy is also discrete. The trace class property is expected to hold for
all quantum mirror curves, provided g5, = 1, i > 0, and some additional positivity conditions
are satisfied by the mass parameters of the geometries (for example, in the case of the operator
(145), the condition on the mass parameter is that & > 0.)

Exercise 4.1. Calculate numerically the spectrum of (144) for various values of f, by using
e.g. the Rayleigh-Ritz method. Useful details can be found in [111]. Show in particular that,
for 1 = 2m, if we write the spectrum as e, n =0, 1, ..., one finds, for the very first levels, the
values in table 1. O

Remark 4.2. Although we also use the expression “quantum curve”, our approach is very dif-
ferent from the one used by practitioners of topological recursion and explained in the courses
by V. Bouchard [27] and K. Iwaki. In that approach, one has a formal (wave)function, written
as a perturbative series in fi, and looks for a formal differential operator which annihilates it.
In particular, there is no notion of Hilbert space. In our approach, in contrast, operators acting
on L2(R) are given from the very beginning by Weyl quantization of the mirror curve. Their
spectrum and eigenfunctions are well-defined, and one then looks for the relation between
these non-perturbative data and the geometric content of the topological string.

Trace class operators are in many ways the best possible operators in spectral theory. One
can show [114] that, if an operator py is trace class, the traces of py are all finite, for n € Z,
and in addition the Fredholm or spectral determinant

EX = det(]. + pr) 5 (149)

is an entire function of k. The Fredholm determinant can be regarded as an infinite-
dimensional generalization of the characteristic polynomial of a Hermitian matrix (see [115]
for a nice introduction). Just as the zeroes of the characteristic polynomial give the eigenval-
ues of the matrix, the spectrum of the operator py can be read from the zeroes of the Fredholm
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determinant: if we denote by e » the eigenvalues of py, n € Z, the Fredholm determinant
vanishes at

o= —eFn (150)

In addition, Fredholm determinants of trace class operators satisfy an infinite-dimensional
version of the factorization property of a characteristic polynomial: (149) has the infinite
product representation [114]

Ex(c, ) =] J(1+xe). (151)
n=0

Note that we can identify k with the modulus of the CY appearing in (142).
Since the Fredholm determinant is an entire function, it has a convergent power series
expansion around k = 0, of the form

Ex(i, ) =1+ > Zy(N, I)xN . (152)
N=1

We will refer to the coefficients Zy(N,k) as fermionic spectral traces. They can be defined
as [114]
Zy(N,B) =Tr(A¥(py)), N=1,2,... (153)

In this expression, the operator AN (py) is defined by pg’?N acting on AN (LZ(R)). They can be
also obtained from the more conventional, “bosonic” traces Trpf(, since one has

0 o\
logEy(x,H) = —Z %Trpf} . (154)
=1

Exercise 4.3. Let us consider the following symmetric operator p acting on the functions
f € L?([0,1]) such that f(0) = f(1) = 0. It is defined by its integral kernel

x(1=y), ifx<y,

p(x’y):{y(l—x), ify <x, (155)

where we recall that p(x,y) = (x|pl|y). Verify that this operator has the spectrum

A, = (mn)72, with eigenfunctions e, (x) = v/2sin(nmx), n € Z,. Show that the correspond-
ing Fredholm determinant is given by [115]

(o) : 1/2
_ K smh(K )
=) =] ] (1 + ﬂ-znZ) =— (156)

n=1

From this formula and the spectrum, deduce the following expressions for the fermionic and
bosonic spectral traces:

1
Z(N) = Trpt = ﬁg(zm, (157)

(2N + 1)
where {(z) is Riemann’s zeta function. O

Fredholm determinants and fermionic spectral traces play a very important réle in the
TS/ST correspondence. They were identified in [11, 14, 15] as the natural global analytic
quantities related to the topological string partition function. In particular, it was conjectured
in those papers that the fermionic spectral traces Zy(N, k) are non-perturbative completions
of the total topological string free energy in the conifold frame. More precisely, we have the
following
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Conjecture 4.4. Let us consider the 't Hooft limit

N
N — oo, h— oo, = fixed. (158)
Then, Zyx (N, k) has an asymptotic expansion of the form
log Zy (N, ) ~ Z FE(A)g2e 2. (159)
g=0

The relation between the parameters in the two sides the following. The string coupling con-
stant is related to i by

42
8= 3~ (160)
F;(A) is the genus g free energy of X in the conifold frame, and the 't Hooft parameter
A=Ng, (161)

is identified with the canonically normalized conifold coordinate.

Let us make various comments on this conjecture.

1. As we emphasized in the Introduction, a bona fide non-perturbative definition has to
involve a well-defined function, whose asymptotics reproduces the perturbative series
that we started with. The fermionic spectral trace is well-defined for any N € Z., and
ki > 0 due to the crucial trace class property of the operator py, which as we mentioned
before has been rigorously proved for many toric CYs X. It is far from obvious that the
asymptotic expansion of this trace gives the perturbative topological string free energies,
but this is what makes this non-perturbative definition interesting, and the conjecture
4.4 challenging.

2. The limit (158) is indeed very similar to the 't Hooft limit (133). An interesting point is
that, as shown in (160), the coupling constant is essentially the inverse of . Therefore,
the weakly coupled limit of the topological string corresponds to the strong coupling limit
of the quantum mechanical problem. When the quantization of mirror curves was ini-
tially proposed in [6], it was hoped that the topological string would emerge in the weak
coupling limit, but it was later realized that this limit corresponds to the NS topological
string mentioned in section 3.3. The emergence of the conventional topological string
in the strong coupling limit was first observed in a different line of work on localization
and ABJM theory [39,116,117], see [118,119] for reviews of these developments.

3. Although the conjecture is formulated in the strong coupling limit of the spectral prob-
lem, it turns out that the operators in exponentiated variables appearing in the TS/ST
correspondence conjecturally satisfy a strong-weak coupling duality in i [120]: the
strong coupling limit of the spectrum % — oo can be related to the weak coupling limit
fi — 0. This is expected to be related to the modular duality for Weyl operators noted
by Faddeev in [58].

4. The conjecture 4.4 suggests that Zyx (N, ) plays the role of a partition function in a quan-
tum field theory, where N should be interpreted as the rank of a gauge group. Although
there is no explicit realization of such a quantum field theory for the moment being, in
concrete examples one can relate the fermionic spectral traces to matrix integrals. In-
deed, a theorem of Fredholm asserts that, if px(p;, p;) is the kernel of py, the fermionic
spectral trace can be computed as an N-dimensional integral,

1
Zx(N,h) = N1 J det (PX(Pi;Pj)) d"p. (162)
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In cases where the kernel py can be computed explicitly, the above integral can be writ-
ten as an eigenvalue integral, and analyzed with matrix model techniques [11,12,121],
as we will see in examples in the next section.

5. Physically, (162) can be interpreted as the canonical partition function of a non-
interacting Fermi gas described by the one-body density matrix py. It is then natural
to define the Hamiltonian Hy of such a system by py = e "x. In this picture, the Fred-
holm determinant Zx(x) is the grand-canonical partition function of the Fermi gas, and
k = e* is the exponent of the fugacity in the grand-canonical ensemble.

6. The conjecture 4.4 is in fact a consequence of a stronger conjecture formulated in [14].
This conjecture gives an exact expression for Zx (N, 1) and for the Fredholm determinant
Ex(x) in terms of the GV free energy and additional enumerative information, see e.g.
[40] for a review.

4.3 Local P2, non-perturbatively

The conjecture 4.4 seems difficult to prove, since it relates a quantum mechanical model at
strong coupling (i.e. for i — o0) to topological string theory on a toric CY theefold. It is
however a falsifiable statement, i.e. we can calculate both sides of the conjecture and check
whether they are equal or not. So far all tests have been successful. Many of these tests involve
the stronger form of the conjecture mentioned above, and they are typically numerical, since
it is easier to calculate the fermionic spectral traces numerically for low values of N, than to
compute their asymptotic behavior in the ’t Hooft limit. In some cases, however, it is also
possible to calculate this asymptotic expansion analytically. We will now consider the spectral
theory associated to local P2, where many concrete results can be obtained.

The starting point of this analysis is the fact that, for some mirror curves, the integral kernel
of the operator py can be explicitly computed. This is remarkable since there are not many
trace class operators in conventional one-dimensional quantum mechanics where this can be
done.

Let us consider the following family of operators:

Opp=e+e +e ™, m,n € Ry. (163)

They were called three-term operators in [112]. Note that the case m = n = 1 corresponds to
local P? (the case with arbitrary positive integers m, n corresponds to the toric CY given by the
canonical bundle on the weighted projective space P(1,m, n)). We now define the function

e2nax

dp(x —i(a+c))’

U, (x)= (164)
involving Faddeev’s quantum dilogarithm, where a, c are positive real numbers. Let us now
introduce normalized Heisenberg operators q, p, satisfying the normalized commutation rela-
tion

[p,q]=(27)~". (165)

They are related to x, y by the linear canonical transformation,

+1)p+ +(m+1
x=ompt g o, mpt(mt g (166)
m+n+1 m+n+1
In particular, 7 is related to b by
2mb?
h=—. 167
m+n+1 (1640
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It was proved in [112] that, in the momentum representation associated to p, the integral
kernel of the operator p,, , can be written explicitly in terms of the function (164). It reads,

Vo (p) ¥, (p)
—p'+i(a+c=nc)\ "
2bcosh(nw)

Pmn(p,p") = (168)

In this equation, a, ¢ are given by

mb b

a=—-—-, c=—F—"—. 169
2(m+n+1) 2(m+n+1) (169
As we will see in the following exercises, this results allows for many explicit calculations.

Exercise 4.5. In this exercise you are asked to use the explicit formula (168) to calculate the
first trace of p, ,, given by

Trpmn, = f Pmna(p,p)dp. (170)
R

First note that, by using the property (B.8), one can write

2 4rap ®o(p +ila+c))
(WP =e @)’ 171)

therefore
® (p+i(a+c)) e#rap

@,(p—i(a+c)) 2bcos (m ) '
The first trace can be computed explicitly for arbitrary values of m, n and #, by using properties

of Faddeev’s quantum dilogarithm, as shown in [112]. For this exercise we will consider the
case

Pmna(p,p) = (172)

h=2m. (173)

This is a special value of 1 where the theory of quantum mirror curves simplifies very much,
as shown in [14]. We will also take n = 1 and m an arbitrary positive integer. For these values
we have

b*=m+2, (174)

and 1
a+c=§(b—b_1). (175)

Show, by using the properties (B.9a), (B.9b), that
3y (p+ 3 (b=b")) 1t

. = . (176)
@, (p—5(b—b1)) 1
Deduce the following expression:
1 inh
Trppy (1= 21) = —————— f e(m—“y%d% 177)
’ nm sin
27T COS (m) R Inhiim y
where y = mp/b. The integral can be evaluated e.g. by residues, and one concludes that [112]
1
Trpy, 1 (F=2m) = - - . (178)
4(m+2) sm(mLJrz) sm(nf—fz
In particular, for m = 1, which corresponds to local P2, one finds
1
Trp;; (h=2m) = 5" (179)
0
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Figure 8: A numerical calculation of the Fredholm determinant Sp2(x) for local P?,
for h =2m.

Exercise 4.6. C. Johnson explained in his lectures how to compute Fredholm determinants
numerically with the approach of [122], in the context of matrix models of 2d gravity (see
[123,124]). This approach requires an explicit knowledge of the integral kernel, which for
three-term operators is given by (168). In the previous exercise we showed that the diagonal
kernel p,, 1(p, p) simplifies for i = 27t. We can in fact simplify the whole integral kernel by
using a similarity transformation [125],

px(p,p") = h(p)px(p,p" )(h(P' ), (180)

where h(p) is non-vanishing function. Such a transformation does not change the value of the
traces of py, nor the spectral determinant. In the case of p,, ,(p,p’), we take

¥, (p)
v, (p)

h(p) = . (181)

Show that, for i = 27, and after the similarity transformation, we can write

/ 1 sinh(y) 1 sinh(y’)
_ , 182
P10y ) =5~ sinh(3y) cosh (y — y’ + ) \ sinh(3y")’ (182)

in terms of the variable y appearing in (177). Implement the algorithm of [122] to calculate
=p2(x) numerically, and use this result to obtain the very first energy levels. As an example of
what you should find, in Fig. 8 I plot a numerical calculation of =p2(x), obtained as follows.
First, I use a Gauss—Kronrod quadrature or order 50 to calculate the Fredholm determinant.
I do this calculation for 150 values of x in the interval [—150,10], and I construct an inter-
polating function. The zeroes of this interpolating function are approximately at —12.97004,
—50.3105 and —135.882 (rounded numerical values), in good agreement with the results in
table 1 (remember the relation (150)). Note that the plot in Fig. 8 is indistinguishable from
the plot of the same quantity that appears in [40]. The latter was obtained by using the con-
jecture of [14], which expresses the Fredholm determinant as a “quantum theta function”.
The fact that they agree so precisely (within numerical errors) is an explicit test of the TS/ST
correspondence. O
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By using (168) one can write down an explicit expression for the integral (162), which we
will denote in this case as Z,, ,(N, ). Asin [117,126], we use Cauchy’s identity:

[T [Zsinh(@)] [Zsinh(vi;vj)] 1

=det;; —————
Bi—v; 1 Bi—v;
]_[i,j2cosh( 3 J) 2cosh(—l) (183)
— ( 1)6(0)
GZS:N l_[2cosh( a v"m)
One finds then,
2
451nh( (pl-—p-))
Zyn(N, h)——'f ]—[l ac )|’ His d (184)
RN l_[112cosh( (pi—pj) +inCpp)’
where ‘1
m—n
Chop=——""-. 185
o 2(m4+n+1) (185)

The matrix integral (184) is real and convergent for > 0, since the kernel (168) is Hermitian
and trace class. This is in contrast to doubly-scaled matrix models of two-dimensional gravity,
which are often ill-defined non-perturbatively, at least with the standard choice of integration
contours.

In order to test the conjecture 4.4 we have to study the matrix integral (184) in the 't Hooft
limit (158), therefore we should understand what happens to the integrand of (184) when A
(or equivalently b) is large. To do this, we first change variables to

27

="Tp. 186
ul bpl’ ( )

and we introduce the parameter
1 m+n+11
==—"°-- 187
ST hT " 21 b2 (187

so that the weak coupling regime of g is the strong coupling regime of . In general quantum-
mechanical models, this regime is difficult to understand, but in this case we can use the crucial
property of self-duality of Faddeev’s quantum dilogarithm,

P (x) = &9 p(x). (188)

Then, by using (171), we can write

mu ) &, ((u+2mi(a+c)/b) /2mb71) (189)

2 J—
|Tq ()| —eXP( &1, (u—27i(a+c)/b) /2nb~1)’

2rg

where u and p are related through (186). When b is large, 1/b is small and we can use the
asymptotic expansion (B.10). We define the potential of the matrix model as,

Viun(u, 8) = —glog ¥, . (p)I?, (190)

where u and p are related as in (186). By using (B.10), we deduce that this potential has an
asymptotic expansion at small g, of the form

Vin(t,8) = > g2V (). (191)
€20
The leading contribution as g — 0 is given by the “classical” potential,
m m+n+1

Vrgg)l(u) = —ﬁu - Tlm (Liz (—e”””rnil)) . (192)
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Exercise 4.7. By using the asymptotics of the dilogarithm,

2
—x“/2, x— 00,
Liy(—e¥) ~ { x/ (193)
—e*, X — —00,
show that
o= u— 00,
VO @) ~ {Z“m (194)
’ —57U, U——00,

i.e. it is a linearly confining potential. This is similar to the potentials appearing in matrix
models for Chern-Simons-matter theories (see e.g. [117]). O

We can now write the matrix integral (184) as
. ui—u; 2
[ I;<;4sinh (TJ)

1 lel ﬁ 1 ( )
Zpn(N, 1) = —f e & mnlil —
r N! Jpnv 2N 24 ]_[i,j2cosh(u‘

- +inCm,n)
This expression is very similar to matrix models that have been studied before in the literature.
The interaction between eigenvalues is similar to the matrix model (139) which appears in
the Gopakumar—Vafa duality, and is identical to the one appearing in the generalized O(2)
models of [127], and in some matrix models for Chern-Simons—matter theories studied in for
example [126]. The parameter g corresponds to the string coupling constant, but in contrast
to conventional matrix models, the potential depends itself on g.

The above expression is perfectly suited to study the 't Hooft limit. One can use e.g. saddle-
point techniques to solve for the planar limit, i.e. for the leading behavior in the 1/N expan-
sion. This limit is described by the so-called planar resolvent and density of eigenvalues, and
from this one can compute the genus zero free energy Fj(A). In this limit, only the classical
part of the potential (192) has to be taken into account. The resolvent for the local P?> ma-
trix model, given by (195) with m = n = 1, was first conjectured in [128]. This conjecture
was later proved in a tour de force calculation in [121], by extending the techniques of [127].
The result for the resolvent and density of eigenvalues is as follows. Let us introduce the
exponentiated variable

(195)

X =e", (196)

where u is the variable appearing in (195). Then, the spectral curve describing the planar limit
of the matrix model turns out to be given by

X347 +xkXy '+1=0, (197)

which can be easily seen to be a reparametrization of the classical mirror curve (50). As it
is standard in the study of the planar limit, the density of eigenvalues can be written as the
discontinuity of the so-called planar resolvent [129] (see [103,130] for a review),

1
p(u) = -— (X —i0) — w(X +i0)), (198)
2mi
where in this case 3 log V(X
w(x) = g YX). (199)
T X

(The actual planar resolvent has an additional piece, but it does not contribute to the density
of eigenvalues). The density p(u) is a symmetric one-cut distribution, and the end-points of
the cut can be found from the branch cuts of the spectral curve. They are given by +a, where

1 2 2
a =——10g(——1<3—1——\/1<6+271<3), (200)

3 27 27
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Figure 9: This figure shows a histogram of the equilibrium eigenvalues of the local
P2 matrix model, for N = 600 and k = —70, together with the density of eigenvalues
o (u) (the black line).

and we are assuming that —0o < k < —3 which corresponds to the region —1/27 < z < 0.
One way of testing the result above for p(u) is to consider a finite but large number N of
“typical eigenvalues” and see how they distribute along a histogram. This distribution should
approximate the density of eigenvalues p(u) as N grows large. In the lectures by C. Johnson
such a distribution was obtained in the case of the Gaussian matrix model by generating a
random matrix with Gaussian weight, and then calculating their eigenvalues. Here the prob-
ability distribution is not Gaussian, and we will obtain the distribution in a different way, as
follows. Let us consider an eigenvalue integral of the form

N
Z(N)= J l_[ e—Z?]ﬂ v(x;) l_[I(Xi — Xj)- (201)
i=1

i<j
The saddle point at finite N is the configuration x;, ..., x5 that minimizes the “effective action”

N

S(xl,...,xN)=Zv(x,-)—210gI(xi—xj). (202)

i=1 i<j

This action can be regarded as a generalization of the Dyson gas. In the limit of large N the
minimization is described by the eigenvalue distribution p(x), but the minimization problem
can be solved for any finite N, under appropriate conditions. We will call the x1,..., xy min-
imizing (202) the equilibrium eigenvalues.1 To find these eigenvalues in the case of (195) we
use only the classical potential (192). In Fig. 9 we show both, the histogram for the equilib-
rium eigenvalues obtained from the matrix model for local P? with N = 600 and x = —70, and
the density of eigenvalues p(u) obtained from (198), (199). The latter provides an excellent
approximation to the former.

The calculation of the subleading terms of the 1/N expansion is complicated. Ideally, one
would like to show that the matrix integral (195) satisfies the topological recursion of [48],
and together with the remodeling approach of [10], one would have a proof of the conjecture
4.4 for local P? and some other cases. This has not been achieved so far. However, it is still

IThis procedure is different from the one discussed in C. Johnson’s lectures, see also [123]. He looks at realiza-
tions of a random Gaussian distribution at finite N, and different realizations lead to different lists of eigenvalues.
Since the large N limit implements at the same time a classical and a thermodynamic limit, his calculation takes
into account both quantum and finite size effects at finite N. In my calculation I consider already the classical limit
of the problem, described by the generalized Dyson gas (202), and therefore by working at finite N I take into
account only finite size effects. Of course, as N becomes large, both calculations converge to the same probability
distribution.
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possible to test the conjecture 4.4 by calculating the matrix integral in a perturbative expansion
in g, at fixed N. This can be used to obtain the expansion of Fgc(l) around A = 0, as shown in
detail [11], and it can be verified that the result agrees with (67), (68).

Let us close this section with some additional comments on the TS/ST correspondence.

1. The discussion above makes it clear that the conjecture 4.4 can be regarded as an explicit
realization of “quantum geometry”, in which the spacetime geometry of the toric CY, to-
gether with its “stringy” corrections (given by embedded Rieman surfaces) emerges from
a simple quantum mechanical model on the real line. As in other string/gauge theory
dualities of the ’t Hooft type, in the quantum model the CY modulus A is “quantized”
in units of the string coupling constant, as suggested in the discussion after (100). We
can also think about the geometry of the CY as emerging from the eigenvalue integral
(162) in the ’t Hooft limit. This limit is encoded in a spectral curve, which is nothing
but the mirror curve we started with. Here we have seen how this works in the explicit
example of local P2, and one can also work out the case of local F, [121,128]. We expect
however this picture to hold for general toric manifolds, namely the 't Hooft limit of the
spectral traces should be described by a spectral curve given by the mirror curve. Higher
order corrections to the spectral trace in the 1/N expansion should be governed by the
topological recursion.

2. We have provided a non-perturbative definition of topological string theory on toric CY
manifolds in terms of simple quantum-mechanical models. The reader could ask why is
this definition special. Non-perturbative definitions are not unique, and the TS/ST corre-
spondence has not been justified so far as a full-fledged string/gauge theory duality. One
can argue however that this non-perturbative definition is physically and mathematically
very rich. When applied to local F, it gives an exact description of the partition function
of ABJM theory on the three-sphere as a sum over worldsheet and membrane contribu-
tions in type IIA/M-theory (see e.g. [118,119] for reviews and references). It leads to
explicit conjectures on the exact spectrum of quantum mirror curves, and by using the
formulation of [ 120], it also leads to exact quantization conditions [131,132] for cluster
integrable systems associated to toric CY threefolds [8]. It makes surprising predictions
on the classical problem of evaluating CY periods at the conifold point, which have been
verified in many cases with sophisticated tools in algebraic geometry [133-135].

3. It was shown in [136-138] that there is a very interesting “dual” 4d limit of the con-
jecture 4.4 which makes contact with N' = 2 gauge theories in four dimensions. The
simplest example is SW theory, which has been known for a long time to be engineered
by the local F, geometry [4]. In the dual 4d limit, the fermionic spectral trace for local
F, appearing in the Lh.s. of (159) becomes the matrix integral

1 dVx = —2 cosh(x;) 2 XiTXj
Z(N,gs)—mj (4n)N!:1[e & l_[tanh (T) (203)

i<j

In the same limit, the genus g free energies appearing in the r.h.s. of (159) become the
SW free energies in the magnetic frame F,, discussed in section 3.3. As a particular case
of (159) one obtains then the conjecture that, in the ’t Hooft limit, the matrix integral
(203) has the asymptotic expansion

log Z(N;g,) ~ Y Fo(t)g72, (204)
g=0

where the 't Hooft parameter t = Ng, is identified with the flat coordinate —iap(u).
This last statement can be proved rigorously [136], providing in this way a proof of the
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conjecture 4.4 in this special case. The proof can be generalized to arbitrary SU(N),
N = 2 pure super Yang-Mills theories [138]. This gives further evidence for the TS/ST
correspondence.

4. The spectral theory side guarantees that the fermionic trace Zx (N, k) is well-defined for
N € Z.y, 1 > 0, provided the mass parameters satisfy some positivity constraints. This
might be regarded as too restrictive, specially in view of e.g. approaches based on Borel
resummation where it is natural to consider complex values of fi. Before filing a com-
plaint, one should note that this is a natural aspect of dualities between strings and quan-
tum theories, since the latter require various conditions to be well defined, and these
include reality and positivity constraints on some of their parameters. However, there
are indications that one can analytically continue the fermionic traces to functions with a
much larger analyticity domain. One can use e.g. non-Hermitian extensions of quantum
mechanics to consider complex values of i and of the mass parameters [139-141], and
we expect the fermionic traces to be analytic on the cut complex plane C’ = C\(—00, 0]
of the fi variable [3,14,112]. Similarly, the spectral trace is defined originally for positive
integer values of N, leading as we mentioned before to a “discretization” of the moduli
space in the quantum mechanical description. However, it is possible to extend Zx (N, i)
to an entire function of arbitrary complex values of N, as noted in [142] (at least when
h > 0). Therefore, it it likely that one can obtain in the end a “smooth” description of
the moduli space in terms of entire functions.

5. We have focused on relatively complicated examples, in which the mirror curve has
genus g = 1. What happens to the topological string on the resolved conifold in the
context of the TS/ST correspondence, which after all is a simpler example? It turns out
that the quantization of the mirror curve to the resolved conifold gives the three-term
operator (163) with m = 1, n = —1. This operator is not trace class, so strictly speaking
the standard version of the correspondence does not apply in that case. Fortunately,
there is a beautiful way to make sense of the spectral theory of the resolved conifold due
to Y. Hatsuda [143], in which one considers an appropriate analytic continuation of the
spectral zeta function, instead of the fermionic spectral traces. The resulting theory leads
e.g. to a spectral determinant in agreement with the general theory proposed in [14,39].

6. As a final comment, one should ask what is the relation between the contents of this sec-
tion and the resurgent story explained in section 3. Resurgence suggests that the asymp-
totic expansion (159) can be promoted to an exact formula for the fermionic spectral
traces, by using (lateral) Borel resummation and including perhaps trans-series. This
formula would be of the form,

log Zy(N,h) =s, (F)(N,h) +..., (205)

where F¢ is the perturbative topological string series in the conifold frame, and the dots
in the rh.s. represent possible additional trans-series. Optimistically, these trans-series
are the ones appearing in the resurgent structure unveiled in section 3. This issue was
addressed in [63] in the case of local P2, where strong numerical evidence was given
that the exact fermionic spectral traces are different from the Borel resummation of the
perturbative series. For example, when N = 1 and i = 27, the Borel resummation gives

sy (F9)(1,2m)=-—2.197217..., (206)
while the exact result was obtained in (179),

log Zp2(1,2m) = —log(9) = —2.197224. .. (207)

45


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.112

SC|| SciPost Phys. Lect. Notes 112 (2026)

Therefore, additional trans-series corrections are clearly needed. In [63] some numerical
evidence was given that the trans-series appearing in the resurgent structure can provide
the required corrections, but more work should be done in order to understand the
non-perturbative effects implicit in the TS/ST correspondence. On a more conceptual
level, note that, in contrast to Borel resummations, which jump along Stokes rays in the
complex plane of the coupling constant, the fermionic spectral traces are analytic on a
subset of the complex plane, conjecturally the cut plane C’ mentioned above.

5 Open problems

The approach to non-perturbative topological strings proposed in these lectures leads to the
conjecture 3.5 on the resurgent structure of the topological string, and to the conjecture 4.4
on a non-perturbative definition in the toric case, in terms of quantum mechanics. These
conjectures lead to many open problems. Some of them have been already mentioned in the
lectures, and we will conclude by listing a few more.

1. It would be wonderful to prove these conjectures rigorously, assuming they are true, but
this seems to be extremely difficult in both cases.

2. Some aspects of the conjecture 3.5 have been tested, but in most cases the determination
of Stokes constants can be only done numerically, and for a limited number of Borel
singularities. This makes it difficult to verify that they agree with the BPS invariants of
the underlying CY threefold. More work is needed to compute Stokes constants, and it
would be of course of paramount importance to develop analytic techniques to obtain
them.

3. In some cases, knowledge of the resurgent structure of a perturbative series makes it
possible to determine its resummation as the solution to a Riemann-Hilbert problem.
This was first suggested by Voros [144], but in the last years, starting with the work
of [145], it has been understood that this problem can be formulated in terms of a set
of TBA-like integral equations (see e.g. [146]). It would be interesting to pursue these
ideas, perhaps by using mould techniques from the theory of resurgence (see e.g. [147]).

4. The TS/ST correspondence has been extensively tested, and some particular cases have
been proved rigorously. However, there are still many open problems. For example,
we don’t know how to find exact integral kernels for generic quantum mirror curves
(the simplest case in which this problem has not been solved is the operator associated
to local ;). It would be extremely interesting to find explicit answers for the integral
kernels in other cases.

5. The “dual” 4d limit of quantum mirror curves formulated in [136] leads to operators
on the real line describing topological strings on SW-like curves. However, we lack an
intrinsic description of these operators in terms of the curve itself (so far, these operators
can be described in detail only when the integral kernel of the “parent” operator is known
exactly, as in [136, 137]). Perhaps these operators are related to the quantization of
curves as defined by topological recursion.

6. We also mentioned that the fermionic spectral traces in the TS/ST correspondence re-
semble partition functions of three-dimensional quantum field theories. It would be
interesting to make this concrete, and/or to provide a string theory/QFT perspective on
this mysterious correspondence.
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A A short review of resurgence

In this Appendix I review some of the results in the theory of resurgence which are needed in
the lectures. I will be brief since I. Aniceto has covered the topic in this school. A wonderful
introduction to the subject can be found in [148]. More formal developments can be studied
in [149,150]. A more physical perspective can be found in [130,151,152].
Let
p(z) = Zanz” (A.1D)
n=>0

be a factorially divergent, formal power series in z, i.e. a, ~ n! (such series are also called
Gevrey-1). Its Borel transform is given by

n—1
@‘(C)=Zanﬁ. (A.2)

n>1

Remark A.1. The above definition of the Borel transform is the one used e.g. in [130, 150],
and in K. Iwaki’s lectures. There is another definition used in e.g. [151] and given by

n

- 4
FO=D 4 (A3)

n>0

It is related to the previous definition by

~ de(¢)
e(Q) = al (A4)
A resurgent function is a Gevrey-1 series ((z) whose Borel transform has the following
property: on any line issuing from the origin, there are only a finite number of singularities of
the Borel transform, and ¢({) may be continued analytically along any path that follows the
line, while circumventing (from above or from below) those singular points. This is Ecalle’s
principle of endless analytic continuation. A resurgent function is simple if the singularities of
its Borel transform are poles or logarithmic branch cuts.
Let us assume that @({) is a simple resurgent function with a logarithmic singularity at
{ =1, Its local expansion there is of the form

Bl + €)=~ log() Y 5,&" + regula (A5)

n>0
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where the series

D> EEn, (A.6)
n=>0
has a finite radius of convergence. We note that we might want to make specific choices of
normalization for the coefficients c,, and that’s why we have introduced an additional (in
general complex) number S in (A.5), which is called a Stokes constant. We can now associate
to the expansion around the singularity (A.5) the following factorially divergent series

Yo(2) :chz”, c,=m—1)¢1, (A.7)

n>1

which can be regarded as the inverse Borel transform of (A.6). Therefore, given the formal
power series ((z), the expansion of its Borel transform around its singularities generates ad-
ditional formal power series:

(,0(2,’) - {(pw(z)}wEKD (As)

where Q labels the set of singular points. We will call the set of functions ¢, (z), together
with their Stokes constants S, the resurgent structure associated to the original series ¢(z).
Although we have illustrated this construction in the case of logarithmic singularities (A.5), it
also holds for other class of singularities, like poles or algebraic branch cuts of the form &°.

A basic result of resurgence is that the new series ¢ ,(z) “resurge” in the original series
through the behavior of the coefficients a; when k is large. Let ¢(z) be a resurgent function,
and let A be the singularity of the Borel transform which is closest to the origin in the complex
¢ plane (we will assume for simplicity that there is only one, although the generalization is
straightforward). Let us assume that the behavior near this singularity is as in (A.5), with
{., =A. Then, the coefficients a; have the following asymptotic behavior,

S
a ~ EZA_H”CHF(k—n), k> 1. (A.9)

n>1

For the purposes of these lectures, the most convenient way to encode the information
in the singularities is through the Stokes automorphism. To introduce it we first need some
definitions.

Let {,, be a singularity of ©({). A ray in the Borel plane which starts at the origin and
passes through ¢, is called a Stokes ray. It is of the form e!’R,, where 6 = arg({,,). Note
that a Stokes ray might pass through many singularities. A typical situation is that we have an
infinite sequence of singularities on the ray, of the form {4 with { € Z. .

Let p(z) a Gevrey-1 formal power series. If 3({) analytically continues to an L!-analytic
function along the ray C? := e R, we define its Borel resummation along the direction 6 by

se(p)(z)=ao+ f G(Qe/7dL. (A.10)
co

Let us first note that, if s4(¢)(2) exists, its asymptotic behavior for small z can be obtained by

expanding the integrand and integrating term by term:

so(@)@) ~ D az". (A.11)

n>0

This is the formal power series that we started with. Therefore, if we are lucky, Borel resum-
mation produces an actual function which reproduces the original series. It is then a way to
“make sense” of our original formal power series.

If we vary 6 and we do not encounter singularities of @, the function sg(¢)(2) is locally
analytic. However, when 6 is the direction of a Stokes ray, the Borel resummation is not well
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Y2
- g4!

Figure 10: Contour deformation in the calculation of the discontinuity.

defined. In fact, as 0 crosses a Stokes ray, it has a discontinuity. To define this discontinuity
more precisely, we introduce lateral Borel resummations.

Let ¢(2) be a resurgent function, and let Ci be contours starting at the origin and going
slightly above (respectively, below) the Stokes ray, in such a way that C_f —C? is a clockwise
contour. Then, the lateral Borel resummations of () are defined as

se+(¢)(2) =J F(e L. (A.12)
ct

The discontinuity is then defined by

disco(p)(2) = 5o+ (¢)(2) =5_g(¢)(2). (A.13)

Note that, since sg.(¢)(z) have the same asymptotics for small z, given in (A.11), the dis-
continuity must be invisible in a conventional asymptotic expansion. As we will now see, this
difference is exponentially small and closely related to the local structure of the Borel trans-
form. Indeed, let us assume e.g. that (z) is a simple resurgent function, with logarithmic
singularities at ¢, in the Stokes ray, where w € Q. The difference between the two contours
Cf —(C? can be deformed into a sum of Hankel-like contours y,, around the logarithmic branch
cuts. We then have, for each w,

jé Qe g =— —log(&) —27i) @, ()e™¥/7d¢, (A.14)
Yw

where in the first line we have written { = {, + . Therefore

so+(p)(z) —sg_(9)(z) = Z} F(e¢7d¢ 212 e_Cw/zf G (E)eE/7de
o ct

weN wEeN

=i Y et (9,)().

wWEN

(A.15)

This formula holds for more general types of singularities, with appropriate definitions of the
trans-series ¢,,(z). An example is given in (72).

The expression (A.15) involves (possible infinite) sums of the formal series ¢, (z) with an
exponentially small prefactor e ¢«/?. These objects are called trans-series. More formally, let
¢, (2) be resurgent functions. A trans-series is a (possibly infinite) formal linear combination
of formal power series

®(z;C) :che_gw/ztpw(z), (A.16)
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where C =(C,, ,...) is a (possibly infinite) vector of complex numbers.

The result (A.15) involves Borel resummed trans-series, but it is useful to rewrite it as a
relation between formal trans-series themselves. If we regard lateral Borel resummations as
operators, we introduce the Stokes automorphism along the ray C?, G, as

Sp+ = 86_69 . (A17)
Then, we can write (A.15) as
Golp)=¢+i Z Spe %02, (2). (A.18)
weN

We would like to emphasize that, although we have introduced the Stokes automorphism by
using lateral Borel resummations, the expression (A.18) just collects the local information of
the Borel transform near the Borel singularities on a ray. In fact, in Ecalle’s theory, the Stokes
automorphism can be defined in terms of the so-called alien derivatives [ 150], which encode
this local information and do not involve resummations.

We will now state a principle of semiclassical decoding.

Definition A.2. (Semiclassical decoding). Let f(z) be a function with the asymptotic expan-
sion
f@)~epl)= Zanz” . (A.19)
n=0
We say that f(z) admits a semiclassical decoding if ¢(z) can be promoted to a trans-series
®(z; C), which is lateral Borel summable, and such that

f(z) =5(2)(z;C), (A.20)
for some vectors of complex constants C .

When semiclassical decoding holds, one recovers the exact information by just consider-
ing Borel-resummed trans-series. Conversely, we can think about resummed trans-series as
building blocks of non-perturbative answers.

The simplest situation corresponds to the case in which C = 0, there are no singularities
along the positive real axis, and the Borel resummation of the perturbative series reproduces
the exact result. This is famously the case for the perturbative series of the quartic oscillator,
as we mentioned in section 1.

B Faddeev’s quantum dilogarithm

Faddeev’s quantum dilogarithm ®,,(x) is defined by [58]

271tb(x+cp).
Py(x) = (Snb_l(x_cb;f; = (B.1)
where
q= e G=e2mb Im(b?) > 0, (B.2)
and :
cp = é(b+b_1). (B.3)
Explicitly, this gives - e
_ o27b(x+cp) o
By (x) = 11 11_ e;b_l(x_%;lqn . (B.4)
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From this infinite product representation one deduces that ®(x) is a meromorphic function of
x with

poles: ¢, +iNb + iNb™!, zeros: —cp, —iNb— iNb™!. (B.5)

An integral representation in the strip [Imz| < [Imcy| is given by

e—Zixz dz
2p(x) = exp ( f o.i. 4sinh(zb) sinh(zb—1) ?) ' (-6)

Remarkably, this function admits an extension to all values of b with b? ¢ R_,. A useful
property is

y(x) (=) = e @p(0)2,  @,(0) = (%)_ = (o), B.7)

In addition, when b is either real or on the unit circle, we have the unitarity relation

d,(x) =

—. B.8
®y, (x) B8

From the product representation (B.4) it follows immediately that Faddeev’s quantum diloga-
rithm is a quasi-periodic function. Explicitly, it satisfies the equations

<I>b(x +cp + ib) 1
= , B.9
®(x +cp) 1—qe2mbx (B.92)
®p(x +c,+ib? 1
pxteptib ) — (B.9b)
®p(x +cp) 1—gle2mb™lx
When b is small, we can use the folllowing asymptotic expansion,
x - 2k—1 Boy(1/2)
e D . 2\ak—=1 D2k . X
log¢b(2nb) kz:(:)(Zmb ) —(Zk)! Liy_or(—€*), (B.10)
where B, (2) is the Bernoulli polynomial.
When M
b*=— B.11
N ( )

is a rational number, Faddeev’s quantum dilogarithm can be written in terms of the conven-
tional dilogarithm [153]. In particular, when M = N =1, one finds

®,(x) =exp [ﬁ (Li2 (ezm) + 27X log(l —ezm))] . (B.12)
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