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Useful relations among the generators in the defining
and adjoint representations of SU(N)
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Abstract

There are numerous relations among the generators in the defining and adjoint repre-
sentations of SU(N). These include Casimir operators, formulae for traces of products of
generators, etc. Due to the existence of the completely symmetric tensor dabc that arises
in the study of the SU(N) Lie algebra, one can also consider relations that involve the
adjoint representation matrix, (Da)bc = dabc. In this review, we summarize many useful
relations satisfied by the defining and adjoint representation matrices of SU(N). A few
relations special to the case of N = 3 are highlighted.
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1 Introduction

The SU(N) Lie group and its Lie algebra are ubiquitous in theoretical physics. Numerous
relations among the generators in the defining and adjoint representations of SU(N) are often
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useful in a variety of physics applications. Many of these relations are well known and others
are more obscure. There are multiple sources for the various identities that will be reviewed
in these notes, but there is no single reference that I am aware of that contains all of them.
For my own benefit, as well as for the benefit of others, I have collected many of the relevant
identities and assembled them in this short review. In a few instances, I found typographical
errors in some of the original sources that I was able to correct.

Recently, two authors contacted me concerning a first draft of these notes, which they
apparently found to be quite useful [1, 2]. They urged me to make these notes more widely
available, and I am pleased to accommodate their request. Although I have not taken the
opportunity for providing a more comprehensive list of references, I have included references
to the primary sources that were used in obtaining all the formulae of this review.

2 The defining representation of the SU(N) Lie algebra

In these notes, we provide some useful relations involving the generators of the SU(N) Lie
algebra, henceforth denoted by su(N). We employ the physicist’s convention, where the N2−1
generators in the defining representation of su(N), denoted by T a, serve as a basis for the set
of traceless hermitian N × N matrices. The generators satisfy the commutation relations,

[T a , T b] = i fabc T c , where a, b, c = 1,2, . . . , N2 − 1 . (1)

In particular
Tr T a = 0 . (2)

We employ the following normalization convention for the generators in the defining repre-
sentation of su(N),

Tr(T aT b) = 1
2δab . (3)

In this convention, the f abc are totally antisymmetric with respect to the interchange of any
pair of its indices.

Consider a d-dimensional irreducible representation, Ra of the generators of su(N). The
quadratic Casimir operator, C2 ≡ RaRa, commutes with all the su(N) generators.1 Hence
in light of Schur’s lemma, C2 is proportional to the d × d identity matrix. In particular, the
quadratic Casimir operator in the defining representation of su(N) is given by

T aT a = CF1 , (4)

where 1 is the N × N identity matrix. To evaluate CF , we take the trace of eq. (4) and make
use of Tr1 = N . Summing over a, we note that δaa = N2 − 1. Using the normalization of the
generators specified in eq. (3), it follows that 1

2(N
2 − 1) = NCF . Hence,2

CF =
N2 − 1

2N
. (5)

Next we quote an important identity involving the su(N) generators in the defining repre-
sentation,

T a
i j T

a
k` =

1
2

�

δi`δ jk −
1
N
δi jδk`

�

, (6)

1It is straightforward to show that C2 commutes with all the generators of su(N). In particular, using the
commutation relations, [Ra , Rb] = i fabcR

c ,
�

RaRa , Rb
�

= Ra
�

Ra , Rb
�

+
�

Ra , Rb
�

Ra = i f abc(RaRc + RcRa) = 0 ,

due to the antisymmetry of f abc under the interchange of any pair of indices.
2In the older literature, the defining representation is (inaccurately) called the fundamental representation. It

is for this reason that the Casimir operator in the defining representation is often denoted by CF .
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where the indices i, j, k and ` take on values from 1,2, . . . , N . To derive eq. (6), we first note
that any N×N complex matrix M can be written as a complex linear combination of the N×N
identity matrix and the T a,

M = M01+MaT a . (7)

This can be regarded as a completeness relation on the vector space of complex N×N matrices.
One can project out the coefficient M0 by taking the trace of eq. (7). Likewise, one can project
out the coefficients Ma by multiplying eq. (7) by T b and then taking the trace of the resulting
equation. Using eqs. (2) and (3), it follows that

M0 =
1
N

Tr M , Ma = 2Tr(M T a) . (8)

Inserting these results back into eq. (7) yields

M =
1
N
(Tr M)1+ 2Tr(M T a)T a . (9)

The matrix elements of eq. (9) are therefore

Mi j =
1
N

Mkkδi j + 2M`kT a
k`T

a
i j , (10)

where the sum over repeated indices is implicit. We can rewrite eq. (10) in a more useful form,

δi`δ jkM`k =
�

1
N
δi jδk` + 2T a

i j T
a
k`

�

M`k . (11)

It follows that
�

T a
i j T

a
k` −

1
2

�

δi`δ jk −
1
N
δi jδk`

��

M`k = 0 . (12)

This equation must be true for any arbitrary N × N complex matrix M . It follows that the
coefficient of M`k in eq. (12) must vanish. This yields the identity states in eq. (6). The proof
is complete.

Many important identities can be obtained from eq. (6). For example, multiplying eq. (6)
by T b

jk and summing over j and k yields

T aT bT a = −
1

2N
T a , (13)

after employing eq. (2). If we now multiply eq. (13) by T c and take the trace of both sides of
the resulting equation, then the end result is

Tr(T aT bT aT c) = −
1

4N
δbc , (14)

after using eq. (3). A more general expression for the trace of four generators (of which
eq. (14) is a special case) is given in Appendix A.

3 Introducing the symmetric third rank tensor dabc

In su(N), one can also define a totally symmetric third rank tensor called dabc via the relation,

T aT b =
1
2

�

1
N
δab1+ (dabc + i fabc)T

c
�

, (15)
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where 1 is the N × N identity matrix. Combining eqs. (1) and (15) yields the following anti-
commutation relation,

�

T a , T b
	

≡ T aT b + T bT a =
1
N
δab1+ dabc T c . (16)

Using eqs. (3) and (16), one obtains an explicit expression,

dabc = 2 Tr
��

T a , T b
	

T c
�

, (17)

which can be taken as the definition of the dabc . It then follows that daac = 0 (where a sum
over the repeated index a is implicit). Indeed, since dabc is a totally symmetric tensor, it follows
that daca = dcaa = 0.

The case of su(2) provides the simplest example. In this case, we identify T a = 1
2σ

a, where
the σa (for a = 1,2, 3) are the well-known Pauli matrices, and fabc = εabc are the components
of the Levi-Civita tensor. It is a simple matter to check that in the case of su(2), we have
dabc = 0. In contrast, the dabc are generally non-zero for N ≥ 3.

Consider the trace identity obtained by multiplying eq. (15) by T c and taking the trace. In
light of eqs. (2) and (3),

Tr(T aT bT c) = 1
4 (dabc + i fabc) . (18)

It then follows that

fabd Tr(T aT bT c) = 1
4 i fabc fabd , (19)

dabd Tr(T aT bT c) = 1
4 dabcdabd . (20)

In obtaining eqs. (19) and (20), we used the fact that dabc is symmetric and fabc is antisym-
metric under the interchange of any pair of indices, which implies that

fabcdabd = 0 . (21)

To evaluate the products fabc fabd and dabcdabd , we proceed as follows. Using eqs. (1) and
(16),

fabd Tr(T aT bT c) = −i Tr
�

[T b , T d]T bT c
�

= −i Tr(T bT d T bT c) + i Tr(T d T bT bT c) , (22)

dabd Tr(T aT bT c) = Tr
��

{T b , T d} −
1
N
δbd1

�

T bT c
�

= Tr(T bT d T bT c) + Tr(T d T bT bT c)−
1
N

Tr(T d T c) . (23)

The traces are easily evaluated using eqs. (3)–(5) and (14), and we end up with

fabd Tr(T aT bT c) = 1
4 iNδcd , (24)

dabd Tr(T aT bT c) =

�

N2 − 4
4N

�

δcd . (25)

Comparing eqs. (24) and (25) with eqs. (19) and (20), we conclude that,3

fabc fabd = Nδcd , (26)

dabcdabd =

�

N2 − 4
N

�

δcd . (27)

3Note that eqs. (21), (26) and (27) are equivalent to eqs. (45) and (46), respectively.
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Consider a d-dimensional irreducible representation, Ra of the generators of su(N). The
cubic Casimir operator C3 ≡ dabcR

aRbRc , commutes with all the su(N) generators. Hence in
light of Schur’s lemma, C3 is proportional to the d × d identity matrix. In particular, the cubic
Casimir operator in the defining representation of su(N) is given by

dabc T aT bT c = C3F1 . (28)

To evaluate C3F , we multiply eq. (15) dabd to obtain

dabc T aT b =
N2 − 4

2N
T c , (29)

after using eqs. (26) and (27). Multiplying the above result by T c and employing eq. (4) yields

dabc T aT bT c =
N2 − 4

2N
CF1 . (30)

Hence, using eqs. (5) and (28), we obtain

C3F =
(N2 − 1)(N2 − 4)

4N2
.

For completeness, we note the following result that resembles eq. (29),

fabc T aT b = 1
2

�

{T a , T b}+ [T a , T b]
�

= 1
2 fabc[T

a , T b] = 1
2 i fabc fabd T d = 1

2 iN T c ,

after employing eq. (24). Hence, in light of eqs. (4) and (5) it follows that

fabc T aT bT c = 1
2 iNCF1=

1
4 i(N2 − 1)1 .

Indeed, in any irreducible representation of su(N), a similar analysis yields

fabcR
aRbRc = 1

2 iNC2 , (31)

where C2 ≡ RaRa is the quadratic Casimir operator in representation R. Hence, fabcR
aRbRc is

proportional to C2 and thus is not an independent Casimir operator.4

4 Matrices of the adjoint representation of SU(N)

We now introduce the generators of su(N) in the adjoint representation, which will be hence-
forth denoted by F a. The F a are (N2−1)× (N2−1) antisymmetric matrices, since the dimen-
sion of the adjoint representation is equal to the number of generators of su(N). Explicitly,
the matrix elements of the adjoint representation generators are determined by the structure
constants,

(F a)bc = −i fabc . (32)

It is also convenient to define a set of (N2 − 1)× (N2 − 1) traceless symmetric matrices

(Da)bc = dabc , (33)

where the dabc is defined by eq. (17). Since dabb = 0 it follows that Tr Da = 0. The properties
of the F a and Da matrices have been examined in Refs. [3,4].

4It may seem that eq. (30) implies that the cubic Casimir operator is proportional to the quadratic Casimir
operator. However, the derivation of eq. (30) relies on eq. (15), which only applies to the generators of su(N)
in the defining representation. For an arbitrary d-dimensional irreducible representation of su(N), C2 and C3 are
generically independent.
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The F a satisfy the commutation relations of the su(N) generators,

[F a , F b] = i fabc F c , (34)

which is equivalent to the Jacobi identity,

fabe fecd + fcbe faed + fd be face = 0 . (35)

Likewise, there is a second commutation relation of interest,

[F a , Db] = [Da , F b] = i fabc Dc , (36)

which is equivalent to the two identities,

fabedcde + facedbde + fadedbce = 0 , (37)

fabedcde + fcbedade + fd bedace = 0 . (38)

The relations,
F aDb + F bDa = DaF b + DbF a = dabc F c , (39)

are also noteworthy. Combining eqs. (36) and (39) yields,

F aDb + DaF b = dabc F c + i fabc Dc . (40)

The expression for the commutator [Da , Db] is more complicated,

�

Da , Db
�

cd = i fabe(F
e)cd −

2
N

�

δacδbd −δadδbc

�

, (41)

which is equivalent to the identity,

fabe fcde =
2
N

�

δacδbd −δadδbc

�

+ dacedbde − dbcedade . (42)

Interchanging b↔ c and subtracting, the resulting expression can be rewritten as

(F aF b + DaDb)cd =
2
N

�

δabδcd −δacδbd

�

+ dabe(D
e)cd + i fabe(F

e)cd . (43)

Eq. (43) is equivalent to the identity,

face fbde − fabe fcde =
2
N

�

δabδcd −δacδbd

�

+ dabedcde − dacedbde . (44)

The quadratic Casimir operator in the adjoint representation is

F aF a = CAI , where CA = N , (45)

and I is the (N2 − 1) × (N2 − 1) identity matrix, which is equivalent to eq. (26). Two other
similar expressions of interest are

DaDa =

�

N2 − 4
N

�

I , F aDa = 0 , (46)

which are equivalent to eqs. (27) and (21), respectively.
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Using the above results, we can derive additional identities of interest. For example,

fabc F bF c = 1
2 fabc

�

F b , F c] = 1
2 i fabc fbcd F d = 1

2 iN F a , (47)

fabc F bDc = 1
2 fabc

�

F b , Dc] = 1
2 i fabc fbcd Dd = 1

2 iN Da , (48)

fabc DbDc = 1
2 fabc

�

Db , Dc] = 1
2 i
�

fabc fbcd −
4
N
δad

�

F d = i

�

N2 − 4
2N

�

F a . (49)

It then follows that

fabc F aF bF c = 1
2 iN2I , (50)

fabc DaF bF c = 0 , (51)

fabc DaDbF c = 1
2 i(N2 − 4)I , (52)

fabc DaDbDc = 0 . (53)

For completeness, we quote the analogous identities with fabc replaced by dabc . These identi-
ties are proved in Appendix B of these notes.

dabc F bF c = 1
2 N Da , (54)

dabc F bDc =

�

N2 − 4
2N

�

F a , (55)

dabc DbDc =

�

N2 − 12
2N

�

Da . (56)

It then follows that

dabc F aF bF c = 0 , (57)

dabc DaF bF c = 1
2(N

2 − 4)I , (58)

dabc DaDbF c = 0 , (59)

dabc DaDbDc =

�

(N2 − 4)(N2 − 12)
2N2

�

I . (60)

Eq. (57) implies that the cubic Casimir operator in the adjoint representation vanishes.
Finally, we quote a number of useful trace identities [3–6].

Tr F a = Tr Da = 0 , Tr(F aDb) = 0 , (61)

Tr(F aF b) = Nδab , Tr(DaDb) =

�

N2 − 4
N

�

δab , (62)

Tr(F aF bF c) = 1
2 iN fabc , Tr(DaF bF c) = 1

2 Ndabc , (63)

Tr(DaDbF c) = i

�

N2 − 4
2N

�

fabc , Tr(DaDbDc) =

�

N2 − 12
2N

�

dabc . (64)

Additional identities involving traces of four generators can also be derived. Ref. [6] provides
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the following results,5

Tr(F aF bF c F d) = δadδbc +
1
2(δabδcd +δacδbd) +

1
4 N( fade fbce + dadedbce) , (65)

Tr(F aF bF c Dd) = 1
4 iN(dade fbce − fadedbce) , (66)

Tr(F aF bDc Dd) = 1
2(δabδcd −δacδbd) +

�

N2 − 8
4N

�

fade fbce +
1
4 Ndadedbce , (67)

Tr(F aDbF c Dd) = −1
2(δabδcd −δacδbd) +

1
4 N( fade fbce + dadedbce) , (68)

Tr(F aDbDc Dd) =
2i
N

fadedbce + i

�

N2 − 8
4N

�

fabedcde +
1
4 iNdabe fcde , (69)

Tr(DaDbDc Dd) =

�

N2 − 4
N2

�

δadδbc +

�

N2 − 8
2N2

�

δabδcd +
1
2δacδbd +

1
4 N fade fbce

+

�

N2 − 16
4N

�

dadedbce −
4
N

dabedcde . (70)

Alternative expressions for eqs. (65)–(70) are given in Appendix C [5].
As a check of eq. (65), let us set a = c and sum over a. After employing eqs. (26) and (27)

and relabeling d by c, we obtain

Tr(F aF bF aF c) = 1
2 N2δbc . (71)

Alternatively, one can obtain the above result directly by using eqs. (26), (45), (62) and (63)
to compute

Tr(F aF bF aF c) = Tr
�

(i fabd F d + F bF a)F aF c
�

= i fabd Tr(F d F aF c) + Tr(F bF aF aF c)

= i fabd

�1
2 iN fdac

�

+ N2δbc =
1
2 N2δbc , (72)

which confirms the result of eq. (71). Similarly, the results of eqs. (66)–(70) can also be
checked by multiplication by either a Kronecker delta, fabc or dabc and then employing the
trace formulae previously derived.

Various applications of the identities given in this section can be found in a paper by Roger
Cutler and Dennis Sivers [7]. Indeed, many of these identities are also reproduced in Ap-
pendix B of Ref. [7], after correcting the latter for some obvious typographical errors. The
identities provided in these notes are sufficient to work out the color factors for scattering pro-
cess involving quarks and gluons. Although the color factors should be computed for the case
of N = 3, it is useful to first evaluate the color factors for an SU(N) gauge theory, since these
results allow one to identify sets of independent color factors that arise for a given process.

5 Two additional identities for N = 3

Two additional identities, which were first presented in Ref. [8], are special to the case of N = 3
and do not generalize to arbitrary N . These identities can be derived from the characteristic
equation of a general element of the su(3) Lie algebra [4,8],

�

F a , F b
	

cd = 3dabe(D
e)cd +δabδcd −δacδbd −δadδbc , (73)

�

Da , Db
	

cd = −dabe(D
e)cd +

1
3

�

δabδcd +δacδbd +δadδbc

�

. (74)

5In Ref. [6], the coefficient of iNdabe fcde in eq. (69) is incorrectly given by 1
2 .
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These two identities can be rewritten as

3dabedcde − face fbde − fade fbce = δacδbd +δadδbc −δabδcd , (75)

dabedcde + dacedbde + dadedbce =
1
3

�

δabδcd +δacδbd +δadδbc

�

. (76)

Combining eqs. (34) and (73) then yields,

(F aF b)cd =
1
2 i fabe(F

e)cd +
3
2 dabe(D

e)cd +
1
2

�

δabδcd −δacδbd −δadδbc

�

. (77)

Likewise, combining eqs. (41) and (74) yields,

(DaDb)cd =
1
2 i fabe(F

e)cd −
1
2 dabe(D

e)cd +
1
6

�

δabδcd −δacδbd

�

+ 1
2δadδbc . (78)

Note that the sum of eqs. (77) and (78) yields the N = 3 version of eq. (43). Unfortunately,
there are no separate analogs of eqs. (77) and (78) for N 6= 3.

A Traces of four generators in the defining representation of SU(N)

The trace of a product of four generators in the defining representation also involves the sym-
metric tensor dabc introduced in Section 2. Applying eq. (15) twice, and taking the trace with
the help of eq. (3) yields

Tr(T aT bT c T d) =
1

4N
δabδcd +

1
8

�

dabedcde − fabe fcde + i fabedcde + i fcdedabe

�

.

It is convenient to employ eqs. (38) and (42) of Section 3 to produce a more symmetric version,

Tr(T aT bT c T d) =
1

4N

�

δabδcd −δacδbd +δadδbc

�

+ 1
8

�

dabedcde − dacedbde + dadedbce

�

+1
8 i
�

dabe fcde + dace fbde + dade fbce

�

. (79)

A nice check of eq. (79) is to rederive eq. (14) by setting a = c and summing over a.

B Proof of eqs. (54)–(56)

First, we note that eqs. (54)–(56) are equivalent to the last three trace identifies of eqs. (63)
and (64),

Tr(DaF bF c) = dade(F
d F e)bc , (80)

Tr(DaDbF c) = dade(F
d De)bc , (81)

Tr(DaDbDc) = dade(D
d De)bc , (82)

after using eqs. (32) and (33). Multiplying eq. (40) on the left by F e and taking a trace yields

Tr(F eF aDb) = 1
2 Ndabe , (83)

in light of eqs. (61) and (62). Likewise, multiplying eq. (40) on the right by De and taking a
trace yields

Tr(F aDbDe) =
i(N2 − 4)

2N
fabe . (84)
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Multiplying eq. (43) on the right by (D f )de and taking the trace (by setting c = e and summing
over e) yields,

Tr(F aF bD f + DaDbD f ) =

�

N2 − 6
N

�

dab f . (85)

Finally, we use the result of eq. (83) to obtain

Tr(DaDbD f ) =

�

N2 − 12
2N

�

dab f . (86)

C Traces of adjoint representation matrices revisited

The traces of products of four matrices (either F a or Da) in the adjoint representation are given
in eqs. (65)–(70). It is sometime convenient to eliminate the product fade fbce in favor of δab
and dabc , etc., by using eq. (42). The following results were obtained in Ref. [5],

Tr(F aF bF c F d) = δabδcd +δadδbc +
1
4 N
�

dabedcde − dacedbde + dadedbce

�

,

Tr(F aF bF c Dd) = 1
4 iN(dabe fcde + fabedcde) ,

Tr(F aF bDc Dd) =

�

N2 − 4
N2

�

�

δabδcd −δacδbd

�

+

�

N2 − 8
4N

�

�

dabedcde − dacedbde

�

+ 1
4 Ndadedbce ,

Tr(F aDbF c Dd) = 1
4 N
�

dabedcde − dacedbde + dadedbce

�

,

Tr(F aDbDc Dd) = i

�

N2 − 12
4N

�

fabedcde +
i
N

�

fadedbce − facedbde

�

+ 1
4 iNdabe fcde ,

Tr(DaDbDc Dd) =

�

N2 − 4
N2

�

�

δabδcd +δadδbc

�

+

�

N2 − 16
4N

�

�

dabedcde + dadedbce

�

− 1
4 Ndacedbde .

Note that the second equation above is consistent with eq. (66) in light of eq. (36), and the
fifth equation above is consistent with eq. (69) in light of eq. (37).
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