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Abstract

This lecture note adresses the correspondence between spectral flows, often associated
to unidirectional modes, and Chern numbers associated to degeneracy points. The no-
tions of topological indices (Chern numbers, analytical indices) are introduced for non
specialists with a wave physics or condensed matter background. The correspondence is
detailed with several examples, including the Dirac equations in two dimensions, Weyl
fermions in three dimensions, the shallow water model and other generalizations.
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1

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.39
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysLectNotes.39&amp;domain=pdf&amp;date_stamp=2022-03-10
https://doi.org/10.21468/SciPostPhysLectNotes.39


SciPost Phys. Lect.Notes 39 (2022)

3.3 Analytical and Topological indices, a verification of the Atiyah-Singer theorem 26
3.3.1 Chern numbers of the specific h.Ŝ model 26
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1 Introduction

In his successful popular book La valeur de la science [1], the mathematician physicist Henri
Poincaré pointed out in 1905 that : “we can see mathematical analogies between phenomena
which have no physical relation neither apparent nor real, so that the laws of one of these phe-
nomena help us to guess those of the other. [...] The goal of mathematical physics is not only
to facilitate the physicist in numerical computation [...]. It is still, it is above all to make the
physicists know the hidden harmony of things by showing them from a new angle.” As one reads
these words today, it is striking how much they make one think about the role of topology in
physics.

Topology spread in virtually all branches of physics as it helps unveiling the hidden connec-
tions between apparently different phenomena. In condensed matter physics, its use has been
greatly accelerated since the rise of topological insulators [2, 3], one century after Poincaré’s
words. In that context, topology deals with the unavoidable singular properties of electronic
wavefunctions associated to the energy bands of solids, and is thus, for that reason, referred
to as band topology. Those singularities are classified by integer numbers, called topological
invariants, that allow physicists to classify band insulators, superconductors and semimetals,
beyond the realm of phase transitions of statistical physics [4–8]. Although those topologi-
cal properties are somehow hidden, as they appear in a quite abstract space, their physical
consequences are observable and manifest for instance by a robust uni-directional transport.

One of the examples chosen by Poincaré to illustrate his statement is the wave equation, as
it establishes a deep connection between sound, light and radio communications. It is thus not
so surprising that the topological approaches that were developed in the realm of single par-
ticles quantum physics, which is essentially wave physics, naturally spread to various classical
waves systems, in optics, acoustics, mechanics, plasmas and fluids, even at geo/astrophysical
scales [9–15]. All those systems share the same hidden harmony (to quote Poincaré), that
topology reveals by making us see those very different systems from a common angle. Topol-
ogy thus basically provided a new perspective in the description of waves and a powerful tool
for their manipulation.

This manuscript is dedicated to a key concept in wave topology, that is common to various
quantum and classical systems. It was actually already put forward by Volovik to draw formal
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analogies between 3He-A superfluids and the standard model in high energy physics [16].
Here we want to present it in a more wave physics / quantum condensed matter mind oriented
way. We shall refer to that concept as the monopole - spectral flow correspondence. In short, this
correspondence relates the topological properties of point defects in three dimensional (3D)
space in which eigenstates of the system are parametrized, to the existence of peculiar modes
that transit from an energy (or frequency) branch to another one; a phenomenon which is
referred to as a spectral flow. Those point defects correspond to degeneracy points (or band
crossing points), that act as the source of a Berry curvature, and whose flux through a close
surface surrounding them is quantized and expressed by a topological invariant, the first Chern
number. For that reason, we shall refer to these special points as Berry-Chern monopoles. The
spectral flow, on the other hand, consists by construction to modes that propagate in a fixed
direction. The monopole-spectral flow correspondence is a direct link between topology and
unidirectional wave transport.

The goal of this manuscript is to introduce this correspondence in a pedagogical way, and
make it accessible and useful to non specialists. In a first part, we focus on canonical examples
encountered in condensed matter physics that we treat in a unified way. We use a minimal two-
band model to illustrate this ubiquitous correspondence and describe simultaneously interface
states in 2D systems such as Chern insulators, quantum valley Hall insulators and other classi-
cal waves systems, together with the dispersive Landau levels that trigger the chiral anomaly
in 3D Weyl semimetals [17, 18]. This first part is mainly dedicated to a broad community
of quantum and classical physicists that are not familiar with the topological concepts. Basic
notions such as the Berry curvature, the first Chern number and the Weyl quantization are
introduced, detailed and illustrated. The second part of this manuscript is dedicated to a far
richer model, first proposed by Ezawa in the context of semimetals in a magnetic field [19],
that allows for an investigation of the correspondence beyond the standard linear two-band
crossing framework discussed in the first part. We discuss in details the structure of the spectral
flow and its associated eigenmodes. In particular, this model is based on a spin algebra rather
than a Clifford algebra, and thus goes beyond the usual framework of Dirac operators where
this correspondence has been extensively studied (see e.g. [20–25] and the textbook [26]).
We thus introduce an index for this ”non-Dirac” operator, that accounts for the spectral flow
of the model, and we compute it. We also derive a general expression for the Chern numbers,
and show by an explicit calculation that it is equal to the index we have introduced. This
makes clear the intervention of the Atiyah-Singer index theorem to understand topological
interface modes and 3D current of Landau levels associated to anomalies beyond two-band
models. The unusual Landau levels behavior of effective spin−J quasiparticles protected by
crystal symmetries [19, 27] and the two eastward topological equatorial oceanic waves [15]
are both direct examples accounted by this model.

2 Spectral flows in two-band models from archetypal examples
in condensed matter physics

Let us first revisit two canonical condensed matter examples where spectral flows emerge :
the 2D Dirac Hamiltonian with an anisotropic mass term, and the 3D Weyl Hamiltonian under
a constant axial magnetic field.
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2.1 2D Dirac fermions with an anisotropic mass

The simplest and certainly the most ubiquitous physical model that manifests a spectral flow
is that of a 2D massive Dirac Hamiltonian

HD = c

�

m(x)c p̂x − ip̂y
p̂x + ip̂y −m(x)c

�

, (1)

where c is a celerity (e.g. the Fermi velocity) and p̂ = (p̂x , p̂y) is the momentum operator.
Importantly here, the mass term m(x) varies in space along the x direction, and is assumed
to change sign at a given x0 that we choose to be x0 = 0. For simplicity, we shall linearize m
around m(0) = 0 so that m(x) = β x with β ≡ ∂x m. This is for convenience, as the properties
we aim at describing do not depend on this linearization. The Hamiltonian (1) describes e.g.
the band inversion that occurs at the interface between two topologically insulators when
tuning a parameter that regulates the amplitude of the gap, that is the mass term [28,29].

Then, because of the x dependence of the mass, px is not a good quantum number, unlike
py . One can then rewrite the Dirac Hamiltonian in position representation for plane waves of
wavenumber ky in the y direction by substituting p̂x = −iħh∂x , as

HD = c

�

cβ x −iħh∂x − iħhky
−iħh∂x + iħhky −cβ x

�

. (2)

We aim at deriving the spectrum of this Hamiltonian as a function of the wavenum-
ber ky . For that purpose, it is convenient to first apply a unitary transformation
H̃D = RHDR−1 so that ky becomes proportional to the diagonal Pauli matrix σz . Writing
HD = −iħhc∂xσx + ħhckyσy + β c2 xσz where the σi ’s are the Pauli matrices, such a unitary
transformation R amounts to a spin rotation where each axis are cyclically interchanged, and
thus

H̃D =

�

ħhcky β c2 x −ħhc∂x
β c2 x +ħhc∂x −ħhcky

�

. (3)

Let us then introduce the characteristic length ` ≡
p

ħh/β c that allows us to rewrite the Dirac
Hamiltonian in terms of annihilation and creation operators

â =
1
p

2

� x
`
+ `∂x

�

, â† =
1
p

2

� x
`
− `∂x

�

(4)

that satisfy [a, a†] = 1 and act on number states |n〉 as

â |n〉=
p

n |n− 1〉 , â† |n〉=
p

n+ 1 |n+ 1〉 , â†â |n〉= n |n〉 . (5)

We recall that number states are related to Hermite functions ϕn(x) following

〈x |n〉= ϕn(x) =
1

(2nn!
p
π)1/2

e−
x2
2 Hn(x) , (6)

such that the mode n ∈ N corresponds to the number of zeros of ϕn(x). The formalism of
number states |n〉 will be used here for convenience, but note that it is not restrictive to quan-
tum physics, as everything can equivalently be written in terms of Hermite functions ϕn(x). As
recalled in figure 1, those functions are centered around x = 0 (i.e. 〈x〉n = 0) that is where the
mass term m changes sign, but their spreading increases with n as 〈x2〉n =

1
2 + n. Therefore,

the lower the mode, the better the confinement.
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Figure 1: (Left) Spatial dependence of a few Hermite functions. (Right) Spectrum
of H̃D and of H̃W . The spectral flow (red) between the two branches correspond to
the eigenstate (8).

The Dirac Hamiltonian finally reads

H̃D = E
�

λ â†

â −λ

�

, (7)

where we have introduced the characteristic energy E ≡
p

2ħhc/` and the dimensionless pa-
rameter λ ≡ `ky/

p
2. The expression of H̃D, with the operators â and â† located on the off

diagonal, suggests to look for solutions |Ψn〉 that decompose over number states |n〉 as
�

λ â†

â −λ

��

αn+1 |n+ 1〉
αn |n〉

�

= Ẽn

�

αn+1 |n+ 1〉
αn |n〉

�

, (8)

where the αi are normalization coefficients and Ẽ is the dimensionless eigenenergy normalized
by E . This anzatz yields the discrete spectrum

Ẽ±n = ±
p

λ2 + n+ 1 n ∈ N , (9)

shown in black in figure 1. It consists of two branches±, separated by a gap around Ẽ = 0. Each
branch is constituted of an infinite number of discrete energy levels n ∈ N, that correspond to
localized modes around x = 0. The lower energy mode, n= 0, decomposes into two branches
Ẽ±0 = ±

p
λ2 + 1 that are associated to the eigenstate

Ψ0(x) = 〈x |Ψ0〉 ∝
�

〈x |1〉
〈x |0〉

�

=

�p
2x
1

�

e−
x2
2 . (10)

Actually, the anzatz above does not account for all the solutions of (7). Indeed, an addi-
tional solution is suggested by the remarkable structure of |Ψn〉, whose components consist
in shifted number states |n〉 and |n+ 1〉 with n ∈ N. Then, by extrapolating this structure,
one can easily check that there exists another lower energy solution that one may somehow
abusively call ”n= −1”.1 This solution reads

Ψ−1(x)∝
�

〈x |0〉
0

�

=

�

1
0

�

e−
x2
2 (11)

1This mode is actually called the ”zero-mode” in the literature.
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and satisfies
�

λ â†

â −λ

��

|0〉
0

�

= Ẽ−1

�

|0〉
0

�

. (12)

Unlike the previous solutions for n ∈ N, this solution yields a single branch

Ẽ−1 = λ (13)

that remarkably transits from the negative energy branch to the positive one when increasing
λ. This is the simplest example of a spectral flow, and in the following, λ will be referred
to as the spectral flow parameter. Put differently, when λ is swept from negative to positive
values, the branch − looses one state, while the branch + gains one state. Writing ∆N± the
net number of states which are gained by the branch ± when varying λ, one has ∆N± = ±1.

Let us finally notice that the mode that ”flows” has several remarkable properties: It is
(1) non-dispersive, (2) localized around x = 0, that is where m(x) changes sign, (3) fully
polarized onto one component only, (4) the only accessible mode in the gap between the two
branches ±, (5) it propagates with a positive group velocity for any ky . We will however see
later that several of those properties are specific to this simple model. But for now, let us
introduce the second example where the same spectral flow appears.

2.2 Spectral flow of Landau levels in 3D Weyl semi-metals

Another well-known condensed matter example where a spectral flow arises is that of 3D
Weyl semi-metals subjected to a magnetic field [16,30,31]. Such materials are characterized
by pairs of 2-fold band crossing points, around which the Bloch Hamiltonian can be expanded
as massless Weyl Hamiltonians of the typical form [30,32,33]

HW = c

�

p̂z p̂x − ip̂y
p̂x + ip̂y −p̂z

�

. (14)

A magnetic field B= −Bez , is then applied in the −z direction, and is accounted in this Hamil-
tonian through the minimal coupling p̂→ π̂= p̂+ eA(r) with e the elementary electric charge
and where the electromagnetic vector potential reads A(r) = B/2(y,−x , 0) in the circular
gauge. The generalized momentum π̂ is gauge-invariant, unlike p̂.

Since the system remains invariant by translation in the z direction, one looks for plane
wave solutions of wave number kz along that direction, which amounts to substitute p̂z → ħhkz
in the Hamiltonian. The situation is different in the (x , y) plane: There, the commutator of
the generalized momenta π̂x and π̂y does not vanish, but verifies [π̂x , π̂y] = iħheB = i (ħh/`B)

2

where the characteristic length `B ≡
p

ħh/eB is called the magnetic length. This means that,
unlike p̂x and p̂y that do commute, π̂x and π̂y are canonical conjugate variables. This allows
us to introduce the annihilation and creation operators

â =
�

`B

ħh

� π̂x + iπ̂y
p

2
â† =

�

`B

ħh

� π̂x − iπ̂y
p

2
(15)

that we abusively also designate by â and â† because they similarly act on the number states
as â |n〉 =

p
n |n〉, â† |n〉 =

p
n+ 1 |n+ 1〉 and [â, â†] = 1.2 The Weyl Hamiltonian under an

axial constant magnetic field reads

HW = E
�

λ â†

â −λ

�

, (16)

2Those ladder operators are actually related to the previous ones given in (4) of the quantum harmonic oscil-
lators in both directions as â = ây − iâx , where âx is given by (4), ây is âx after the substitution x → y , and with
`= `B . This is thus essentially a 2D quantum harmonic oscillator in the x y plane [34].
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where E ≡
p

2cħh/`B and λ= kz`B/
p

2. This Hamiltonian is formally exactly the same as that
of a 2D Dirac fermion with a mass that varies linearly along the x direction (7), although the
characteristic lengths of those two problems have a different origin. The energy spectrum of
(16) is therefore already shown in figure 1, and thus displays the same spectral flow as the
2D massive Dirac fermions. Such a spectral flow of Landau levels is currently associated with
the condensed matter signature of the chiral anomaly in 3D Weyl semimetals: Assuming the
Fermi energy lies around E = 0, applying an electric field along the z direction generates a
bulk current of electrons. Because Weyl points appear by pairs with opposite Chern numbers,
they display opposite spectral flows. The chiral anomaly in that context refers to the fact that,
although the number of particles is globally conserved when taking into accounts all the Weyl
points, it is not conserved around each Weyl points (also called valleys) separately [17,18,35].

It is worth noticing that the ladder operators â and â† popped up in the 2D massive Dirac
problem and in the 3D magnetic Weyl problem for very different reasons. In the 3D Weyl
problem, the key point is the coupling of the electric charge to the magnetic field through
the vector potential. In contrast, in the 2D Dirac case, what matters is the existence of an
anisotropic mass term that changes sign. This second mechanism can be found in a large
variety of classical waves systems whose dynamics is governs by a set of equations of the form
i∂tψ = Ĥψ where Ĥ is an Hermitian and linear operator, and ψ is the vector of the Fourier
components of the classical fields involved, such as pressure and velocity fields in fluids or
electric and magnetic fields in optics. The very spectral flow shown in figure 1 was actually
found in a classical analog of a quantum Chern insulator, namely in 2D gyromagnetic photonic
crystals, where the role of the mass term was played by a Faraday coupling [36].

A last remark can be made about the discretization of the spectrum. This discretization
can be expected in the 3D Weyl case with a magnetic field, as it corresponds to the emergence
of Landau levels. For the 2D massive Dirac fermions, the discretization originates from the
assumption of the linear spatial dependence of the mass, and would disappear if the shape of
m(x) becomes sharp (step function). But even in that case, the spectral flow between the two
branches persists. In other words, it is robust to smooth changes of m(x) provided it changes
sign. It is thus natural to account for its robustness with topological tools.

2.3 Topology of the symbol for spin S = 1/2 fermions

2.3.1 Monopole - spectral flow correspondence

The spectral flow∆N± of operators such as HW and H̃D, has indeed a topological counterpart in
the associated symbol of such operators, through topological indices called first Chern numbers
C±. The notions of symbol and of Chern numbers will be introduced in the next sections. In
the meantime, let us introduce the simple key relation

∆N± = −C± (17)

that constitutes the monopole-spectral flow correspondence. Such a relation is not obvious, but
is certainly the simplest illustration of a very abstract theorem, called the Atiyah-Singer index
theorem which, under some assumptions, essentially relates an analytical index of an operator
to a topological index of its symbol [26, 37, 38]. This analytical index can then be related to
a spectral flow of the operator, implying an equality of the type of equation (17) [39]. In the
next sections, we shall give an explicit and computable expression of these indices for a quite
general physical model beyond the spin-1/2 case discussed so far.

For now, let us keep focusing on the canonical S = 1/2 example as described by the Hamil-
tonian (7) (or (16)), and remark that in the limit |λ| � 1, the diagonal term, that is propor-
tional to the Pauli matrix σz , becomes dominant. The eigenmodes of the operator HW or H̃D
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then resemble that of σz , and the typical energy between two consecutive number states |n〉
and |n+ 1〉 in the same branch, + or −, tends to zero. There is then a clear separation of en-
ergy (or time) scales between the ”spin” contribution, that one can associate to a fast motion,
and the "oscillator" terms that imply the operators â and â†, that one can thus associate to
a slow motion. With this in mind, it is natural to approximate the system by an ”adiabatic”
model, where the operators â and â† are treated classically. The Hamiltonian deduced from
this procedure is precisely the symbol.

As we shall see, the symbol is, in our case, a 2×2 matrix of parameters (the slow variables);
the matrix structure being inherited from the two spin components |±〉 (fast variables) that
are left untouched. The eigenmodes |ψ±〉 of the symbol are thus vectors with two complex
components, parametrized by the slow variables. These parametrized eigenstates are deter-
mined up to a phase, which gives rise to a structure called fiber-bundle (see section 2.3.4). So,
in the framework of the symbol, the space of fast motion is a fiber bundle over the phase space
of slow variables (see e.g. [40]). Fiber bundles are mathematical structures that generically
possess a topology which accounts for how the parametrized eigenstates arrange and possibly
”twist”. In our case, those twists are encoded into the first Chern numbers C± ∈ Z.

2.3.2 Symbol Hamiltonian HS

The symbol-operator correspondence is routinely used by physicists when replacing by hand
a wavenumber kx by the differential operator −i∂x . Such a substitution is performed when
the invariance by translation is lost in a the corresponding direction, for instance by adding a
boundary condition. Conversely, the replacement −i∂x → kx is performed when invariance by
translation is assumed in a linear system governs by differential equations, so that a Fourier
transform can be applied. Such substitutions are routinely used by quantum physicists and
were formalized by mathematicians in order to make rigorous the mapping between classical
and quantum formalisms, i.e. between classical observables defined over phase space (e.g.
the momentum p) and quantum observables defined by operators acting on a Hilbert space
(e.g. p→ p̂ = −iħh∂x). In this language, the classical observable p is called the symbol and the
quantum observable p̂ is called the operator [41,42].

We will use this terminology and denote by Ĥop the operator Hamiltonian and by HS the
symbol Hamiltonian. Concretely, the previously discussed HW and H̃D in (16) and (7) con-
stitute our operator Hamiltonian Ĥop. Of course, the symbol Hamiltonian is itself also an
(Hermitian) operator, since, being a matrix, it acts on vectors in C2. But its components are
entities that commute. In contrast, Ĥop acts on a Hilbert space that is a product F ⊗ S1/2 of
an infinite dimensional Fock space F spanned by number states |n〉 with n ∈ N, with the two-
dimensional spin 1/2 Hilbert space S1/2. In other words, HS is a matrix of numbers, while Ĥop
is a matrix of operators, which makes its study much more involved. Index theorems provide
a way to capture some properties of Ĥop – namely its spectral flow – thanks to the topological
property of a much simpler object, its symbol HS .

Actually the mapping between the symbol and the operator is not unique. In particular,
there are many ways to quantize a symbol. However, the symbol carries a topological infor-
mation that does not depend on the choice of the quantization scheme (this part is called the
principal or lead symbol). We give a brief introduction to this formalism in the appendix A
(more advanced aspects can be found in various textbooks e.g. [41, 42]), and write the quite
natural correspondence

λ1 + iλ2 ↔ â , (18)

λ1 − iλ2 ↔ â† , (19)

where λ1 and λ2 are symbolic notations that designate two canonical conjugate observables
in phase space. In the 2D massive Dirac fermion problem (7), they stand for the classical
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position λ1 = x and momentum λ2 = px observables, while for the 3D Weyl fermion problem
(16), they stand for the generalized momenta perpendicular to the applied magnetic field
λ1 = px + eA(y) and λ2 = py + eA(x).

One can then come back to the operator Hamiltonian of our Dirac/Weyl problems and
write the correspondence between the symbol Hamiltonian HS and the operator Hamiltonian
Ĥop

HS =

�

λ λ1 − iλ2
λ1 + iλ2 −λ

�

↔ Ĥop =

�

λ â†

â −λ

�

. (20)

Now that the symbol HS of Ĥop has been introduced, one can discuss its topological prop-
erties.

2.3.3 Degeneracy point of the symbol as a topological defect in 3D parameter space

The purpose of this section is to make concrete what is meant by the topology of the symbol
HS . Let us denote by Λ = R3\{λ?} the parameter space, where λ? designates the degeneracy
point(s) of HS , and λ = (λx ,λy ,λz) = (λ1,λ2,λ) a point in Λ. The symbol Hamiltonian (20)
we are interested in takes the form

HS = λ.σ , (21)

with σ = (σx ,σy ,σz) the vector of Pauli matrices. Such a 2× 2 Hermitian matrix constitutes
the ubiquitous minimal model in condensed matter physics that owns a topological property.
As we shall detail in the following, this topological property can be apprehended in two dif-
ferent ways.

Let us start by pointing out that the eigenvalues E± = ±|λ| of H are degenerated at a
point λ? = 0. This is actually a generic property of Hermitian matrices, as found by Wigner
and von-Neumann (see for instance the discussion of the section VII in [44]) : Indeed, the
dimension of the space of Hermitian matrices with a two-fold degeneracy is n2−3 (with n the
dimension of the matrix), while it is n2 for generic Hermitian matrices. In other words, the
codimension of two-fold degenerated Hermitian matrices is 3. This implies that, generically,
i.e. in the absence of other constraints imposed by symmetries, 3 parameters must be varied to
find a degeneracy between two eigen-energies of a Hermitian matrix. This apparently trivial
property actually turns out to play a key role in what follows. In fact, a degeneracy point can
be see as a "defect" in parameter space. Similarly to actual topological defects of vector fields
in real space (e.g. vortices, dislocations...) one can characterize the degeneracy point by the
homotopy property of the map λ : Sλ → S ⊂ R3 where Sλ is any surface that encloses the
degeneracy point. Such maps, between two closed oriented manifolds, (here two surfaces), are
classified by an integer-valued number, called the degree. The degree of a map is an homotopy
invariant, that is, it cannot change value under a continuous deformation of the map. In
particular, the two surfaces Sλ and S can conveniently be continuously deformed into spheres
S2 in R3. More generally, the homotopy properties of maps from a sphere Sn to a sphere
Sm are classified by homotopy groups noted πn(Sm). The search for homotopy groups of
spheres is in general a difficult open problem in mathematics. However, there is a particular
situation where the result is known, which is πn(Sn) = Z, and thus is particular π2(S2) = Z.
This means that point-like topological defects of 3D vector fields are classified by integers.
These integers are precisely the degree, which, geometrically, counts how many times the
image of Sλ by the map λ ∈ Sλ → h(λ) ∈ S covers S, or equivalently how many times the
normalized map Sλ → n ≡ h/h ∈ S2 wraps the unit sphere. In our simple example, where
h is identity, the degree is 1. In the following, we shall discuss much richer situations where
the degree can take arbitrary values. The vector field around topological defects characterized
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with different degrees cannot be smoothly deformed into each other. This characterizes the
topological robustness of the defect.

2.3.4 Phase singularity of the eigenstates

Characterizing the degeneracy point of the symbol Hamiltonian with the degree of a map
amounts to ignoring the spinorial structure of the problem, carried by the Pauli matrices in
(21). Indeed, HS is a matrix and a subtle topological property is hidden in its normalized
eigenvectors ψ±

|ψ+〉=
eiχ+

p

2|λ|(|λ| −λz)

�

λx − iλy
|λ| −λz

�

, (22)

|ψ−〉=
eiχ−

p

2|λ|(|λ|+λz)

�

λx + iλy
−|λ| −λz

�

, (23)

where χ± is an arbitrary phase that depends on λ. For any value of λ, there is a gauge freedom
for the choice of χ±, as usual in quantum mechanics. This means that for a given λ, there is
not a single state that describes the system, but a continuous family of states that differ from
each other by a phase factor. This is, in a sense, a multi-valuation of the solution. In contrast,
the projectors Π± ≡ |ψ±〉 〈ψ±| do not depend on the gauge and are thus always single-valued.
Once the gauge is chosen, the eigenstate should be single-valued as well. This is however not
always the case, as one can suspect from (23) when λ is aligned along the z direction, i.e. for
±λz = ±|λ|.

To see it more clearly, let us use the spherical coordinates with λx = |λ| sinθ cosφ,
λy = |λ| sinθ sinφ and λz = |λ| cosθ , and parametrize the spinor on the Bloch sphere, where
it becomes explicit that the eigenstates only depend on n (up to the gauge choice) :

|ψ+〉= eiχ+

�

cos θ2 e−iφ

sin θ2

�

and |ψ−〉= eiχ−

�

sin θ2 e−iφ

− cos θ2

�

. (24)

There, setting n= nz > 0 or equivalently θ = 0 (north pole), the eigenstate Ψ+ becomes

|ψ+〉
θ=0
= eiχ+

�

e−iφ

0

�

(at the north pole of the Bloch sphere) , (25)

which is multi-valued even after the gauge has been fixed, unless we make the particular
gauge choice eiχ+ = eiφ . This fixes the multi-valued of the eigenstate, but only at the north
pole. Indeed, in this gauge, the eigenstate becomes multivalued at the south pole θ = π

|ψ+〉
θ=π
=

�

0
eiφ

�

(with eiχ+ = eiφ) (at the south pole of the Bloch sphere) . (26)

Actually, the multi-valuedness of the eigenstates cannot be fixed by a global gauge choice.
Or say otherwise, there does not exist a smooth function χ that makes the eigenstate single-
valued everywhere on the Bloch sphere. One can only choose locally a gauge that makes the
eigenstate single-valued, namely

south gauge: χ = 0 |ψS
+〉=

�

cos θ2 e−iφ

sin θ2

�

forθ 6= 0 , (27)

north gauge: χ = φ |ψN
+〉=

�

cos θ2
sin θ2 eiφ

�

forθ 6= π . (28)
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Thus, the eigenstates are only piece-wise single-valued, and related by a gauge transformation

|ψN
+〉= eiφ |ψS

+〉 . (29)

This reflects a topological property of the eigenstates, as their phase cannot be defined smoothly
globally: it has to have a singularity somewhere, similarly to a vortex. This topological prop-
erty is inherently related to the gauge freedom, and is mathematically described by the theory
of fiber-bundles [26,43].

Fiber bundles constitute a rigorous construction of a product of spaces. Locally, the product
of two spaces, say a segment [−1,1] with a circle S1, is given by the usual cartesian product.
But globally, this does not necessarily hold since a twist may occur. In that case, the fiber-
bundle is said to be topologically non-trivial. This is the celebrated example of the Moebius
strip that differs by a twist from the cylinder. These two structures both result from the product
of the segment with the circle, but the Mobius strip can only be seen as the cartesian product
[−1, 1]× S1 locally. Fiber bundles are in particular useful to make meaningful the notion of
parametrized vector space. The vector space (here the segment) is called the fiber, while the
space that parametrizes the fiber (here the circle) is called the base space.

Another intuitive example of a fiber-bundle is the family of tangent vector spaces to the
sphere S2. In that case, the vector space is the tangent plane to the sphere and the base space
is the sphere itself. The tangent vector bundle is thus the collection of all tangent vectors at
any point of the sphere. This vector bundle is also topological, and its twist can be seen in the
tangent vector field to the sphere, that necessarily has two vortices, which are precisely points
where the phase (i.e. the angle of the tangent vectors with respect to an arbitrary direction) is
multi-valued. The position of these singularities depends on the gauge choice, in the language
of physicists, or of the section of the fiber bundle as mathematicians would say. But the total
vorticity, equals to 2 in that example, cannot change. This is a topological invariant of this
fiber bundle, and this result is known as the hairy ball theorem.

The fiber bundles we are interested in resemble this hairy ball : the base space is also the
sphere S2 but the fibers (the hairs) are complex vector spaces made of all the eigenstates ψ
that only differ by a phase (or gauge choice), that is

F±(λ) = {eiχ±(λ)ψ±(λ), e
iχ±(λ) ∈ U(1)} . (30)

It is said that the fibers F±(λ) define the equivalent class of the states ψ±(λ) as they have the
same projector and thus describe the same physical state. For each mode ±, the fiber bundle
(of eigenvector bundle) of interest consists in the continuous collection of such U(1)-fibers
F+ or F−, where the base space is a sphere that encloses the degeneracy point. A two-fold
degeneracy point is thus associated with two eigenvector bundles.

There are many other fiber bundles, of different dimensions, of real or complex nature,
with group structures different from U(1), but this simple example already englobes many
interesting physical situations.

2.3.5 Chern number from the Berry curvature as an obstruction to Stokes theorem

To express the topological invariants of fiber bundles, one needs now to introduce some defini-
tions of differential geometry. The language of differential forms is particularly convenient to
reveal the topological and geometrical structures of physical systems. Of main importance to
characterize the eigenstates |ψn(λ)〉 of a quantum Hamiltonian that is smoothly parametrized
in Λ, or actually any eigenstates of a parametrized linear Hermitian eigenvalues problem of
the form

H(λ) |ψn(λ)〉= En(λ) |ψn(λ)〉 (31)

11

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.39


SciPost Phys. Lect.Notes 39 (2022)

λ

λ1

λ2

Ψ eiϕ2

Ψ eiϕ1

F±

P±

Smooth gauge 1
(North) 

Smooth gauge 2 
(South)

Berry-Chern
 monopole

Fiber Fiber F±

Figure 2: (a) U(1) fiber-bundle as a continuous collection of fibers F over the sphere
defined in parameter space λ. Two states in the same fiber only differ by a phase;
they thus have the same projector onto the base space. The impossibility to define
smoothly this phase over the base space is a manifestation of the topological property
of the fiber bundle, encoded into the Chern number. (b) This Chern number is the
quantized flux through the sphere of the Berry curvature generated by the degeneracy
point, called Berry monopole. The existence of a non-zero Chern number imposes
the 1-form Berry connection to be defined smoothly only piecewise.

that one can encounter in particular in wave physics, are geometrical tools introduced by
Berry and Simon, called Berry connection and Berry curvature [45, 46]. The Berry connection
is a 1-form defined from each parametrized eigenstate as3

A(n)(λ)≡ i 〈ψn|d |ψn〉

= i 〈ψn|
∂

∂ λ j
|ψn〉dλ j

≡A(n)j (λ)dλ j ,

(32)

where the sum over the j index is implicit.4 The one-form Berry connection is not gauge
invariant : when a U(1)-gauge transformation is performed on a state as

|ψ〉 → eiχ(λ) |ψ〉= |ψ̃〉 , (33)

then the Berry connection transforms as

A(n)→ Ã(n) = i 〈ψ̃n|d |ψ̃n〉 (34)

= −dχ +A(n) . (35)

This is very analogous to a vector potential in electromagnetism, where moreover the lan-
guage of differential forms automatically allows us to work in arbitrary dimension, where the
notion of e.g. the curl becomes obscure. Similarly to electromagnetism, one can introduce the
equivalent of a magnetic field, called the Berry curvature, as

F (n)(λ)≡ dA(n)(λ) (36)

=
∂ A(n)j

∂ λi
dλi ∧ dλ j , (37)

3This definition fits the one of Berry and Simon but differs by a minus sign from the one mostly encountered in
solid states physics when dealing with Bloch bands.

4We keep the upper index to denote the band index.
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where the implicit sum now runs over i and j. Because of the anti-symmetry
dλi ∧ dλ j = −dλ j ∧ dλi of the wedge product ∧, one has

F (n)(λ) = 1
2

�

∂

∂ λi
A(n)j −

∂

∂ λ j
A(n)i

�

dλi ∧ dλ j (38)

≡
1
2

F (n)i j dλi ∧λ j , (39)

where the second equality defines the coefficients F (n)i j (λ) of the 2-form Berry curvature F (n).
Those are left invariant under the U(1)-gauge transformation (33). Consistently, they are
observable quantities that manifest themselves for instance in the semi-classical equations
of motion of wavepackets travelling in spatially slowly varying media, and in the adiabatic
evolution of quantum states [47–52].

Mathematically, this gauge invariance of the Berry curvature is straightforwardly inferred
from the formalism of differential forms. Indeed, at this stage, we have introduced the Berry
curvature as a 2-form that derives from of the 1-form Berry connection by taking the exterior
derivative d. Such a construction is called an exact form (see appendix B), and it is known as
a theorem that the exterior derivative of an exact form vanishes. Therefore, under the gauge
transformation (33), the Berry curvature transforms as F → F − d2χ = F .

A very subtle and crucial point is that the Berry curvature may actually not be an exact
form for every λ ∈ Λ. The topology arises precisely in such a situation, as the obstruction to
define globally the Berry curvature as F(λ) = dA(λ) for every λ. In that case, this equality is
only valid locally, i.e. on sub-domains of Λ, and A(n)(λ), (and consequently dA(n)(λ)), is only
piecewise well-defined. This is precisely the case when the phase of the eigenstates, such as
ψ± (see (24)) of the symbol Hamiltonian HS for the spin S = 1/2, cannot be smoothly defined
over Λ.

As we shall see, the obstruction to define globally the phase of the eigenstates, or equiva-
lently their Berry curvature, is captured quantitatively by an integer-valued topological num-
ber, called the first Chern number, expressed as

Cn ≡
1

2π

∫

S2

F (n) ∈ Z . (40)

Again, there is a strong analogy with electromagnetism, where the expression (40) of the
Chern number is given by the flux of the Berry curvature. This analogy can be pushed further
by expressing the coefficients F (n)i j of the Berry curvature as

F (n)i j (λ) = i
∑

m 6=n

〈ψn|∂λi
H |ψm〉 〈ψm|∂λ j

H |ψm〉 − 〈ψn|∂λ j
H |ψm〉 〈ψm|∂λi

H |ψm〉

(En(λ)− Em(λ))2
, (41)

which is obtained by differentiating (31) and inserting it into (38). This formula has a practical
interest, and we shall use it in a next section to compute analytically the Berry curvature for
a general spin-S model. For now, let us stress that the denominator of (41) reveals that the
amplitude of the Berry curvature of a band n increases as this band gets closer to the other
bands m in parameter spaceΛ. In particular, the Berry curvature diverges at a degeneracy point
(provided the numerator is regular). For that reason, degeneracy points (or band crossing
points) play the role of point-like source of the Berry curvature. The Chern number number
(40) can then be understood as the (topological) charge of this monopole, with the (close)
surface of integration S2 enclosing the degeneracy point λ? in Λ space. Analogies with the
magnetic monopole are naturally often made, since the quantization of the electric charge
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was found by Dirac to be a consequence of the obstruction to smoothly define the vector
potential that couples to the quantum wavefunction around such monopoles. Note however
that a N -fold band crossing points – that we dub here Berry-Chern monopoles – imply N bands,
and thus N fiber bundles, each of them being characterized with a Chern number Cn. Such
degeneracy points are thus associated with N topological charges rather than a single one.
In the simple case of two-band crossing points, which are the most often encountered in the
literature, such as Weyl points, this terminology of topological charge is currently used without
too much ambiguity, because the two Chern numbers are necessarily opposite. This follows
from the important property of the Berry curvature that satisfies

∑

n

F (n)i j (λ) = 0 , (42)

where the sum runs over all the bands n. This property, that can be derived from the expression
(41), yields the important relation on the Chern numbers

∑

n

Cn = 0 . (43)

Thus, an N -fold degeneracy point λ? ∈ Λ is characterized by N Chern numbers Cn satisfying
this constraint. We refer here to such points as Berry-Chern monopoles.

To see how the Chern number (40) captures the obstruction to smoothly define the eigen-
states (or to have the Berry curvature as an exact 2-form) globally, let us apply Stokes theorem
(B.5)

∫

S2

F =
∫

S2

dA=
∫

∂ S2

A , (44)

(where we drop the band index when unecessary). Since the sphere S2 is a closed surface, it
does not have a boundary (i.e. ∂ S2 = 0), so that the right hand side member of this equality
always vanishes. This result is only valid if F = dA everywhere on the domain of integration.
If, on the other hand, the equality F = dA only holds piecewise, then Stokes theorem cannot
be used over S2. For that reason, it is said that the Chern number is an obstruction to Stokes
theorem. Let us illustrate this point with the eigenstate ψ+ of the spin 1/2 problem. We saw
in Eqs. (27) and (28) that such a state can only be smoothly defined piecewise, in different
gauges, and therefore so is the Berry connections

A= i 〈ψ|∂θ |ψ〉dθ + i 〈ψ|∂φ |ψ〉dφ (45)

leading to

south gauge: χ = 0 A(+)S = cos2 θ

2
dφ forθ 6= 0 , (46)

north gauge: χ = π A(+)N = − sin2 θ

2
dφ for θ 6= π . (47)

The introduction of the Berry curvature as the derivative of the Berry connections F = dA
must accordingly be performed over the corresponding domains, associated with the two dif-
ferent gauge choices. The Chern number can then be computed via Stokes theorem by cutting
the sphere on different patches where this equality makes sense, for instance over north hemi-
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sphere (NH) and south hemisphere (SH) respectively, as illustrated in figure 2 :

C+ =
1

2π

∫

S2

F+ (48)

=
1

2π

∫

NH

F+ +
1

2π

∫

SH

F+ (49)

=
1

2π

∫

NH

dAN
+ +

1
2π

∫

SH

dAS
+ , (50)

so that Stokes theorem can be safely used to get

C+ =
1

2π

∫

∂NH

AN
+ +

1
2π

∫

∂ SH

AS
+ , (51)

where the boundaries ∂NH and ∂ SH are any common path γ that does not cross a pole, and
are oriented in opposite directions for the two domains, so that

C+ =
1

2π

∫

γ

AN
+ −AS

+ . (52)

The two connections involved are defined on domains where the eigenstates |ψN
+〉 and |ψS

+〉
are related by the gauge transformation (29). According to (35), the Berry connections AN

+
and AS

+ inherit this relation as

AN
+ =AS

+ − dφ (53)

the Chern number is directly inferred as

C+ =
1

2π

∫ 2π

0

−dφ = −1 . (54)

Conversely, one finds C− = +1 if ψ− is considered instead of ψ+, consistently with the con-
straint (43). The Chern numbers C± of the symbol Hamiltonians HS thus satisfy the monopole-
spectral flow correspondence (17) for the spin 1/2 band crossing problem.

Let us conclude this section by a few remarks on the computation of the Chern numbers.
First one can check the value of the Chern number by inserting the expressions of the Berry
connections A(+)S and A(+)N in (52) and then taking the path γ as the equator of S2, that is
θ = π/2. In passing, one can also check that these two different expressions for the Berry
connection indeed yield the same Berry curvature F+ = −1

2 sinθdθ ∧ dφ whose expression
is valid for any θ . A direct integration of this quantity over S2 in spherical coordinates also
consistently yields C+ = −1. However, let us stress that the calculation of the Chern number
presented above actually did not require the explicit computation of the Berry connection,
neither that of the Berry curvature. It only lies on the gauge transformation between the
different patches where the eigenstates are well-defined. This can be slightly rewritten with

|ψ〉 → |ψ̃〉= eiχ(λ) |ψ〉 , (55)

A→A+ ie−iχdeiχ , (56)

where eiχ ∈ U(1) is called the transition function, and the Chern numbers then correspond to
the winding numbers of this function

C = 1
2π

∫

γ

A− Ã= − 1
2πi

∫

γ

e−iχdeiχ . (57)
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2.4 Spectral flow from the Berry-Chern monopole of the symbol : a simple
methodology

2.4.1 Predicting a spectral flow from 2D and 3D dispersion relations

At this stage, we have verified the monopole - spectral flow correspondence (17) for spin
1/2 models with a linear band crossing point. It is worth stressing that the correspondence
(20) between the symbol and the operator allows one to predict a spectral flow, that is the
relevant physical information, from the symbol Hamiltonian which is a much simpler object
to manipulate. This provides us with a powerful tool, especially because in the cases we
address here, the symbol’s spectrum is nothing but the dispersion relation of the homogeneous
system. A generic method to predict a spectral flow therefore consists in looking for a band
crossing in the dispersion relation that appears as point in a 3D parameter space. This is
actually the standard situation for two-band crossings in the absence of symmetry, according
to Wigner-von-Neumann theorem. The computation of the Chern number, detailed in the
previous section, may seem technical to non familiar readers. But, since generic band crossings
only involve two bands, the effective Hamiltonian describing locally such crossings is the spin
1/2 Hamiltonian we have discussed, up to unitary transformations, so that the Chern numbers
can only be +1 or −1. Therefore, it is sufficient to find out a band crossing point with a linear
dispersion relation (which is an easy task) in order to predict a spectral flow of one mode
(which is much more involved to find in full generality). If the band-crossing point involves
more bands and/or a nonlinear dispersion relation, then a careful treatment of the Chern
numbers must be done. This is the purpose of the section 3.

To guarantee the emergence of a spectral flow, one needs to turn the symbol problem,
that describes an homogeneous system, into an inhomogeneous one described by the operator
problem. The examples discussed in the first section provides two physical recipes to perform
such a transformation, depending on the dimension of the system. Those two methods remain
valid even beyond two-fold band crossing points with a linear dispersion relation.

If, on the one hand, the physical problem is three-dimensional, (i.e. the dispersion relation
E(k) is such that k is three-dimensional), then one must look for a physical mechanism that
turns two of the three components of the wave number k into canonical conjugate variables.
This is what happens when one uses the minimal coupling to account for the application of a
magnetic field in Weyl semi-metals. The spectral flow then consists in the transfer of the lowest
Landau level leading to a bulk propagating mode in the direction parallel to the magnetic field.
This propagating mode leads to a current when an electric field is applied (provided the mode
crosses the Fermi energy), which is interpreted as a signature of the chiral anomaly.

If, on the other hand, the physical system is two-dimensional, (i.e. the dispersion relation
E(k) is such that k is two-dimensional), then one must look for a third parameter to be tuned
such that it changes sign when a gap between wavebands closes. This is the role of the mass
term in the 2D massive Dirac problem. Note that the symmetries are a good guide to reveal
such a parameter: Indeed, degeneracy points generically occur when a symmetry is excep-
tionally restored in the problem, such as inversion or time reversal. The parameter playing
the role of the mass term must thus break such a symmetry. The operator Hamiltonian is then
obtained when considering that the mass term becomes a smooth function of space m(x), and
a spectral flow is expected along the perpendicular direction ky if m(x0) vanishes at some x0.
This necessary vanishing of m(x) in the inhomogeneous problem, is the dual (i.e. operator)
counter-part of the vanishing of the parameter m in the homogeneous problem, which is at
the source of the Berry-Chern monopole. The physical interpretation of that spectral flow is
that of an uni-directional interface mode, i.e. a wave confined in the perpendicular direction
(x) to the line m(x0) = 0 but that propagates along the interface (y) in one direction only.
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2.4.2 Bulk-interface correspondence in 2D

The trapped unidirectional modes of the spectral flow in 2D inhomogeneous systems look
very much like the topological chiral edge states propagating along the boundary of two-
dimensional quantum Hall like systems, i.e. Chern insulators.

Let us recall that Chern insulators are band insulators whose energy (or frequency) Bloch
bands n are characterized by a Chern number Cn. Those band Chern numbers are given by the
integral of the Berry curvature of each Bloch bundle (the fiber bundle of Bloch eigenstates)
over the 2D Brillouin zone. The periodicity in both directions of the 2D Brillouin zone (BZ)
making it equivalent to a 2-torus T2 torus, the band Chern number reads

Cn =
1

2π

∫

BZ∼T2

F (n)(k) . (58)

In contrast, the surface of integration of the Berry curvature we considered for the monopole
Chern numbers Cn encloses a degeneracy point in R3\{λ?} space.

The band Chern number (58) characterizes the obstruction to smoothly define the phase
of the Bloch eigenstates over the Brillouin zone. Time-reversal symmetry must be broken for
the band Chern number to be non-zero. A non-zero band Chern number of a (homogeneous)
periodic system, guarantees the existence of a unidirectional (chiral) edge mode that mani-
fests itself as a spectral flow in the non-periodic system with boundaries. This is the celebrated
bulk-edge correspondence [53–55]. There is a close connection between the bulk-edge corre-
spondence and the monopole - spectral flow correspondence for 2D systems, since an interface
between two distinct Chern insulators can be described by a single Hamiltonian operator with
a varying mass term whose sign controls the topological transitions between the two band in-
sulators. Let us illustrate this point with a canonical model for Chern insulators: the Haldane
model [28]. It consists of a honeycomb lattice model, with real nearest neighbours couplings
(essentially the tight-binding model of graphene), plus complex hopping eiφ terms to second
nearest neighbours, thus breaking time-reversal symmetry, and a on-site staggered potential∆
that breaks inversion symmetry (see figure 3 (a)). This two-band model displays three topo-
logically distinct phases with C± = 0,±1,∓1, depending on the competition between the two
gap opening mechanisms controlled by φ and ∆, and are separated by gap closing points (in
orange and blue in figure 3 (b)).

Those gap closing points occur around one of the two valleys K and K ′ of the graphene
dispersion relation (figure 3 (b)). At low energy (i.e. around E = 0), this gap-opening man-
agement is controlled by two valley dependent mass terms mK and mK ′ . The topological
transitions between two distinct Chern phases are thus encoded into a low energy descrip-
tion around each valley K or K ′. In that limit, the Haldane model reduces to two 2D valley
dependent Dirac Hamiltonians with a distinct mass mK or mK ′ , that depend on the two param-
eters of the lattice model, ∆ and φ. These Dirac Hamiltonians can be interpreted as symbol
Hamiltonians parametrized respectively in (δkx ,δky , mK(′)) parameter spaces with δk a small
expansion around the valley K(

′). Those symbol Hamiltonians have a Berry-Chern monopole
that coincides with the transition between the two insulators, i.e. for mK(′) = 0. The interface
problem of a Chern insulator with a trivial one is therefore captured by Hamiltonian operators
Ĥop when taking a mass varying term mK or mK ′ (path 1 in figure 3), say in the x direction.
The values C± = ∓1 of those Berry-Chern monopoles agree with the difference of bulk Chern
numbers of the Bloch bands between the two insulators, and the associated spectral flow cor-
responds to the interface chiral mode.

Interestingly, the monopole-spectral flow correspondence can also be used to describe a
transition between two trivial insulators (path 2 in figure 3). In that case, the bulk-edge cor-
respondence predicts no interface state, because the band Chern numbers C± of the Bloch
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Figure 3: (a) Haldane model on the honeycomb lattice. (b) Phase diagram of the
Haldane model. The topologically distinct insulating phases are characterized by
the bulk Chern number C± of each Bloch band over the Brillouin zone. They are
separated by a gap closing point at either k = K or k = K ′. The gap amplitude is
controlled by valley-dependent mass terms mK and mK ′ . Along the path 1, the gap
closes at a single valley.

bands of both insulators are zero. However, the parameter ∆, that breaks inversion symme-
try, is varied when going from one insulator to the other one, and the gap closes when this
parameter changes sign. At the gap closing point, the mass terms associated to each valley
mK and mK ′ vanish and one recovers the usual graphene model with two Dirac points. The
monopole-spectral flow correspondence is local in parameter space, and thus applies for each
band crossing point, and not to the bulk Bloch bands at fixed ∆. Chern numbers CK

± and CK ′
±

of the Berry-Chern monopoles can thus be computed for each valley, like previously, and are
actually opposite to each other. It follows that the interface problem, that is when ∆ is varied
in space and changes sign, manifests a double spectral flow which is opposite in each valley,
as illustrated by the numerical spectrum of the Haldane model for a sharp interface in figure
4. This is the (quantum) valley Hall effect, and the Berry-Chern monopole is reminiscent of
the so-called valley Chern number [56,57]. This phenomenon triggered particular interest in
classical analogs of topological materials due to the experimental ease to break inversion sym-
metry [10, 11, 58]. Note that because the monopole-spectral flow correspondence is local in
parameter space, it actually does not require the system to be an insulator: gap inversion can
be performed in a given valley, while the bands always touch somewhere else in the Brillouin
zone, giving rise to topological spectral flows in (semi-)metallic like systems, where the band
Chern numbers are ill defined [59].

Finally, we should also stress that the monopole-spectral flow correspondence is particu-
larly suitable to investigate the existence of unidirectional waves in continuous media [15,60–
62]. In the absence of a lattice, and thus without a Brillouin zone, there is no natural close
surface to integrate the Berry curvature over, and therefore, in general, no well-defined band
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Figure 4: Numerical spectrum of a sharp interface between Haldane models with
opposite staggered potential ∆, in a strip geometry, finite in the x direction and
infinite in the y direction. the color represent the mean position of the eigenstate in
the x direction. The two valleys host opposite spectral flows, corresponding to valley
polarized counter propagating modes localized in the middle of the strip where ∆
changes sign. In contrast, the two flat bands edge states do not contribute to the
spectral flow.

Chern number. Indeed, the Hamiltonian describing the homogeneous system depends then
on the wavenumber k ∈ R2 in the (open) plane. Although the plane can be compactified into
a sphere, such Hamiltonians in the continuum do not always have, in general, the required
regularization properties at infinity such that the fiber bundle can be properly defined over this
base space (i.e. the plane or the sphere after a compactification procedure). In other words,
for a given waveband defined for k ∈ R2, the integration of the Berry curvature over R2 is not,
in general, a Chern number, and even when it is, the bulk-edge correspondence is modified in
a subtle way [63]. However, in any case, the monopole Chern numbers C are still well-defined
as soon as a band crossing point is found. Put differently, unidirectional interface states are
still well defined as topological waves, even though the interface separates two bulk domains
that have ill-defined topology because of their ill-defined band Chern numbers. In that case,
the Berry-Chern monopoles are the natural and sufficient objects to consider.

To sum up, the same monopole-spectral flow correspondence naturally captures, at the
same time, the interface states in Chern insulators, valley Hall insulators, semi-metallic systems
and continuous media, as well as the bulk current of Weyl semi-metals in a magnetic field.

2.4.3 A polariton-like toy model

The goal of this paragraph is two-fold: First, to illustrate how to construct a toy model of a
wave coupled to a resonator that generates a topological spectral flow; and second, to point
out that a spectral flow does not necessarily imply the existence of uni-directional modes.

Consider a non-dispersive wave of frequency ω = ckx that travels through a resonator of
frequencyΩ. If the wave travels freely in the media, (i.e. if it does not couple to the resonator),
the resulting dispersion relation of the system is simply given by the superposition of the two
branches ω1 = ckx and ω2 = Ω. This obviously gives a linear band-crossing at Ω = ckx , but
in a 1D parameter space, spanned by kx only. To get topologically guided modes out of this
simple situation, one needs to embed this two-fold degeneracy point in a larger, i.e. three-
dimensional, parameter space (kx , ky , m(y)). That is, one needs to couple the wave with the
resonator to make new modes (in the spirit of a polariton [64–70]) but in such a way that it
involves the wave number ky and an external or internal parameter m. Moreover, in order
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Figure 5: Frequency spectra of the polariton-like toy model for (a) the homogeneous
(symbol Hamiltonian) problem, and (b) and (c) the inhomogeneous (operator Hamil-
tonian) problem, for (b) m(y)∝ y and (c) m(y)∝−y . The dashed line indicates
the absence of a direct gap.

to embed the degeneracy point in the three-dimensional space, one sees that such a coupling
γ(ky , m)must enter as a complex number, so that the Hamiltonian decomposes over the three
Pauli matrices. One ends up with the following ”polariton-like” toy model Hamiltonian

�

ckx γ∗(ky , m)
γ(ky , m) Ω

��

ϕ1
ϕ2

�

=ω

�

ϕ1
ϕ2

�

, (59)

where ϕ1 and ϕ2 are complex numbers.

Its eigenfrequenciesω± =
ckx+Ω

2 ±
È

�

ckx−Ω
2

�2
+ |2γ(ky , m)|2, are degenerated at the point

(k0
x =

Ω
c , k0

y , m0)with γ(k0
y , m0) = 0 by construction. Because this is a two-band crossing point,

it generates a non-zero Berry-Chern monopole in (kx , ky , m) space. If, moreover, γ(ky , m)
varies linearly with ky and m around the degeneracy point, so that the relation dispersion is
linear around the band crossing point, then its topological charge is |C±| = 1. For the sake
of simplicity, we choose γ = ky + im, and plot the eigenfrequencies in figure 5. With this
choice, this classical toy model looks like the 2D spin S = 1/2 massive Dirac Hamiltonian,
except that the dispersion relation is tilted such that there is no direct gap. This however does
not prevent the existence of a spectral flow which is guarantied in the dual inhomogeneous
operator problem defined after the substitutions m → m(y) and ky → −i∂y provided m(y)
changes sign.5 The value of the spectral flow ∆N± is given by −C±. The gain or the lost of
a mode (say) in the band +, is then fixed by the sign of C+. This sign of the Chern numbers
C± is reversed when reversing the mass term m → −m in the model, and accordingly the
spectral flow is reversed if m(y) is a decreasing function of y instead of an increasing one.
As shown in figure 5 (b) and (c), this has a strong incidence on the physical behavior, since
an unidirectional mode is obtained when m(y) is an increasing function of y , while a non-
propagating flat interface mode is obtained for a decreasing m(y). Note that in both cases,
there is not a direct gap. This is the cause of the absence of two counter propagating interface
modes when swapping the sign of the mass term.

The general model addressed in the next section also exhibits non-chiral, non uni-direct-
ional spectral flows of non-zero energy modes, and spectral flows without a gap in the spectrum
of the operator, in a natural and systematic way.

5We have assumed for simplicity that the celerity c is a constant. Otherwise, the correspondence with the
operator is slightly more involved.
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3 Berry-Chern monopole - spectral flow correspondence beyond
linear two-band crossings

3.1 h.Ŝ models

3.1.1 Motivations and generalities

In the first part of this manuscript, the monopole-spectral flow correspondence was discussed
from the example of a spin 1/2 Hamiltonian, that is, for linear two-band crossings. Actually,
the correspondence is neither restricted to two-fold band crossing points, nor to linear disper-
sion relations. In particular, a spectral flow of Landau levels was computed for a spin S = 1
generalization of Weyl semi-metals [27] and even for arbitrarily higher values of S [19]. In
the realm of classical physics, the spectral flow of oceanic and atmospheric equatorial waves
obtained from the rotating shallow water model, that involves a three-band crossing point,
was shown to have a topological interpretation from its symbol [15,71]. Remarkably, the spin
1 semi-metals under a magnetic field on the one hand, and the rotating shallow water model
on the other hand, display both the exact same spectrum and carry the same Berry-Chern
monopoles induce by three-fold degeneracy points. Although these two systems are physically
radically distinct, they are in fact both described with the same spin S = 1 generalizations of
the 3D Weyl semimetals and of the 2D massive Dirac particle examples, respectively. In that
case, the Chern numbers take the values C = {0,±2}, and the spectral flow increases accord-
ingly, so that the correspondence is satisfied. This spectral flow corresponds to a transfer of
two Landau levels in the first case, and to the existence of two eastward propagating waves
trapped along the equator, in the second one.

The goal of this section is to discuss the generalization of the monopole-spectral flow cor-
respondence beyond both the spin 1/2 case, and linear dispersion relations. For that purpose,
we will focus on models, that we shall dub h.Ŝ models, as their symbol Hamiltonians read

HS = h(λ).Ŝ , (60)

with h ∈ R3. λ ∈ R3 is a set of three parameters, including classical conjugate variables that one
needs to quantize to obtain the operator Hamiltonian. Ŝ is abusively called the spin operator:
ħh has been removed from the usual definition, but its three components form an irreducible
representation of the su(2) algebra embedded in su(N) [Ŝα, Ŝβ] = iεαβγŜγ, where εαβγ is the
Levi-Civita symbol and {α,β ,γ} = {x , y, z}. It is worth stressing that the h.Ŝ models do not
necessarily involve any actual spin. It turns out that such a structure also appears naturally in
purely classical waves problems (an example is detailed in the appendix C). What only matters
is this algebraic structure that is convenient to derive analytical results.

We choose z as the quantization axis of Ŝ. Thus Ŝz is diagonal in the spin projection basis
|mS〉

Ŝz |mS〉= mS |mS〉 , (61)

with mS taking the 2S + 1 integer or half integer values

mS = −S,−S + 1, . . . , S − 1, S . (62)

In the following we will also make use of the spin ladder operators

Ŝ± = Ŝx ± iŜy (63)

that satisfy

Ŝ± |mS〉=
Æ

S(S + 1)−mS(mS ± 1) |mS ± 1〉 . (64)
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As we shall see, an elegant general expression of the Chern numbers of h.Ŝ models can
be obtained analytically. After deriving this expression, we shall choose a specific h.Ŝ model,
already introduced by Ezawa [19], for which we will not only directly obtain the Chern num-
bers but also investigate the operator Hamiltonian and its spectral flow. To do so, we will
introduce a second index, in the spirit of the index of Dirac operators, and compute it to ver-
ify its equality with the Chern number, in agreement by the Atiyah-Singer theorem, which is
the most advanced and abstract formulation of the monopole-spectral flow correspondence.
Finally, we will construct the solutions of such a model and plot the different spectral flows.

3.1.2 Chern numbers of the h.Ŝ models

It is instructive to decompose the computation of the Chern numbers Cm for the Hamiltonian
(60) into two steps, by focusing first on the linear case h(λ) = λ for an arbitrary spin S before
generalizing to arbitrary functions h(λ). This will allow us to distinguish two contributions to
the Chern numbers.

Revisiting Berry’s original problem. Let us start by setting h(λ) = λ in (60). The Hamilto-
nian

HS = λ. Ŝ (65)

is then formally equal to that of a quantum spin coupled to a magnetic field λ = −µBB with
µB the Bohr magneton. This model was discussed by Michael Berry in its seminal paper [45]
to introduce the geometrical phase accumulated by a quantum state |ψmS

〉 after varying adia-
batically the magnetic field along a loop in space. The adiabaticity invoked here imposes the
eigenstates |ψmS

〉 of HS to remain eigenstates during the evolution while B is varied. In our
formal model, λ is not physically varied in time; it is just a parameter of the Hamiltonian and
of its eigenstates.

To compute the geometric phase of the eigenstates of HS , Berry computed the 2-form
Berry curvature. The Berry phase is then obtained by integrating this curvature along a close
path, while the Chern number is obtained after integrating the Berry curvature over a close
surface. Berry’s computation of the curvature is based on the expression (41) of the coefficients
F (mS)

i j (λ), so that the curvature reads

FmS
(λ) = i

∑

p 6=mS

〈ψmS
(λ)|∂λi

HS |ψp(λ)〉 〈ψp(λ)|∂λ j
HS |ψmS

(λ)〉

(Ep(λ)− EmS
(λ))2

dλi ∧ dλ j . (66)

This expression of the Berry curvature can be cumbersome to manipulate in cartesian coordi-
nates, especially when one aims at integrating it over the sphere to get the Chern numbers.
It is thus much more judicious to work in spherical coordinates, and the symbol Hamiltonian
then becomes

HS = |λ|n(θ ,φ) · Ŝ , (67)

where the normalized vector λ/|λ| ≡ n(θ ,φ) = (sinθ cosφ, sinθ sinφ, cosθ ) gives the orien-
tation of λ in R3, with θ and φ the usual polar and azimuthal angles in the laboratory frame
respectively. Our three abstract parameters {λi} in (66) must now be understood as the new
coordinates {|λ|,θ ,φ}. One now needs to express explicitly HS with those new variables, so
that one can effectively differentiate it according to (66).

Note that there is an ambiguity here about what |ψmS
〉means. Indeed, mS refers to the pro-

jection of the spin onto a quantization axis. Usually, in problems involving a Zeeman coupling,
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the magnetic field’s orientation is fixed, and canonically provides the axis of quantization. Here
the situation is more subtle, since the orientation of the magnetic field, given by n(θ ,φ), is
not fixed, so one must precise which axis we refer to when writing |ψmS

〉. Let us thus fix the
quantization axis, called z, in the laboratory frame. Then one writes |mS ,n〉 to refer to an
eigenstate of HS , and |m,ez〉 to refer to an eigenstate of Ŝz i.e.

Ŝz |mS ,ez〉= mS |mS ,ez〉 , (68)

HS |mS ,n〉= |λ|mS |mS ,n〉 , (69)

where Ŝz = ez · Ŝ. The eigenstates that intervene in the Berry curvature (66) must therefore
be understood as |ψmS

〉 ≡ |mS ,n〉.
The operator Ŝz is related to the Hamiltonian n · Ŝ by a rotation, represented by a unitary

operator U(θ ,φ) that depends on the longitudinal and azimutal angles as

n(θ ,φ) · Ŝ≡ U(θ ,φ)ez · Ŝ U†(θ ,φ) = U(θ ,φ) Ŝz U†(θ ,φ) . (70)

This relates the eigenstates of the ”rotated” Hamiltonian H(θ ,φ) to those of Ŝz as

|mS ,n〉 ≡ U(θ ,φ) |mS ,ez〉 . (71)

The rotation operator U(θ ,φ) is not uniquely defined. For instance, one can choose the rep-
resentation

U(θ ,φ) = e−iφŜz e−iθ Ŝy eiφŜz . (72)

The Berry curvature (66) can now be computed. It implies terms of the form 〈m,n|∂θHS |p,n〉,
〈m,n|∂φHS |p,n〉 and 〈m,n|∂|λ|HS |p,n〉, but one can notice that all the terms involving a
derivative with respect to the radius |λ| vanish, because they read 〈m,ez| p |p,ez〉 with m 6= p.
We are thus left with a pure angle dependence only. Recalling the expression of a rotation of
Ŝz by an angle θ around the y axis

e−iθ Ŝy Ŝzeiθ Ŝy = cosθ Ŝz + sinθ Ŝx (73)

one finds

〈mS ,n|∂θHS |p,n〉= |λ| 〈mS ,ez| Ŝx |p,ez〉 (74)

〈p,n|∂φHS |mS ,n〉= |λ| sinθ 〈p,ez| Ŝy |mS ,ez〉 . (75)

These quantities can be computed easily by using the spin ladder operators through the sub-
stitution Ŝx =

1
2(Ŝ+ + Ŝ−) and Ŝy =

1
2i(Ŝ+ − Ŝ−), and one ends up with the important result

FmS
= −mS sinθ dθ ∧ dφ , (76)

that was first found by Berry [45]. In this expression, one recognizes (see appendix B) the
surface form 4πΩS2 = sinθdθ ∧ dφ of the sphere S2 in spherical coordinates that satisfies
∫

S2 ΩS2 = 1. The Chern numbers are then readily obtained by integrating (76) over S2 so that

CmS
= −2mS . (77)

This result was originally derived in a different way by Avron, Sadun, Segert and Simon [72].
In the case of a spin 1/2, one recovers the result C± = ∓1 for the two eigenstates mS = ±1/2 as
derived previously. Higher values of the Chern number can then be reached for higher spins.
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Figure 6: Sketch of the Hamiltonian map h between the parameter space and the
target space. The degree of h is defined when considering the image Sh of a surface
Sλ0

that encloses the degeneracy point λ0. The points λ(1), λ(2) and λ(3) are examples
of pre-imagines that enter the formula (79) of the degree.

The Hamiltonian map and its degree. Let us now reintroduce the full h(λ) dependence in
the problem. We shall refer to λ → h(λ) as the Hamiltonian map h between the parameter
space of the λ’s and a target space R3 spanned by h. In others words, the image of λ by the
Hamiltonian map h is represented by a vector h ∈ R3 (see figure 6). As motivated in section
2.3.3, one can view the degeneracy points λ0 as defects in parameter space. Those defects can
be characterized by the way the Hamiltonian map transforms a surface Sλ0

enclosing λ0, into
a surface Sh in target space, that is by considering [73]

λ ∈ Sλ0
⊂ R3→ h(λ) ∈ Sh ⊂ R3 . (78)

Since those two surfaces are oriented manifold and have the same dimension, the maps h
between those spaces are classified according to their degree that tells whether Sh is a closed
surface surrounding the origin h= 0 and how many times it encloses it [73]. It reads

deg h≡
∑

λ(i)

sgn det





∂λ1
hx ∂λ1

hy ∂λ1
hz

∂λ2
hx ∂λ2

hy ∂λ2
hz

∂λ3
hx ∂λ3

hy ∂λ3
hz





�

�

�

h0

, (79)

where the matrix whose determinant is computed is the Jacobian matrix between the param-
eter space and the target space. The points λ(i), which the sum runs over, are called the
pre-images of h, and are associated to a given arbitrary direction n0 ≡ h0/|h0|, as they satisfy
h(λ(i))/|h(λ(i))| = n0. So in other words, the pre-images λ(i) are all the points of parameter
space whose image h(λ(i)) points in a fixed direction n0 (see figure 6). The value of the degree
does not depend on the choice of that direction, provided the determinant is not singular (i.e.
nonzero) for that choice.

The degree is obviously an integer number. This is a topological index in that it is invariant
under continuous changes of h. Two maps h1 and h2 having the same degree can thus be
continuously deformed one into each others; they are said to be homotopic. This homotopy
invariance makes free the choice of surfaces Sλ0

that surrounds the degeneracy point λ0 so
that one can choose it as being the unit sphere (see figure 6). The degree actually classifies

24

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.39


SciPost Phys. Lect.Notes 39 (2022)

the maps from spheres to spheres

λ ∈ S2→ h/|h| ∈ S2 , (80)

according to their homotopy properties. They are the elements of the homotopy group
π2(S2) = Z (and more generally that of πn(Sn) = Z). As for the maps h we deal with, the
degree is known to have an elegant geometrical interpretation: it counts how many times the
unit vector h/|h| in (80) wraps the unit sphere (see appendix B for more details).

To see explicitly how the degree alters the value of the Chern number, one must interpret
the result of the previous section as if the reasoning was performed in the target space. Namely,
the expression of the Berry curvature (76) must be understood in the space of h as if the
underlying λ dependence was ignored. However, we want to express the Chern number as an
integral of the Berry curvature over a surface (a sphere) that surrounds the degeneracy point
in parameter space Λ as

CmS
=

1
2π

∫

S2

FmS
(81)

=− 2mS

∫

S2

h?ΩS2 , (82)

where h?ΩS2 denotes the pull-back of ΩS2 by h; this is a procedure to formally define a differ-
ential form in parameter space when it is already defined in target space (see appendix B).
Actually this formal manipulation simplifies easily thanks to the Brouwer theorem, that relates
the integrals of a differential form to that of its ”pulled-back” as

CmS
= −2mS deg h

∫

S2

ΩS2 , (83)

where the integral acts now in target space and where deg h is precisely the degree of h. Again,
the integral that remains is 1 by definition, which leads to the final expression of the topological
charges of the Berry-Chern monopoles

CmS
= −2mS deg h . (84)

This is the general and practical expression of the Chern-Berry monopole for h.Ŝ models [74,
75].

One can easily check that one recovers C± = ∓1 for the 2× 2 Hamiltonians (mS = ±1/2),
since the degree (79) in that case is 1. It is worth noticing that the formula (84) clearly reveals
the two concurrent mechanisms that give the Chern numbers their values : the order of the
degeneracy (property of Ŝ) and the wrapping of the Hamiltonian map (property of h(λ)).

3.2 A specific h.Ŝ model

In this section, we propose a specific h.Ŝ model to decorticate the correspondence between the
spectral flow of an operator Hamiltonian and the Chern numbers of the fiber bundles associated
to the eigenstates of the symbol Hamiltonian. This model generalizes what was discussed in
the first part of the manuscript to (1) arbitrary integer and half-integer spins S ¾ 1/2 and (2)
higher order ladder operators â→ âd with d a positive integer. The operator Hamiltonian we
consider is a composition of spin ladder operators Ŝ± and bosonic ladder operators â and â†

that reads

Ĥop =
�

(â†)d Ŝ+ + âd Ŝ−
�

+λŜz . (85)
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Up to a factor 2, this new Ĥop coincides with the previously studied operator Hamiltonian
(Eqs (7) and (16)) when S = 1/2 and d = 1. It acts on a Hilbert space that decomposes as the
product of a Fock space F, where the number states |n〉 live, and a spin space S spanned by the
spin projections |mS〉. A vector of this space F⊗ S thus reads |n〉 ⊗ |mS〉 ≡ |n, mS〉. The action
of Ĥop on those states is then to shift the different components n and mS; it thus somehow
describes a dynamics on a lattice of coordinates (n, mS).

As we shall see, this model exhibits very rich spectral flows, depending on S and d. In the
limit |λ| � 1, which is precisely when the spectral flow modes join a branch, the term λŜz
is dominant, and one expects therefore the eigenstates |Ψ〉 of Ĥop to resemble the spin states
|ms〉, because the typical energy between two consecutive number states |n〉 and |n+ 1〉 in the
same branch must tend to zero. There is then a clear separation of energy (or time) scales,
such that the spin contribution λŜz (that one can associate to a fast motion), is dominant over
the âd Ŝ− and â†Ŝ+ terms that imply annihilation and creation operators (and that one can thus
associate to a slow motion). With this in mind, it is tempting, in order to capture the spectral
flow occurring for |λ| � 1, to approximate the system by an ”adiabatic” model, by substituting
the operator âd by its symbol. Such a transformation is a priori not straightforward, since the
symbol of a product of operators is in general not equal to the product of the operators of each
symbols [41, 42]. It turns out that this is however the case in our model, and we have the
simple correspondences

(λ1 + iλ2)
d ↔ âd , (86)

(λ1 − iλ2)
d ↔ (â†)d , (87)

where λ1 and λ2 are canonical conjugate variables in phase space. This mapping is a conse-
quence of a result derived long ago by Mac Coy [76], and that is re-derived by induction in
the appendix A.

One thus obtains the symbol Hamiltonian of the expected form HS = h(λ). Ŝ as announced
in (60), with

hx(λ) = 2 Re(λ1 − iλ2)
d (88a)

hy(λ) = −2 Im(λ1 − iλ2)
d (88b)

hz(λ) = λ . (88c)

The Hilbert space of the symbol Hamiltonian is reduced, compared to that of Ĥop, since
only the 2S+1 spin (fast) degrees of freedom are kept, but is parametrized by the slow degrees
of freedom that are accounted by the commuting (classical) variables. In that picture, the space
of fast motion is a fiber bundle over the phase space of slow variables [40,71].

In the next section, we introduce the analytical index of the operator Hamiltonian (85),
relate it to the spectral flow, compute it and compare its values to that of the Chern numbers
of HS with (88).

3.3 Analytical and Topological indices, a verification of the Atiyah-Singer theo-
rem

3.3.1 Chern numbers of the specific h.Ŝ model

The expression (84) of the Chern numbers is quite general. In this section we compute it for
the specific symbol Hamiltonian given by Eqs (88). One thus needs to compute the degree of
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such a Hamiltonian map h, which requires the determinant of the Jacobian matrix (79) :

det





∂λ1
hx ∂λ1

hy 0
∂λ2

hx ∂λ2
hy 0

0 0 1



=
∂ hx

∂ λ1

∂ hy

∂ λ2
−
∂ hx

∂ λ2

∂ hy

∂ λ1
. (89)

We have

(λ1 − iλ2)
d =

d
∑

α=0

�

d
α

�

λd−α
1 (−iλ2)

α , (90)

that we split into even α= 2k and odd α= 2k+1 contributions to get the real and imaginary
parts, so that

hx =2
∑

k¾0
2k¶d

�

d
2k

�

(−1)kλd−2k
1 λ2k

2 , (91)

hy =2
∑

k¾0
2k+1¶d

�

d
2k+ 1

�

(−1)kλd−2k−1
1 λ2k+1

2 . (92)

To compute the determinant (89), one then needs to take the derivatives of these terms. One
has

∂ hx

∂ λ2
= 2

∑

k¾1
2k¶d

(−1)k
�

d
2k

�

(2k)λd−2k
1 λ2k−1

2 , (93)

∂ hy

∂ λ1
= 2

∑

k¾0
2k+1¶d−1

(−1)k
�

d
2k+ 1

�

(d − 2k− 1)λd−2k−2
1 λ2k+1

2 . (94)

By setting k′ = k+ 1, one can rewrite the second equation as

∂ hy

∂ λ1
= −2

∑

k′¾1
2k′¶d

(−1)k
′
�

d
2k′ − 1

�

(d − (2k′ − 1))λd−2k′
1 λ2k′−1

2 , (95)

and notice that
�

d
2k′ − 1

�

(d − (2k′ − 1)) =

�

d
2k

�

2k , (96)

so that

∂ hy

∂ λ1
= −

∂ hx

∂ λ2
. (97)

Repeating this algebraic gymnastic for the cross derivatives terms yields now

∂ hx

∂ λ1
=
∂ hy

∂ λ2
(98)

and thus the determinant (89) satisfies

det





∂λ1
hx ∂λ1

hy 0
∂λ2

hx ∂λ2
hy 0

0 0 1



=
�

∂ hx

∂ λ1

�2

+

�

∂ hy

∂ λ1

�2

> 0 . (99)
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Therefore, each pre-image λ(i) contributes as +1 to to the degree (79), that is

deg h=
∑

λ(i)

1 . (100)

The computation of the degree now simply consists in counting the number of pre-images.
To complete this calculation, one must choose a direction n0 in the target space. The choice
n0 = ez is not an option, since it would imply that the expression (99) of the determinant
must be evaluated at λ1 = λ2 = 0 (as soon as d > 1), which yields a vanishing determinant.
Instead, one can choose any direction in the plane (ex ,ey), such that, e.g. n0 = ey . Using the
polar coordinates (λ1 − iλ2)≡ z = |z|eiθ , the number of pre-imagines to be determined is the
number of values θp that satisfy

hx = 2|z|d cos(θp d) = 0 (101)

hy = 2|z|d sin(θp d)> 0 . (102)

This involves

θp =
π

2d
+ 2π

p
d

, (103)

with p an integer. It follows that θ can take d different values on the circle to satisfy those
conditions, this means that there are d pre-images.

Finally, the degree of the hamiltonian map is therefore deg h = d and the values of the
Chern numbers of the symbol Hamiltonian for the model (88) are

CmS
= −2mS d . (104)

3.3.2 Spectral flow as an analytical index of Ĥop

We would like to introduce an index [37, 77–79] that accounts for the spectral flow of the
operator Hamiltonian Ĥop that we have introduced in equation (85). We expect then that
this index to be related to the the first Chern numbers (104), according to index theorems
[20,26,37,38].

In the first part, we introduced the notion of spectral flow from the canonical example of a
two-band model (Ĥop with S = 1/2 and d = 1) in a handwavy way, as the number of energy
levels that transit from one branch to another when a parameter λ is continuously varied.6

For this same model, the spectral flow can be defined more formally by a spectral index that
counts the net number of energy levels that move upward in the vicinity of Ẽ = 0 and λ = 0,
when sweeping λ. The existence of such an index is meaningful provided the spectrum Ẽ of
Ĥop is discrete within that window. This discreteness is guaranteed for this model since the
symbol Hamiltonian has the particular property of being an elliptic operator; its determinant is
non-zero except at the degeneracy point [26,71]. This spectral index is however not obviously
suitable beyond S > 1/2, since more than two bands are involved. Besides, as we shall see with
the specific Ĥop we introduced in (85), other spectral flows can exist between the different
branches, without crossing the spectral gap around Ẽ = 0 and λ = 0. We thus need to follow
a different strategy.

Alternatively, we could also define an index that counts the number of energy modes that
join or leave each branch when |λ| → ∞, without specifying an energy window around the
degeneracy point of HS . For that purpose, one can get some insights from another quite stan-
dard procedure to define a spectral flow, although more abstract, that was developed for Dirac

6See for instance page 99 of [39] for a much more rigorous and abstract definition.
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Operators [26, 78, 80]. Dirac operators are first order differential operators whose square
is a Laplacian. They decompose over 2N + 1 γ matrices which satisfy the Clifford algebra
γ jγk + γkγ j = 2δ jkI2N . This algebraic structure guarantees a chiral symmetry; namely, there
necessarily exists a unitary operator Γ that can be written as Γ = diag(IN ,−IN ) and that anti-
commutes with the Dirac Hamiltonian. It follows that the Dirac Hamiltonian can always take
an off-diagonal form as

HDirac =

�

0 D†

D 0

�

. (105)

For instance, in the particular case N = 1, the γ matrices reduces to the Pauli matrices and
D = ∂x + A(x) with A(x) a real function [26]. The chiral structure of the Dirac Hamiltonian
splits the Hilbert space into two chiral subspaces E−⊕ E+ defined from the spectral projectors
P+ ≡ 1

2(I2N + Γ ) = diag(IN , 0N ) and P− ≡ 1
2(I2N − Γ ) = diag(0N , IN ). A state living in E± is

thus an eigenstate of Γ with eigenvalue ±1, called the chirality. The two chiral subspaces are
related to each other as

E−
D̂†

�
D̂

E+ , (106)

where

D̂ =

�

0 0
D 0

�

, D̂† =

�

0 D†

0 0

�

. (107)

Structures such as (106), with nilpotent operators D̂, are referred to as complexes [26]. They
are associated to an index defined as [26,78,80]

ind D̂ ≡ dim Ker D̂− dim Ker D̂† , (108)

which is well-defined when the right-hand side member is finite. In that case, the index is
obviously an integer number, and is known to be robust under homotopic deformations. In
other words, multiplying D̂ by a nonzero number or by an operator which is connected to
Identity (such as a unitary) does not change the value of the index.

As we shall see in a moment, ind D̂ yields an important information about the spectrum of
the H. Indeed, this index counts the unbalance of zero energy modes of opposite chiralities.
The occurrence of such so-called zero modes is a fundamental property of fermions coupled
to gauge fields. Their investigation for Dirac operators has stimulated tremendous efforts in
high and low energy physics and in mathematics. Importantly for our purpose, the index of
Dirac operators is also related to the spectral flow of zero-modes. It is then tempting to apply
this machinery to Ĥop for S = 1/2 and d = 1, that is when the Hamiltonian operator Ĥop
reduces to that of 3D Weyl semimetals in a magnetic field (16) as well as that of 2D Dirac
fermions with an anisotropic mass (7). Indeed, in that case, and when we take λ= 0, Ĥop has
a similar form as (105) with D = â, D† = â†, and the index ind D̂ can easily be found to be
1 by a straightforward calculation, in agreement with the spectral flow previously computed.
However, this procedure seems to work only when λ = 0, since the chiral structure is lost in
the presence of λ. Moreover, and more importantly, Ĥop does not satisfy anyway such a chiral
symmetry beyond S = 1/2, meaning that Ĥ2

op is not a Laplacian, even when λ = 0. In other

words, Ĥop is not a Dirac operator.
One can nevertheless circumvent this difficulty and generalize the previous approach by

writing the operator Hamiltonian as

Ĥop =D+D† +λŜz , (109)
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with

D ≡ âd Ŝ−. D† = (â†)d Ŝ+ , (110)

that allows us to decompose the Hilbert space as

E−S
D†

�
D

. . .
D†

�
D

EmS−1

D†

�
D

EmS

D†

�
D

EmS+1.
D†

�
D

. . . .
D†

�
D

ES , (111)

where the subspaces EmS
are spanned by states |Ψ〉 = |p, mS〉 with arbitrary p ∈ N and fixed

mS . Actually, one can also associate an index to such a structure that counts the spectral flow
of Ĥop(λ).

Indeed, the spectral flow∆NmS
measures the unbalance of number states p inside a branch

mS , when λ is swept from −∞ to +∞. One can use D to introduce an index that measures
this unbalance, by noticing that Ĥop is invariant under the joint transformations λ→−λ and
Ŝz → −Ŝz . In other words, flipping λ has the same effect as flipping Ŝz . Since this transfor-
mation amounts to perform mS →−mS , then evaluating the spectral flow in a branch mS thus
amounts to counting what is left after pairing the states |p, mS〉 with |p′,−mS〉. Those states
respectively live in EmS

and E−mS
spaces, that are related to each other by D2mS , as sketched

in Fig. 7, and we have

D2mS |p ,+mS〉 =
d
∏

j=1

Æ

p+ 2mS( j − 1) |p− 2mSd,−mS〉 (112)

(D†)2mS |p′,−mS〉=
d
∏

j=1

p

p′ + 2mS j |p′ + 2mSd, mS〉 . (113)

Actually, the prefactors in Eqs. (112) and (113) are unimportant. What is important is the
asymmetry of the action of D2mS and (D†)2mS . Indeed, Eq. (113) indicates that any mode p′

in the branch mS for λ < 0 can be paired with a mode p = p′ + 2mSd in the same branch for
λ > 0, because p cannot be negative. In other words, (D†)2mS is injective, and we have

dimKer(D†)2mS = 0 . (114)

In contrast, D2mS associates a state |p′,−mS〉 ∈ E−mS
for each state |p, mS〉 ∈ EmS

with
p′ = p− 2mSd, but in a non-injective way, since

|p− 2mSd,−mS〉= 0 for p = 0 , . . . , 2mSd − 1. (115)

It follows that the number of modes at λ > 0 in the branch mS that do not have a pairing
partner in the same branch at λ < 0 through the action of D2mS , is given by

dimKerD2mS = 2mSd . (116)

The figure 7 summarizes this peculiar structure induced by D being almost invertible. The
unbalance∆NmS

of modes in a branch mS between λ > 0 and λ < 0 is finally given by the net
number of un-paired modes between EmS

and E−mS
as

∆NmS
= dimKerD2mS − dimKer(D†)2mS . (117)

The expression (117) is similar to that of the index of Dirac operators introduced above. It
is actually an index more generally associated to a class of operators called Fredolhm operators
[20, 26], which are invertible operators modulo a compact operator, and whose symbol is
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|2〉
|1〉
|0〉

|−mS〉⊗
|2mSd+ 2〉
|2mSd+ 1〉
|2mSd〉

⊗ |mS〉

EmS
(λ > 0)E−mS

(λ > 0) = EmS
(λ < 0)

(D†)2mS

D2mS

|2mSd− 1〉

|0〉

0

0

Figure 7: Sketch of the mappings (D†)2mS and D2mS between the two subspaces E−mS

and EmS
. Reversing λ amounts to reverse mS . The branch mS at λ > 0 has 2mSd

modes that do not have a paring partner for λ < 0. There are therefore 2mSd extra
modes in the branch mS for λ > 0 compared to λ < 0 (in red). All the other number
states can be paired with a number state of the space E−mS

, or equivalently EmS
with

λ < 0.

invertible. Here D2mS is Fredholm since it is invertible between EmS
and E−mS

, up to a finite
number (2mSd) of elements, and we have

∆NmS
= indD2mS , (118)

with

indD2mS = 2mSd , (119)

in the present case. The values of this Fredholm index are found to correspond to those of
the Chern numbers CmS

calculated in (104) for the corresponding symbol Hamiltonian, for
arbitrary spins S and integer d, which thus verifies explicitly the Atiyah-Singer theorem in that
case, or equivalently the monopole - spectral flow correspondence for this class of h.Ŝ models.7

The Berry-Chern monopole-spectral flow correspondence then naturally follows from (118) for
this class of h.Ŝ models.

In the next section, we diagonalize Ĥop to compute explicitly the spectral flows and their
associated eigenstates.

3.4 Eigenstates of Ĥop and verification of the monopole - spectral flow corre-
spondence

In this section, we aim at diagonalizing the operator Hamiltonian Ĥop as Ĥop |Ψ〉= Ẽ |Ψ〉 and
plotting its eigenvalues spectrum Ẽ as a function of λ beyond the Dirac case S > 1/2 and
d = 1, in order to check explicitly the monopole - spectral-flow correspondence as predicted
from the values of the Chern numbers (104) and the analytical index (119). For that purpose,

7The − sign difference between the analytical index and the Chern number comes from the convention
A = +i 〈ψ|d |ψ〉 of the Berry connection. They would have the same sign if one took instead the condensed
matter convention A= −i 〈ψ|d |ψ〉.
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we propose the following anzatz for the eigenstates

Anzatz A0 : |Ψ0〉=
S
∑

mS=−S

ψmS
|(S +mS)d + n, mS〉 , (120)

where again |n, mS〉 ≡ |n〉 ⊗ |mS〉 where |n〉 is a number state, i.e. that satisfies â†â |n〉= n |n〉
and |mS〉 is a spin state, i.e. it satisfies Ŝz |mS〉 = mS |mS〉. For each value of n, the anzatz A0
is a superposition of such 2S + 1 base states. If we wrote the spin operators in a matrix form,
the anzatz A0 would take the form of a vector of number states that would read













ψS |(2S)d + n〉
ψS−1 |(2S − 1)d + n〉

...
...

ψ−S+1 |d + n〉
ψ−S |n〉













. (121)

Consistently, one recovers the solution of the 2D Dirac and 3D Weyl operator Hamiltonians (8)
for the branches ± when S = 1/2 and d = 1.

By applying |Ψ0〉 to Ĥop and then projecting onto the states 〈n+ S − p, p|, one obtained
the eigenvalue equation























Sλ γS
γS

. . . . . . . . .
γmS+1 mS λ γmS

. . . . . . . . .
γ−S

γ−S −Sλ























︸ ︷︷ ︸

H(2S+1)
n























ψS
ψS−1

...
ψmS

...
ψ−S+1
ψ−S























= Ẽ(mS)
n























ψS
ψS−1

...
ψmS

...
ψ−S+1
ψ−S























, (122)

where we have introduced the coefficients

γmS
=
Æ

S(S + 1)−mS(mS − 1)
d−1
∏

j=0

Æ

(S +m)d + n− j , (123)

which depend on S, mS , n and d. The upper index mS in Ẽ(mS)
n , which is the spin projection

along z, can be seen as the branch index, which accordingly varies from −S to S by integer
or half integer values. The lower index n labels the discrete levels into each branch mS . The
matrix H(2S+1)

n to be diagonalized has a size (2S + 1)× (2S + 1) and is defined for a fixed n.

Its characteristic polynomial P(2S+1)
n ≡ det(H(2S+1)

n − Ẽ(mS)
n Id) is therefore of degree 2S + 1 in

Ẽ(mS), and has real coefficients.8 For each n ∈ N, the secular equation P(2S+1)
n = 0 yields 2S+1

real solutions, corresponding to a given mode n in each of the energy branches. The entire
spectrum of Ĥop is finally the list {Ẽ(mS)

n } for all n ∈ N and for each branch mS . Similarly,
the coefficients ψmS

should also depend on n. To simplify the notation, and because it is not
crucial in the computation of the eigenvalues spectra, we will abusively write ψmS

to refer to
amplitudes with possibly different n. The spectra obtained for different values of S and d with
the anzatz A0 are shown in figure 8.

8Do not confuse the degree of the polynomial, which is simply the higher power of its variable, with the degree
deg h of the Hamiltonian map.
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Ẽ Ẽ
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Figure 8: A few examples of eigenvalue spectra Ẽ of Ĥop obtained with the anzatz
A0 in (120) beyond the case S = 1/2 and d = 1.

None of these spectra manifest a spectral flow. The solutions of Ĥop that do develop a
spectral flow follow from different anzatz than A0 and can be constructed separately one by
one. To do so, we notice that the lowest mode is reached for n= 0, and has the following form
when using the matrix representation for spins degrees of freedom













ψS |(2S)d〉
ψS−1 |(2S − 1)d〉

...
...

ψ−S+1 |d〉
ψ−S |0〉













. (124)

The particularity of |Ψ0〉 is that it decomposes as a superposition over the 2S + 1 spin states
|mS〉. Actually, other eigenstates can be constructed, and decomposed over 2S + 1 − p spin
states |mS〉 with p > 1. The lower number state |0〉 being associated with the lower spin state
|−S〉, a first iteration for p = 1 then consists in replacing this number state by |0〉 → 0 and
reducing the other number states, associated to all the higher spin states |mS > −S〉, to n= −1
as















ψ
(1)
S |(2S)d − 1〉

ψ
(1)
S−1 |(2S − 1)d − 1〉

...
...

ψ
(1)
−S+1 |d − 1〉
0















. (125)
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Such a form will be referred to as the anzatz A1 as it possesses 1 zero in its decomposition over
spin states, and we can write

Anzatz A1 : |Ψ1〉=
S
∑

mS=−S+1

ψ(1)mS
|(S +mS)d − 1, mS〉 . (126)

This new Anzatz yields a new eigenvalues problem where the matrix H2S
−1 to be diagonalized

is obtained from H(2S+1)
n by removing the last line and the last column in (122) and by substi-

tuting n= −1. It yields 2S energy levels that connect the energy branches obtained previously
with anzatz A0. The procedure must be iterated d times by lowering n until the lower number
state |0〉 is reached as















ψ
(1)
S |(2S)d − d〉

ψ
(1)
S−1 |(2Sd − 2d〉

...
...

ψ
(1)
−S+1 |0〉
0















, (127)

giving at each iteration a different spectral flow between the same branches mS and m′S . Once
the spin component mS = −S + 1 is finally given by the number state |n= 0〉, one iterates the
anzatz to look for solutions where both the spin components mS = −S and mS = −S + 1 are
zero. More generally, the anzatz with p zeros in the decompositions over the p lower spin
states reads

Anzatz Ap : |Ψp〉=
S
∑

m=−S+p

ψ(p)mS
|(S +mS)d − p, mS〉 . (128)

One applies this algorithm by keeping decreasing the number states until all the spin com-
ponents are vanishing but the mS = S one as









|d − 1〉
0
...
0









, (129)

that is
Anzatz A(2S − 1) : |Ψ2S−1〉= |d − 1, S〉 . (130)

The number state |d − 1〉 can still be decreased d−1 times to reach the final possibility with the
fundamental |0〉 for the spin mS = S and 0 amplitude for every other spin components. Those
d − 1 ’sub-anzatz’, so to speak, all yield the same eigenenergy spectrum with a non-dispersive
branch Ẽ = Sλ. This branch is common to all spectra for any values of S and d, and is the only
one existing in the Dirac case for S = 1/2 and d = 1.

The complete spectra, that now display various spectral flows, are shown in figure 9. Im-
portantly, all those spectral flows satisfy the correspondence with the Berry-Chern monopole
of the symbol Hamiltonian as NmS

= −CmS
= 2mSd, where NmS

is the number of modes that
are gained by the band mS when sweeping λ from −∞ to +∞.

After the canonical Dirac case (S = 1/2 and d = 1), the spin 1 case with d = 1 is the most
encountered in the literature. It naturally appears in the linear rotating shallow water model
describing rotating fluids such as oceans and atmosphere over large distances, with a varying
Coriolis parameter along the latitude that changes sign at the equator [15, 81]. In that case,
the Coriolis parameter plays the role of the mass term, and the spectral flow parameter λ is
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Ẽ Ẽ

Ẽ Ẽ
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Figure 9: A few examples of full eigenvalue spectra Ẽ of Ĥop beyond the case S = 1/2
and d = 1. The black branches are obtained with the anzatz 0 as in figure 8 and the
colored spectral flows are obtained by applying the successive anzatz Ap (128) : (red)
p = 2S, (blue) p = 2S − 1, (green) p = 2S − 2 and (yellow) p = 2S − 3.

the wave vector parallel to the equator. The spectral flow then corresponds to unidirectional
Eastward equatorial waves known as the Kelvin and the Yanai waves. The explicit mapping
between Ĥop and the shallow water model is shown in Appendix C. A similar phenomenology
appears with classical waves in various continuous systems such as electromagnetic waves in
2D gyrotropic media and plasmas, both in a varying magnetic field [61,82]. In those physically
very different examples, the spectral flows are interpreted as interface sates along a line in real
space where a varying mass term (the Coriolis force or the magnetic field) changes sign. As
discussed at the beginning of this manuscript with the Weyl fermions, the same spectrum can
emerge from a very different physical mechanism, that is the coupling of a spin 1 quantum
particle in 3D with a magnetic field [27]. Other generalizations of Weyl fermions (i.e. beyond
S = 1/2 and d = 1) have been discussed theoretically and experimentally in various materials
[19,83,84].

4 Take Home message

Spectral flows are ubiquitous in wave physics and quantum mechanics. A simple method to
look for spectral flows consists in searching for degeneracy points of the symbol Hamiltonian
(i.e. of the dispersion relation), and then ”quantize” the system by either varying in space
a parameter controlling the gap amplitude (the mass term) such that it changes sign, or by
applying a constant magnetic field if we one starts with massless charged quantum particles
in 3D. The topological description of such spectral flows is based on a correspondence with
a ”semiclassical” description of the system, encoded through the symbol Hamiltonian, where
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Operators SymbolsWeyl-Wigner formalism

Quantization

Separation of fast and slow dynamics 

ℋ̂op(λ) HS(λ; λ1, λ2)

Spectral Flow

Analytical Index
Topological index 

(Berry-Chern monopole)
Degeneracy  

points

Inhomogeneous systems homogeneous systems

Figure 10: Quick overview of the general structure of the theory of the monopole-
spectral flow correspondence. The blue lines represent an equality relation.

the mass term is assumed to vary sufficiently slowly, that is over a length scale much larger
than the wave length of reference. This limit corresponds to a description where the system
can be decoupled into two systems with a fast and a slow dynamics, the latest being treated
”classically”. The topological indices of the symbol Hamiltonians (the first Chern numbers),
describing the system in that limit, appears as charges associated to the degeneracies of its
eigenvalues in a three-dimensional parameter space, where two dimensions correspond to the
classical phase space of canonical conjugate variables and the third dimension is given by the
spectral flow parameter. For the class of models we have considered (h.Ŝ models), those Chern
numbers are related to analytical indices of the operator Hamiltonian through the Atiyah-
Singer theorem, which are themselves a measure of the spectral flow in each branch. The
existence of a spectral flow does not automatically mean the existence of unidirectional modes,
unless a direct gap separates different branches in the spectrum of the operator Hamiltonian.
However, at least in the class of models discussed here, the modes participating to the spectral
flow are 1) the most localized (in one direction) in space, and 2) those with the less nodes
(the closest to the vacuum mode |0〉). They are in some sens localized at the ”boundary” of
the Fock space, if one interprets the states |n〉 as positions on a half infinite lattice labelled by
n.

To summarize, the general structure of this theory is sketched in figure 10.
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A Operator-Symbol correspondence

In quantum mechanics position and momentum are described by operators x̂ and p̂, while in
Hamiltonian classical mechanics, those are scalar conjugate variables in phase space (x , p). A
crucial difference between the two theories being that x̂ and p̂ do not commute while x and
p do. The mapping from phase space to Hilbert space of operators is called quantization. This
procedure, which was at the root of the construction of quantum mechanics from classical
mechanics during the first decades of the XXth century, stimulated many mathematical works.
Indeed such a mapping is not unique, and many quantization procedures where developed
called e.g. x − p and p− x quantizations, Wick and anti-Wick quantizations, geometric quan-
tization, and so on. The inverse procedure, that is the mapping from Hilbert space to phase
space of classical observables is also routinely used in physics, with for instance the WKB ap-
proximation, that consists in expanding a wave function with respect to a small parameter, and
the Wigner transform that allows the representation of a quantum state in phase space. Those
procedures are based on expansions with respect to a small parameter, namely the Planck
constant h. Actually, such procedures are not restricted to quantum physics, but apply much
more broadly to any field that deals with differential equations with a small parameter. This
field is referred to as semi-classical analysis, or also micro-local analysis in the mathematical
context. When an operator of Hilbert space is mapped to an observable on phase space, this
resulting ”classical” observable is called the symbol. So in the following, a symbol will refer
to a function σ on phase space, and will be associated to an operator Op[σ] ≡ σ̂ through a
quantization procedure. Conversely, we shall use the notation σ[σ̂] = σ to indicate that we
take the symbol of an operator.

In practice, we will be interested in cases where there is a one-to-one correspondence
between a symbol and its operator. For this, we use a standard quantization procedure, called
Weyl quantization. Weyl quantization turns a functionσ(x , p) on phase space into an operator
σ̂, through the expression of the action of this operator on an arbitrary wave function in
position representation ψ(x), called the Weyl transform and that reads

σ̂ψ(x) =
1

2πε

∫

R
dx ′

∫

R
dp σ

�

x + x ′

2
, p
�

eip(x−x ′)/εψ(x ′) . (A.1)

This formula is given for 1D systems, but generalizes straightforwardly at any dimension. Note
the existence of a parameter ε in the definition. Strictly speaking, a quantization procedure is
only well-defined with respect to such a parameter, in order to recover a classical behavior of
the dynamics in the limit ε→ 0. The Weyl transform (A.1) yields

σ(x , p) = x → σ̂ψ(x) = xψ(x) , (A.2)

σ(x , p) = p → σ̂ψ(x) = −iε∂xψ(x) , (A.3)

which reproduces the expected quantization rule of position x and momentum p, that is usu-
ally written as the substitution

x → Op[x] = x̂ = x , (A.4)

p → Op[p] = p̂ = −iε∂x , (A.5)

in position representation.
Conversely, the symbol σ(x , p) of an operator σ̂( x̂ , p̂) can be obtained, at least formally,

from the Wigner transform

σ(x , p) =

∫

dx ′Σ
�

x + x ′

2
, x −

x − x ′

2

�

e−ipx ′/ε , (A.6)
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where Σ(x , x ′) is the kernel of the operator σ̂, that is, it verifies

σ̂ψ(x) =

∫

dx ′Σ(x , x ′)ψ(x ′) . (A.7)

Equations (A.1), (A.6) and (A.7) yield a self-consistent definition of the Wigner-Weyl calculus.
Computing the symbol of an operator via the Wigner transform necessitates the knowledge of
the Kernel of this operator, which, in general, is a distribution. This is not always the easiest
way to compute the symbol. In practice, one can use the powerful formula of the Moyal
product ? between symbols σ1(x , p) and σ2(x , p)

σ1(x , p) ?σ2(x , p)≡
∞
∑

n=0

n
∑

m=0

1
n!

�

iε
2

�n

(−1)m
�

n
m

�

�

∂ n−m
x ∂ m

p σ1

��

∂ n−m
p ∂ m

x σ2

�

, (A.8)

that is related to the product of their operators as

σ̂1σ̂2 = Op[σ1 ?σ2] . (A.9)

Using the fact that identity verifies Op[I] = I, the symbol of the operators x̂ and p̂ are then
easily obtained by using (A.8) and (A.9) and one gets

x ← Op[x] = x̂ = x , (A.10)

p ← Op[p] = p̂ = −iε∂x , (A.11)

as expected. When ε� 1, this formula can be used to approximate a product of operators by
the operator of the expansion, in powers of ε, of the product of their symbols. In particular, it
yields that the first order correction in ε to σ̂1σ̂2 = Op[σ1σ2] is given by the operator of the
Poisson bracket {σ1,σ2}, that is precisely the commutator [σ̂1, σ̂2]. For our purpose however,
the operators we have at hand are polynomials in x̂ and p̂, so that the sum in the ? product
(A.8) yields an exact result with a finite number of terms. We shall consider all those terms,
and thus take ε= 1 from now. This yields the correspondence

x + ip ↔ â , (A.12)

x − ip ↔ â† , (A.13)

where x and p designate two canonical conjugate observables in phase space, not necessarily
position and momentum. Note that the relation (A.9) is particularly useful to compute the
symbol of a product of operators. By taking formally the symbol of each members of this
equation, one has

σ[σ̂1σ̂2] = σ1 ?σ2 . (A.14)

We can use the ? product to establish the correspondences (86) and (87) between HS and
Ĥop for the h.Ŝ model. To demonstrate this relation, let us proceed by induction. First, we
know that

Op[αx + βp] = α x̂ + β p̂ , (A.15)

where α and β are arbitrary complex numbers. Then we assume the relation

Op[(αx + βp)m−1] = (α x̂ + β p̂)m−1 , (A.16)
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for a given m−1. Let us now prove that this relation remains true when m−1→ m. We have

(α x̂ + β p̂)m =(α x̂ + β p̂)m−1(α x̂ + β p̂) (A.17)

=Op[(αx + βp)m−1]Op[αx + βp] (A.18)

=Op[(αx + βp)m−1 ? (αx + βp)] (A.19)

=Op
�

∞
∑

m,n=0

1
n!

�

iε
2

�n

(−1)m
�

n
m

�

×
�

∂ n−m
x ∂ m

p (αx + βp)m−1
��

∂ n−m
p ∂ m

x (αx + βp)
��

. (A.20)

The last term in (A.20) is nonzero only when (n, m) takes the values (0,0), (1, 0) and (1,1).
The contribution (0,0) yields the term (αx+βp), while the two other contributions (1, 0) and
(1, 1) give two terms proportional to ε, such that

(α x̂ + β p̂)m = Op[(αx + βp)m−1(αx + βp)

+
iε
2
(m− 1)α(αx + βp)m−2β −α(m− 1)β(αx + βp)m−2] .

(A.21)

The two terms proportional to ε compensate each other, and we end up with

Op[(αx + βp)m] = (α x̂ + β p̂)m , (A.22)

which completes the proof. This formula is a famous result of Weyl calculus, that was first
obtained long ago by McCoy before the ? product was introduced [76]. Conversely, we also
get that

σ[(α x̂ + β p̂)m] = (αx + βp)m , (A.23)

which leads to the relations (86) and (87) when α= 1 and β = ±i.

B Toolbox of differential calculus: Stokes theorem and Brouwer
degree formula

There are many good textbooks that give detailed and consistent introductions to differential
forms, such as [26,43,85] that are dedicated to physicists. Here we present a digest summary
that sketches a few basic definitions and results that are useful for the following.

Differential forms constitute a generalization of functions. A usual function
λ : Λ → f (λ) ≡ ω0 is then a 0-form, while its differential (provided it is differentiable)
d f is an example of a 1-form. More generally, a 1-form is a kind of vector, called covector as
it transforms as a covariant vector [85], and decomposes as ω1 = ωi

1dλi (where we use the
implicit sum convention). If the dimension of parameter space Λ, that is our base space, is N ,
then the set of 1-forms Ω1(Λ) is also of dimension N . A 2-formω2 is an anti-symmetric tensor
that decomposes as ω2 =ω jkdλ j ∧ dλk (with j < k), where the wedge product ∧ generalizes
the vector product defined in R3 to any dimension, by satisfying

dλ j ∧ dλk = −dλk ∧ dλ j , (B.1)

and in particular dλ j ∧ dλ j = 0. By extension an r-form is a totally anti-symmetric tensor
that decomposes as ωr =ωr

j1, j2,··· , jr
dλ j1 ∧ dλ j2 ∧ · · · ∧ dλ jr , and in particular the set ΩN (Λ) of

N-forms contains a single element ωN =ωN
1,2,··· ,N dλ1 ∧ dλ2 ∧ · · · ∧ dλN .
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As recalled at the beginning of this section, if f is a 0-form (a function) then d f is a 1-form.
This familiar result generalizes to any differential forms, with the exterior derivative on forms

d that constitutes a map Ωr(Λ)
d
→ Ωr+1(Λ); namely, the (exterior) derivative of an r-form is

an (r+1)-form. In practice it is obtained as

dωr ≡
∂

∂ λr+1

�

ωr
j1, j2,··· , jr

�

dλr+1∧dλ j1 ∧ dλ j2 ∧ · · · ∧ dλ jr . (B.2)

Such an (r+1)-form, ωr+1 = dωr is called an exact form, as it is derived from an r-form (such
as d f ). It may also happen that a form ω satisfies dω = 0. This is called a closed form.
Importantly, the anti-symmetric relation (B.1) imposes that d(dωr) = 0, implying that any
exact form is closed. The reciprocal is not true.

More generally, differential forms, such as the 2-form Berry curvature, are objects that one
can integrate over manifolds. In particular, if the dimension of a manifold M is r, then

∫

M ωr
is a number. Of particular importance is the surface form ΩSn , that is an n-form whose integral
over a sphere Sn embedded in Rn+1 is 1. In cartesian coordinates, it reads

ΩSn ≡
n+1
∑

i=1

(−1)n+1 x idx1 ∧ · · · ∧ dx i−1 ∧ dx i+1 ∧ · · ·dxn+1

γn

�

x2
1 + x2

2 · · ·+ x2
n+1

�(n+1)/2
, (B.3)

where γn = 2π
n+1

2 /Γ ( n+1
2 ) with Γ (x) the Euler function, is the surface of the unit sphere Sn.

Of particular importance for the following are the two examples in R2 and R3

ΩS1 =
xdy − ydx

2π (x2 + y2)
and ΩS2 =

xdy ∧ dz + ydz ∧ dy + zdx ∧ dy

4π (x2 + y2 + z2)3/2
. (B.4)

A key result in differential calculus is Stokes theorem, that relates the integral of a differ-
ential form ω with that of its derivative dω, when it exists everywhere over M , as

Stokes theorem :

∫

M
dω=

∫

∂M
ω , (B.5)

where ∂M denotes the boundary of the manifold M .
The expression (40) of the Chern number is very general. In particular, it does not de-

pend on the model at hand. In order to derive an explicit expression for the Berry-Chern
monopole model, it is useful to introduce the Brouwer theorem, that relates the integrals of
a differential form over two different manifolds A and B of same dimension n. Consider a
differential form ω defined over the manifold B of local coordinates y = (y1, · · · , yn), i.e.
ω=ω j1,··· , jn(y)dy j1 ∧· · ·∧dy jn , and a map f between the two manifolds x : A→ y= f (x) ∈ B.
Then one can define a form on A from ω, through the action of f . It is called the pull-back of
ω and reads

f ?ω=ω j1,··· , jn( f (y))det
�

∂ yα

∂ xβ

�

dx j1 ∧ · · · ∧ dx jn , (B.6)

where the Jacobian matrix accounts for the change of local coordinates.
Then one has the following

Brouwer theorem:

∫

A
f ?ω= deg f

∫

B
ω , (B.7)

where the degree of f was defined in (79). An important application of the Brouwer theorem is
that it gives an integral formulation of the degree of a map, which one obtained when applying
the formula (B.7) when B = Sn for the surface form ΩSn .
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For instance, in the case of the punctured plane B = R2\{0} ∼= S1, one gets

deg h=

∫

λ∈S1

h?ΩS1 (B.8)

=

∫

λ∈S1

1
2πh2

�

hxdhy − hydhx

�

. (B.9)

Interpreting h = (hx , hx) = (x(t), y(t)) as a vector position that depends on a parameter
t ∈ S1, one finds the standard expression of the winding number.

The degree is of main interest to characterize the topology of Berry monopole Hamiltonians

i.e. that read H = h(λ).Ŝ, since the vector h defines a map S2 h/|h|
→ S2 whose degree is an

integer that reads

deg h=

∫

λ∈S2

h?ΩS2 (B.10)

=

∫

λ∈S2

1
4πh3

�

hxdhy ∧ dhz + hydhz ∧ dhx + hzdhy ∧ dhx

�

, (B.11)

where the hi ’s are functions of λα so that dhi =
∂ hi
∂ λα

dλα, and one gets

deg h=
1

4π

∫

λ∈S2

εi jk

h3
hi
∂ h j

∂ λα

∂ hk

∂ λβ
dλα ∧ dλβ . (B.12)

Finally, using the usual vectorial notation in R3, this expression takes the form

deg h=
1

4π

∑

α,β

1
2

∫

S2

h
h3
·
�

∂ h
∂ λα

×
∂ h
∂ λβ

�

dλα ∧ dλβ (B.13)

This formula has a direct meaningful geometrical interpretation : it tells that the degree of the

maps S2 h
→ S2 is a wrapping number, meaning that it counts the number of times the vector

h/h= n wraps the target sphere S2 when λ spans the entire base space S2.

C The equatorial shallow water model and its analytical indices
from the h.Ŝ model

Here we come back on the celebrated shallow water model that describes equatorial fluids
waves in the Earth’s atmosphere and oceans. Close to the equator, the modes of frequency ω̃
and azimutal wave number kx (along the equator), around a state of rest, are given by the
following equation [81,86]

ω̃Ψ =HSWΨ , (C.1)

with

HSW =





0 −i f (y) ckx
i f (y) 0 ci∂y
ckx ci∂y 0 ,



 (C.2)

in the basis of the perturbed velocity fields in x and y direction and the perturbed height eleva-
tion (δu,δv,δh), where c =

p

gH is the celerity of gravity waves with g the standard gravity
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and H the height of the fluid at rest, and f (y) is called the Coriolis parameter: it accounts for
the Coriolis force that depends on the latitude. It has the dimension of a frequency (it is pro-
portional to Earth angular rotationΩ) and changes sign at the equator. It is convenient to work
in the tangent plane picture, where the latitude dependence of the Coriolis parameter reads in
terms of the y coordinate that points toward the North pole in a tangent plane to Earth. In the
vicinity of the equator, the Coriolis parameter can be approximated by f (y) ∼ 2Ωy/R ≡ β y
where R is the Earth radius. This simplification is called the β-plane approximation. The op-
erator Hamiltonian HSW is known to display a spectral flow ∆N± = ±2 and ∆N0 = 0 for the
three branches (−1,0, 1), and the Chern numbers of its symbol are accordingly C± = ∓2 and
C0 = 0 [15]. Here we make explicit its form as a particular case of the h.Ŝ model for d = 1
and S = 1 and thus gets its analytical indices.

For that purpose, let us notice that HSW decomposes as

HSW = ci∂y Ŝ1 + f (y)Ŝ2 + ckx Ŝ3 , (C.3)

where the SU(2) commutation relations [Ŝ1, Ŝ2] = iŜ3, [Ŝ2, Ŝ3] = iŜ1 and [Ŝ3, Ŝ1] = iŜ2. From
this point, it is clear that the shallow water model falls in the category of h.Ŝ models with
S = 1 and d = 1, and thus its symbol Hamiltonian has the Chern numbers Cm = −2m with
m= −1,0, 1. To construct the index of HSW , one needs to transform it into Ĥop,which can be
done by a unitary transformation

UHSW U† = ci∂y Ŝx + f (y)Ŝy + ckx Ŝz , (C.4)

where Ŝz is diagonal. We find such a unitary operator to be

U =
1
p

2





1 0 1
0
p

2 0
−1 0 1



 , (C.5)

and one gets

UHSW U† =





kx c −i 1p
2

2Ω
R y − c∂y 0

i 1p
2

2Ω
R y − c∂y 0 −i 1p

2
2Ω
R y − c∂y

0 i 1p
2

2Ω
R y − c∂y −kx c



 . (C.6)

This rotated shallow water Hamiltonian has the same spectrum as the original one, owing to
the unitarity of U .

There are two natural length scales in this problem : the Earth radius R and the Rossby
deformation radius L ≡ c

2Ω which gives the scale above which rotation is relevant. From
this two lengths, one can construct the parameter α ≡ L/R, which is small in our approach,
and the characteristic length ` ≡

p
RL that allows us to adimensionalize the shallow water

Hamiltonian by introducing â = 1p
2
( y
` + `∂y) and â† = 1p

2
( y
` − `∂y) so that

UHSW U† = 2Ω





λ −iαâ† 0
iαâ 0 −iαâ†

0 iαâ −λ



 , (C.7)

with λ= kx c
2Ω , which also reads

HSW = 2ΩU†
�

−iαâ†Ŝ+ + iαâŜ− +λŜz

�

U . (C.8)
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From here, we can introduce the indices ind(D2mS
SW ) of the shallow water model with

DSW = iαU†âŜ−U Since the index is invariant by homotopy, one gets

ind(D2mS
SW ) = ind(U†âŜ−U)2mS (C.9)

and since it is also invariant by a unitary transformation, one finally finds

ind(D2mS
SW ) = ind(D2mS ) = 2mS , (C.10)

with mS = 0,±1. This is precisely the index of the h.Ŝ model for d = 1 and S = 1, which yields
the spectral flows

∆N± = ±2 and ∆N0 = 0 , (C.11)

as expected.
We now express the corresponding eigenmodes of the spectral flow. Following the proce-

dure detailed in the section 3.4, one can construct the two eigenstates for the spectral flow in
the case S = 1 and d = 1: |Ψ1〉 with 1 zero component and |Ψ2〉 with 2 zero components in
the |mS〉 basis, as

|Ψ2〉=





|1〉
0
0



 , |Ψ1〉=





ψ1 |1〉
|0〉
0



 , (C.12)

where ψ1 is a coefficient. The profiles in the y direction of the eigenstates for the spectral
flow of the original shallow water model in the β-plane have therefore the following form

〈y|U†Ψ2〉=





1
0
−1



e−
1
2 (

y
` )

2
≡ ΨK(y) (C.13)

〈y|U†Ψ1〉=





y
ψ1
−y



e−
1
2 (

y
` )

2
≡ ΨY (y) . (C.14)

The mode ΨK corresponds to a longitudinal velocity field δu and a height elevation δh which
are symmetric with respect to the latitude y , while the velocity perpendicular to the equator
δv is zero. It corresponds to the well-known equatorial Kelvin mode. The second mode, ΨY ,
has a longitudinal velocity field δu and a height elevation δh which are antisymmetric with
respect to the latitude y , and the velocity perpendicular to the equator δv is nonzero and
symmetric. It is known as the Yanai or mixed planetary-gravity mode [81,86].
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