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Abstract

In these lectures I describe a theory of dark matter superfluidity developed in the last
few years. The dark matter particles are axion-like, with masses of order eV. They Bose-
Einstein condense into a superfluid phase in the central regions of galaxy halos. The
superfluid phonon excitations in turn couple to baryons and mediate a long-range force
(beyond Newtonian gravity). For a suitable choice of the superfluid equation of state, this
force reproduces the various galactic scaling relations embodied in Milgrom’s law. Thus
the dark matter and modified gravity phenomena represent different phases of a single
underlying substance, unified through the rich and well-studied physics of superfluidity.
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1 Introduction

Dark matter (DM) is by now established as a pillar of modern cosmology, yet its fundamen-
tal nature remains unknown. One thing we know about DM is that on the largest scales it
must behave as a cold, collisionless fluid. This provides an exquisite fit to a host of cosmo-
logical observations, from the expansion history to the cosmic microwave background (CMB)
temperature anisotropies to the rate of growth of cosmic structuress.

The standardΛ Cold Dark Matter (ΛCDM) model assumes the simplest form of DM — a sin-
gle species of (effectively) collisionless particles, such as weakly interacting massive particles
(WIMPs) or axions. On the other hand, large-scale observations only probe the hydrodynam-
ical limit of DM; any perfect fluid with sufficiently small pressure and sound speed would do
equally well at fitting the data on those scales. There is in principle room for new physics on
non-linear scales, particularly in galaxies.

Indeed, while the ΛCDM model has been remarkably successful at matching cosmologi-
cal observations on large scales, its scorecard on galactic scales has been the subject of active
debate [1, 2]. Despite the complex role of baryonic feedback processes in their formation,
galaxies are surprisingly regular, exhibiting striking correlations among their physical prop-
erties. Disc galaxies display a remarkably tight correlation between the total baryonic mass
(stellar + gas) and the gravitational acceleration in galaxies [3–5]. This apparent conspiracy,
known as the radial acceleration relation (RAR), states that the acceleration experienced by
a baryonic particle (irrespective of whether it is due to DM, modified gravity, or both) can
be uniquely predicted from the baryon density profile. At large distances, the RAR implies
the baryonic Tully-Fisher relation (BTFR) [6], which relates the total baryonic mass to the
asymptotic/flat rotation velocity as Mb ∼ V 4

f . This relation holds over five decades in mass,
with remarkably small scatter. Another scaling relation is the correlation between the central
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stellar and dynamical surface densities in disk galaxies [7].
The RAR was predicted nearly forty year ago by Milgrom [8] with MOdified Newtonian

Dynamics (MOND). The MOND law states that the gravitational acceleration a is related to
the baryonic acceleration ab (i.e., the Newtonian acceleration due to ordinary matter alone)
via

a =







ab ab� a0

p
aba0 ab� a0 ,

(1)

where a0 is a characteristic acceleration scale. Its best-fit value is intriguingly of order the
speed of light times the Hubble constant H0:

a0 '
1
6

cH0 ' 1.2× 10−8 cm/s2 . (2)

All of the aforementioned galactic scaling relations are an exact consequence of this law.
MOND does exquisitely well at fitting detailed galactic rotation curves [9–11]. Although orig-
inally promoted as an alternative to DM, as an empirical fact the success of the MOND law
at fitting galactic properties is unequivocal, especially in rotationally supported systems. The
acceleration scale a0 is in the data. Even if DM is made of the most standard, run-of-the-mill
WIMPs, its density profile in galaxies must at the end of the day conform to MOND.

At this juncture one can take one of three attitudes:

• The conservative viewpoint is that the MOND law (1) is an emergent phenomenon,
due to complex baryonic feedback processes (star formation, supernovae, gas cool-
ing/heating, etc.). In other words, DM consists of collisionless particles, it interacts
with baryons only through gravity, and the observed properties of galaxies emerge from
the interplay of gravity and baryonic feedback effects.

This possibility faces some challenges. First, semi-empirical models with cored DM halos
can reproduce the observed slope and normalization of the BTFR, but not yet the small
scatter [12–14]. Second, the diversity of shapes of rotation curves at a given maximal
circular velocity remains a puzzle in ΛCDM [15] (though see also [16]). Lastly, the ob-
servation that the central slope of the rotation curve correlates with the baryonic surface
density means that feedback processes should be more efficient at removing DM from
the central regions of galaxies with lower surface density, which are often more gas-
dominated. Hence, feedback efficiency should increase with decreasing star formation
rate [6] and be tightly anti-correlated with baryonic surface density (or correlated with
scale-length at a given mass scale).

• At the other end of the spectrum is the viewpoint that the MOND law represents a funda-
mental modification of gravity (e.g., [17,18]). In other words, DM does not exist, and (1)
represents a fundamental modification of gravity. This possibility seems unlikely, given
the observational evidence for DM behaving as a collisionless fluid on cosmological and
cluster scales. Modified gravity theories cannot explain the angular power spectrum
of the CMB without additional DM or unrealistically massive ordinary neutrinos [19].
Furthermore, Milgrom’s law does not work on galaxy cluster scales, e.g., [20,21].

Nevertheless, it is instructive to see how (1) can arise from a modification of gravity. The
simplest possibility is to postulate the existence of a scalar field, akin to the gravitational
potential, with non-relativistic action [17]

L= − 1
12πGNa0

�

�

~∇φ
�2�3/2

+φρb , (3)
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where ρb is the baryonic mass density. The equation of motion is a non-linear Poisson
equation:

~∇ ·

�
�

� ~∇φ
�

�

a0

~∇φ

�

= 4πGNρb . (4)

Ignoring a homogeneous curl term (which vanishes, in particular, for spherical symme-
try), the solution is aφ =

�

� ~∇φ
�

�=paba0. The total acceleration, a = ab+aφ , is consistent
with (1). However, as a theory of a fundamental scalar field, the non-analytic form of
the kinetic term is somewhat unpalatable.

• A middle-ground interpretation is that the MOND law is telling us something about
the fundamental nature of DM. In other words, DM certainly exists, and behaves as a
cold, collisionless fluid on large scales. However, the MOND law informs us about the
microphysics of DM and its interactions with baryons.

A number of DM-MOND hybrid theories have been put forth over the years, e.g., [22–31],
but such proposals generally face two important challenges. First, there is the poten-
tial drawback of having two a priori unrelated ingredients: a DM-like component and
a modified-gravity component. Second, the theory must be adjusted such as to avoid
the phenomenological co-existence of DM-like and MOND-like behavior. The DM com-
ponent must dominate on large, extra-galactic scales, with negligible modified-gravity
contribution, whereas the modified-gravity component must dominate in central regions
of galaxies where rotation curves are measured, with negligible DM contribution. How
this can be arranged is highly non-trivial. The superfluid approach described here over-
comes both challenges.

These lectures describe a unified framework for the DM and MOND phenomena, based
on DM superfluidity, which brings together concepts of condensed matter physics, cold atom
physics and astrophysics [32–35]. In this novel approach, the DM and MOND components
represent different phases of a single underlying substance, unified through the rich and well-
studied physics of superfluidity. The MOND empirical law emerges from the superfluid phase
of DM.

As inΛCDM, the model assumes DM particles, which behave as a cold, collisionless fluid on
cosmological scales. As non-linear structures form, the increase in DM density triggers a phase
transition, causing DM to condense into a superfluid phase. As we will see, this requires DM
particles to be sufficiently light, m ® few eV, such that their de Broglie wavelengths overlap,
and have self-interactions.

The superfluid nature of DM dramatically changes its macroscopic properties in galaxies.
Instead of behaving as individual collisionless particles, the DM is more aptly described as
collective excitations, which at low energy/momentum are phonons. Phonons play a key role
by coupling to ordinary matter, and thereby mediate an additional force (beyond Newtonian
gravity) between baryons. For a particular choice of the superfluid equation of state, the DM
superfluid reproduces the MOND law in galaxies.

The possibility of Bose-Einstein condensation (BEC) has been studied before in the context
of DM, e.g., [36–48]. A key difference is that in BEC DM galactic dynamics are caused by the
condensate density profile, similar to what happens in CDM, with phonons being irrelevant.
In the present framework, on the other hand, phonons play a key role in generating the MOND
law. For a nice review of ultra-light DM, including DM BEC and superfluidity, see [49].
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2 Bose-Einstein condensation

Let us begin by briefly reviewing some elementary facts about BEC.1 Consider a free Bose gas,
in chemical and thermal equilibrium with a reservoir, with chemical potential µ and tempera-
ture T . Its statistics are described by the grand canonical ensemble.

The probability pi that the system has Ni particles with single-particle energy εi is

pi(Ni) =
1
Z

eβNi(µ−εi) ; β ≡
1

kBT
, (5)

where Z ≡
∑

i eβNi(µ−εi) is the partition function. The average occupation number in state i,
given by 〈Ni〉 =

∑∞
Ni=0 Ni pi(Ni), is a geometric series which converges for µ < εi . The result

is the celebrated Bose-Einstein distribution,

〈Ni〉=
1

eβ(εi−µ) − 1
. (6)

Summing over i gives the total number of particles,

N =
∑

i

〈Ni〉

=
1

e−βµ − 1
+
∑

i 6=0

1
eβ(εi−µ) − 1

≡ N0 + Nexc , (7)

where we have split the sum into the ground state occupation number N0, assuming ε0 = 0
without loss of generality, and the occupation number for the excited states Nexc. In terms of
the fugacity z ≡ eβµ, the ground state particle number takes the simple form

N0 =
z

1− z
. (8)

In the case of the ground state, convergence of the geometric series requires −∞ < µ < 0,
therefore 0< z < 1.

Our next task is to simplify the excited state occupation number Nexc. To do so, take the

continuum limit, εi → ε≡
~k2

2m , such that the sum over i becomes an integral over momenta:

Nexc = V

∫

d3k
(2π)3

1
eβ(ε−µ) − 1

= V
m3/2

p
2π2

∫ ∞

0

dε
ε1/2

eβ(ε−µ) − 1
, (9)

where V is the volume of the system, and where the last step follows from doing the angular
integral. Letting x ≡ βε, the integral becomes

Nexc = V
m3/2

p
2π2β3/2

∫ ∞

0

dx
x1/2

z−1ex − 1
=

V
λ3

th

g3/2(z) , (10)

where λth ≡
Ç

2π
mkBT is the thermal de Broglie wavelength, and gν(z) is the polylogarithm

function,

gν(z) =
1
Γ (ν)

∫ ∞

0

dx
xν−1

z−1ex − 1
= z +

z2

2ν
+

z3

3ν
+ . . . (11)

1Throughout these lectures, we work in natural units, with ħh= c= 1.
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In particular, since z < 1, we have g3/2(z) < g3/2(1) = ζ
�3

2

�

' 2.61, hence the number
density nexc = Nexc/V in excited states is bounded above:

nexc =
g3/2(z)

λ3
th

<
ζ
�3

2

�

λ3
th

. (12)

Now, suppose that more and more particles are added to the system at fixed T , such that
the total number density n= N

V exceeds the maximal allowed density (12) in the excited states,

n>
ζ
�3

2

�

λ3
th

. (13)

It follows that the excess particles must inevitably populate the ground state. This macroscopic
occupation of the ground state is known as Bose-Einstein condensation. At fixed T , it occurs at
the critical density

nc =
ζ
�3

2

�

λ3
th

= ζ
�

3
2

��

mkBT
2π

�3/2

. (14)

Equivalently, at fixed density, condensation occurs at the critical temperature

Tc =
2π
mkB

�

n

ζ
�3

2

�

�2/3

. (15)

2.1 Some intuition

At first sight, BEC may not seem particularly surprising, as you intuitively expect some particles
to occupy the ground state at sufficiently low temperature. To see that BEC is not simple ener-
getics, as this argument suggests, but rather is a startling consequence of quantum mechanics,
let us compare Tc with the temperature Tgap =

ε1
kB

set by the energy of the lowest excited state

(recall that ε0 = 0). Since the system is in box, we have ε1 =
~k2

min
2m ∼

1
mV 2/3 , thus

Tgap ∼
1

mkBV 2/3
. (16)

In contrast, the critical temperature for BEC, Tc ∼
N2/3

mkBV 2/3 , is larger by a large factor of N2/3.
In particular, in the thermodynamic limit (N → ∞, V → ∞, with n = N/V fixed), Tgap
goes to zero while Tc remains fixed. Thus BEC is not simple energetics — it is a genuine
phase transition owing to the quantum mechanics of bosons. Another useful perspective is to
consider the fraction of particles in the ground state as a function of temperature. Combining
the above results, it is straightforward to show that, for T ≤ Tc,

N0

N
= 1−

�

T
Tc

�3/2

. (17)

Thus, as soon as T drops below Tc, an order one fraction of particles condense to the ground
state.2

The criterion (13) has a nice physical interpretation. Ignoring the numerical prefactor, it
says that BEC occurs whenever n¦ λ−3

th , or, equivalently,

λth ¦ n−1/3 = ` , (18)

2The 3/2 power in (17) is specific to the free Bose gas, and will be different in the presence of interactions
and/or external potential. For cold atoms in a harmonic trap, for instance, the power is instead 3 [50].
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where ` is the characteristic inter-particle separation. In other words, the condition for BEC
to occur is that the thermal de Broglie wavelengths of particles overlap, which is indeed when
quantum mechanics is expected to play an important role.

2.2 Dark matter BEC

Let’s use the above results to determine the conditions under which DM can form a BEC in-
side galaxies. The first condition is of course that DM should be effectively bosons, either
fundamental bosonic particles or bound states of fermions (e.g., weakly-coupled Cooper pairs
or tightly-bound atoms). The second condition is that their thermal de Broglie wavelength in
galaxies overlap. Although DM particles are subject to the gravitational field of the galaxy and
possibly have self-interactions, we can nevertheless use (18) as a rule of thumb.

As usual, ascribing a DM temperature kBT = mv2, where v is the one-dimensional ve-

locity dispersion, we have λth ∼
1

mv . Thus the condition for BEC is 1
mv ¦ n−1/3 =

�

m
ρ

�1/3
,

where ρ = mn is the mass density. Rearranging gives an upper bound on the DM mass:

m®
� ρ

v3

�1/4
. (19)

To fix ideas, let’s substitute the matter density and velocity dispersion in our neighborhood of
the Milky Way, of order ρ ' 10−25 g/cm3 ' 4 × 10−7 eV4 and v ' 100 km/s, respectively.
Then (19) gives m ® 6 eV. A more careful analysis [33] gives m ® 3 eV for Milky Way-like
galaxies. The key point is that BEC requires DM to be lighter than a few eV. Thus, in the broader
spectrum of allowed DM particle masses, BEC DM overlaps with the mass range of axion-like
particles.

We can also readily estimate the critical temperature for BEC DM. Substituting the same
mass density as before, and taking m= eV for concreteness, (15) gives

Tc ' 2 K . (20)

A more careful analysis [33] gives Tc ' 0.2 mK. Amusingly, this is not far from the critical
temperature of trapped cold atoms, in the µK range.

3 Superfluidity: simplest example

Next we turn to superfluidity, another striking manifestation of quantum mechanics, whereby
a system of particles exhibit dissipation-less flow below a critical velocity. Superfluidity and
BEC are intimately related phenomena [51–53]. While BEC is necessary for superfluidity, the
converse is of course not true — in the absence of interactions, superfluidity disappears, as we
will see, whereas BEC can persist without interactions, as emphatically illustrated by the free
Bose gas. We will be primarily interested in the case of weakly-interacting bosons, where BEC
and superfluidity go hand-in-hand. But it is worth noting that in strongly-interacting systems
only a fraction of particles may form a BEC, even at zero temperature. In liquid helium, for
instance, only ∼ 10% of particles are in the condensate for T � Tc, whereas the entire system
exhibits superfluidity.

In these lectures, we will describe superfluidity in the language of quantum field theory
(QFT), as opposed to, e.g., hydrodynamics, working exclusively at T = 0 for simplicity. We
will start with a relativistic theory and later take the non-relativistic limit relevant for DM
superfluidity. This is done for pedagogical purposes, since students tend to be more familiar
with relativistic QFT.
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Superfluidity is a second-order phase transition. What continuous symmetry is sponta-
neously broken? Well, since BEC is the condensation of particles in the ground state, it stands
to reason that the symmetry being spontaneously broken is conservation of particle number.
In QFT, particle number conservation is implemented by a global U(1) symmetry, so we expect
that superfluidity describes the spontaneous breaking of a global U(1) symmetry. More precisely,
it describes the spontaneous breaking of this symmetry at finite charge density, since the super-
fluid state contains a non-zero number of particles. (Incidentally, if the particles were charged,
the U(1) symmetry would be gauged, and its spontaneously broken phase would describe su-
perconductivity.)

The simplest theory of superfluidity at zero temperature is a massive complex scalar field
with quartic interactions,

L= −∂µψ∂ µψ−m2|ψ|2 −
g
2
|ψ|4 . (21)

The coupling constant g must be positive to ensure that the potential is bounded below, though
we will see that is also required for stability of the superfluid. This theory is invariant under
the global U(1) symmetry

ψ→ eiαψ ; α ∈ R . (22)

The corresponding conserved Noether current is

jµ = 2 Im(ψ?∂ µψ) . (23)

As usual, its time component gives the charge density, which in this case is the particle number
density:

n= −2 Im(ψ?ψ̇) . (24)

3.1 Condensate

To describe the condensate, we work in the mean-field approximation, whereby the condensate
wavefunction ψ0 satisfies the classical equation of motion,3

∂ 2ψ0 = m2ψ0 + g|ψ0|2ψ0 . (25)

Assuming homogeneity and working in the condensate rest frame, an appropriate ansatz is

ψ0(t) = veiµRt , (26)

where µR is the (relativistic) chemical potential. For now you can take this as a definition of
the chemical potential, though later on we will provide physical motivation. Substituting this
ansatz into (25) gives

µ2
R = m2 + gv2 . (27)

To relate µR to the non-relativistic chemical potential µ discussed earlier, take the non-
relativistic limit:

µR =
Æ

m2 + gv2 ' m+
gv2

2m
. (28)

The first term is recognized naturally as the rest mass energy, while the second term, which is
the energy due to interactions, is identified as the non-relativistic chemical potential:

µ=
gv2

2m
. (29)

3As we will see, the interpretation of ψ0 as a wavefunction is justified by the fact |ψ0|2 gives the mean number
density of particles in the mean-field approximation.
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Thus µ is positive (since g > 0). This is not inconsistent with our earlier discussion of the free
Bose gas. Recall that µ → 0− as T → 0 in that case. Turning on interactions at T = 0 then
pushes µ to be slightly positive.

Substituting the ansatz (26) into (24) gives the condensate number density,

n= 2µRv2 ' 2mv2 , (30)

where in the last step we have taken the non-relativistic limit. Equivalently, using (29) this
can be expressed in terms of the chemical potential:

n'
4m2µ

g
. (31)

3.2 Phonons

From Goldstone’s theorem [54, 55], we expect there should be a massless/gapless mode as a
consequence of the spontaneous breaking of the global U(1) symmetry. These gapless excita-
tions are phonons. To study them, let us perturb the field as

ψ(~x , t) = (v + h(~x , t))ei(µRt+π(~x ,t)) . (32)

Substituting into the Lagrangian (21) gives

L= −
�

∂µh
�2
+ (v + h)2

�

gv2 + 2µRπ̇+ π̇
2 −

�

~∇π
�2�−

g
2
(v + h)4 . (33)

Expanding L to quadratic order, one immediately notices that h has a mass,4 given by

m2
h = gv2 . (34)

At sufficiently low energy/momentum, we are justified in integrating out h, order by order
in its derivatives. To zeroth order in this expansion, h reduces to an auxiliary field. In the
saddle-point approximation, its equation of motion implies

g(v + h)2 = gv2 + 2µRπ̇+ π̇
2 −

�

~∇π
�2 ≡ XR . (35)

Substituting back into (33) gives

Lπ =
1

2g
X 2

R . (36)

At this stage it is convenient to take the non-relativistic limit, with µR ' m and π̇� m, so
that

XR ' gv2 + 2mπ̇−
�

~∇π
�2

= 2m

 

µ+ π̇−

�

~∇π
�2

2m

!

︸ ︷︷ ︸

≡ X

, (37)

where in the last step we have used (29). Thus (36) becomes

Lπ =
2m2

g
X 2 ; X = µ+ π̇−

�

~∇π
�2

2m
. (38)

4One should be more careful here. Because of the kinetic mixing term π̇h, the massive degree of freedom is a
linear combination of π and h, while the gapless mode is the orthogonal linear combination. But you can convince
yourself that the leading-order effective Lagrangian (36) ends up being the same.
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This is the zero-temperature, non-relativistic effective Lagrangian for the gapless mode π, to
leading order in derivatives. Notice that the original U(1) symmetry (22) acts non-linearly
on π as a shift symmetry,

π→ π+α . (39)

I leave it to you as an exercise to work out the sub-leading corrections to this Lagrangian. To
do so, you must keep additional derivative terms in the equation of motion for h, and solve this
equation perturbatively. The solution for h will be (35) plus terms involving higher-gradients
of π. The resulting effective Lagrangian is of the general form [56]

Lπ =
2m2

g
X 2 + c1 f1(X )

�

~∇X
�2
+ c2 f2(X )

�

~∇2π
�2
+ . . . (40)

To see that the excitations of this field are sound waves or phonons, expand (38) to
quadratic order:

Lπ '
2m2µ2

g
+

4m2µ

g
π̇+

2m2

g

�

π̇2 −
µ

m

�

~∇π
�2
�

. (41)

The first term is just a constant and therefore can be dropped. The second term, proportional
to π̇, is a total derivative and can also be dropped. Notice that its coefficient gives the conserved

charge, n= 4m2µ
g , as it should. Lastly, from the remaining terms we see that π excitations have

a linear dispersion relation ωk = csk, with sound speed

c2
s =

µ

m
=

gn
4m3

, (42)

where we have used (31).
The linear dispersion relation of phonons leads us to “Landau’s criterion”: when an impu-

rity moves through a superfluid with subsonic velocity, there is no friction. It is kinematically
impossible for an impurity moving subsonically to radiate phonons. If the motion is super-
sonic, however, phonon radiation becomes possible, analogously to Cerenkov electromagnetic
radiation. The superpower of being frictionless originates from the fact that sound waves are
the only low-energy excitations in the superfluid.

Two remarks:

• The requirement g > 0, which at the level of the original Lagrangian (21) gives a po-
tential that is bounded below, also ensures that the superfluid is stable (c2

s > 0). Thus
stability requires repulsive self-interactions.

• Keeping subleading terms in the gradient expansion, as in (40), you will obtain the
corrected dispersion relation

ω2
k = c2

s k2 +
k4

4m2
+ . . . (43)

Notice that, as we turn off interactions (g → 0), we have cs → 0, and the dispersion
relation reduces to the standard expression for free, non-relativistic particles: ωk→

k2

2m .
Thus superfluidity disappears in this limit. In other words, superfluidity requires self-
interactions.

3.3 Equation of state

Going back to the effective Lagrangian (38), let us setπ= 0 to study the condensate properties.
In this case, X = µ, and (38) becomes

L= 2m2

g
µ2 ≡ P(µ) , (44)
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where, as usual, we have identified the Lagrangian density with the pressure P. This defines
the grand canonical equation of state P(µ).5 In particular, the standard thermodynamic rela-
tion

n=
�

∂ P
∂ µ

�

T
=

4m2µ

g
(45)

reproduces our earlier expression (31) for the number density. This is one (roundabout) way
to see that µ is indeed the chemical potential.

4 General effective field theory

At this point, we can step back and write down the most general low-energy effective La-
grangian for superfluids at zero temperature, working directly in the non-relativistic regime.
(For introductory textbooks on effective field theory, the reader is referred to [57,58].)

As usual with effective field theory (EFT), the first step is to identify the relevant degree
of freedom. At sufficiently low energy/momentum, the relevant field is the Goldstone boson,
denoted for now by θ . The next step is to specify the relevant symmetries of the problem.
Firstly, we have the U(1) symmetry, which in light of (39) acts non-linearly as a shift symmetry

δθ = α . (46)

This will be the case if there is at least one derivative per field, that is, Lθ = Lθ (θ̇ ,∂iθ , . . .).
Secondly, the theory should be invariant under Galilean transformations, which is the relevant
symmetry group for non-relativistic physics. Rotational invariance requires spatial gradients to
be contracted as

�

~∇θ
�2

. Less trivial is invariance under Galilean boosts. Recall from quantum
mechanics that the phase of the wavefunction (i.e., θ) transforms under Galilean boosts as

δθ = m~v · ~x + t~v · ~∇θ . (47)

Convince yourself that the combination

X = θ̇ −

�

~∇θ
�2

2m
(48)

transforms as a scalar under (47), that is, δX = t~v · ~∇X . Therefore, any function of X will be
Galilean invariant. Specifically, to leading order in derivatives, the most general Lagrangian
compatible with the above symmetries is of the form [59]

Lθ = P(X ) . (49)

The choice of P specifies the equation of state of the superfluid. Higher-derivative corrections
are once again of the form given in (40). As an exercise, check that (49) transforms to a total
derivative under (47), hence the action is invariant under Galilean transformations.

It is straightforward to see that the background θ̄ (t) = µt solves the equation of motion.
To study phonon excitations around this condensate, let θ (~x , t) = µt +π(~x , t), such that

X = µ+ π̇−

�

~∇π
�2

2m
. (50)

I leave it to you as an exercise to check the following facts:

5In general, the pressure is a function of µ and T , but here we are working at T = 0.
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i) Setting π= 0, convince yourself that the charge density satisfies

n=
�

∂ P
∂ µ

�

T
= P,X

�

�

π=0 . (51)

ii) Expand the Lagrangian to quadratic order in π, and show that the sound speed is

c2
s =

1
m

P,µ

P,µµ
=

P,µ

m
∂ µ

∂ n
=
∂ P
∂ ρ

. (52)

This matches the usual expression for the adiabatic sound speed.

Let us mention a few examples of superfluid theories of interest:

• The working example studied in Sec. 3, with P(X )∼ X 2, describes particles with 2→ 2
interactions. It derives from a complex scalar field with quartic potential, V (|ψ|)∼ |ψ|4.
The equation of state, which follows from (31) and (44), is P(n)∼ n2.

• To reproduce the MOND empirical relations in galaxies, the relevant DM superfluid is
akin to P(X )∼ X 3/2. This describes particles with 3→ 3 interactions, and can be derived
from a complex scalar field with hexic potential, V (|ψ|) ∼ |ψ|6. This corresponds to a
polytropic equation of state P(n)∼ n3. Thus, despite the non-analytic dependence on X ,
the equation of state is perfectly analytic in n.

• A well-known example of a theory with fractional power in cold atom systems is the
Unitary Fermi Gas (UFG) [60, 61], which describes fermionic atoms tuned at unitary.
The UFG superfluid action is fixed by non-relativistic scale invariance to the non-analytic
form LUFG(X )∼ X 5/2 [56].

The effective theory (49) can easily be generalized to include the interaction energy V (~x)
associated with an external potential. For cold atoms in the laboratory, this describes the
trapping potential. For the case of interest of DM in galaxies, this describes the gravitational
potential energy V (~x) = mΦ(~x), where Φ is the Newtonian potential. From the perspective of
phonons, this amounts to a shift in the chemical potential. In other words, (49) still applies,
with X now given by6

X = µ−mΦ(~x) + π̇−

�

~∇π
�2

2m
. (53)

Thus, the Lagrangian describing a DM superfluid coupled to Newtonian gravity is

L= − 1
8πGN

�

~∇Φ
�2
+ P(X ) . (54)

As a consistency check, varying with respect to Φ and ignoring phonons (π = 0), we obtain
Poisson’s equation,

~∇2Φ= 4πGNmP,X

�

�

π=0 = 4πGNρ , (55)

where we have used (51).
For completeness, since the DM condensate in actual galactic halos has a velocity disper-

sion, we should discuss the generalization of the superfluid EFT for non-zero temperature.
At finite sub-critical temperature, a superfluid is described phenomenologically by Landau’s

6To convince yourself, go back to the quartic theory (21) and add the coupling to gravity Lgrav = −Φm|ψ|2.
Upon integrating out h, you will find that X now takes the form (53).
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two-fluid model: an admixture of a superfluid component and a normal component. The
finite-temperature effective Lagrangian is a function of three scalars [62]:

LT 6=0 = F(X , B, Y ) . (56)

The scalar X describes phonon excitations, as before. The remaining scalars are defined in
terms of the three Lagrangian coordinates ψI(~x , t), I = 1, 2,3 of the normal fluid:

B ≡
q

det ∂µψI∂ µψJ ;

Y ≡ uµ
�

∂µθ +mδ 0
µ

�

−m' µ−mΦ+ π̇+ ~v · ~∇π , (57)

where uµ = 1
6
p

B
εµαβγεI JK∂αψ

I∂βψ
J∂γψ

K is the unit 4-velocity vector, and in the last step
for Y we have taken the non-relativistic limit uµ ' (1− Φ, ~v). By construction, these scalars
respect the internal symmetries: i) ψI → ψI + c I (translations); ii) ψI → RI

Jψ
J (rotations);

iii) ψI → ξI(ψ), with det ∂ ξ
I

∂ψJ = 1 (volume-preserving reparametrizations).

5 MOND phenomenology from DM superfluidity

Once we take seriously the idea that DM is in a superfluid phase inside galaxies, the key
question is — what kind of superfluid? Motivated by the empirical galactic scaling relations,
in [32,33]we conjectured that DM phonons are described by the non-relativistic MOND scalar
action,7

P(X ) =
2Λ(2m)3/2

3
X
Æ

|X | . (58)

As mentioned earlier, the fractional power of the kinetic term would be strange if (58) de-
scribed a fundamental scalar field. As a theory of phonons, however, the power determines
the superfluid equation of state, and fractional powers are not uncommon. For instance, the
effective theory for the UFG superfluid is also non-analytic.

To mediate a MONDian force between ordinary matter, phonons must couple to baryons
through

Lint ∼
Λ

MPl
πρb , (59)

where ρb is the baryon mass density, and MPl =
1p

8πGN
is the reduced Planck mass. This

operator explicitly breaks the shift symmetry (39), but the breaking is MPl-suppressed and
thus technically natural from an EFT point of view. It could arise, for instance, if the superfluid
includes two components coupled through a Rabi-Josephson interaction [64]. With the field
redefinition φ = Λ

MPl
π, we see that this theory reproduces the MOND Lagrangian (3) for

Λ∼
p

a0MPl ∼meV . (60)

If we recall from Sec. 2 that the DM mass can be at most m ∼ eV in order to have BEC in
galaxies, we see that all scales in the problem are nicely eVish.

With this action, the DM superfluid gives rise to a long-range, phonon-mediated force
between ordinary matter particles:

aπ =
p

a0ab , (61)

7The square-root form ensures that the action is well-defined for time-like field profiles, and that the Hamilto-
nian is bounded below [63].
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Figure 1: Numerical solution of Lane-Emden equation (67).

where ab is the Newtonian acceleration due to baryons only. Unlike “pure” MOND, however,
the DM halo itself contributes a gravitational acceleration aDM. This contribution is negligible
on distances probed by galactic rotation curves, but becomes comparable to the MOND compo-
nent at distances of order the size of the superfluid core. In other words, the total acceleration
acting on baryons is

~a = ~ab + ~aDM + ~aπ . (62)

Below we will derive the density profile of the superfluid core at zero temperature.
It is important to stress that, unlike most attempts to modify gravity, there is no fundamen-

tal additional long-range force in the model. Instead the phonon-mediated force is an emergent
phenomenon which requires the coherence of the underlying superfluid substrate. This has
important implications for the phenomenological viability of the scenario vis-à-vis solar system
tests of gravity. Although typical accelerations in the solar system are large compared to a0,
post-Newtonian tests are sensitive to small corrections to Newtonian gravity and require fur-
ther suppression of the new force at short scales. The superfluid framework offers an elegant
explanation. As argued in [32, 33], the large phonon gradient induced by an individual star
results in a breakdown of superfluidity in its vicinity. Coherence is lost within the solar system.
Individual DM particles still interact with baryons, but no long-range force can be mediated.

Applying the results of the previous Sections, you can check that the condensate equation
of state is

P(µ) =
2Λ
3
(2mµ)3/2 . (63)

The number density of condensed particles is n = Λ(2m)3/2µ1/2, thus the equation of state
can be expressed equivalently as

P =
ρ3

12Λ2m6
. (64)

Lastly, phonons propagate with sound speed:

c2
s =

2µ
m
=

ρ2

4Λ2m6
. (65)

To gain intuition, it is instructive to study the density profile of a spherically-symmetric
DM superfluid core, ignoring baryons. The condition of hydrostatic equilibrium implies

1
ρ(r)

dP(r)
dr

= −
4πGN

r2

∫ r

0

dr ′r ′2ρ(r ′) . (66)

14

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.42


SciPost Phys. Lect. Notes 42 (2022)

Substituting the equation of state (64), and introducing the dimensionless vari-
ables ρ = ρcoreΞ

1/2 and r =
Ç

ρcore
32πGNΛ2m6 ξ, with ρcore denoting the central density, you can

show that (66) becomes
�

ξ2Ξ′
�′
= −ξ2Ξ1/2 , (67)

where ′ ≡ d/dξ. This is a Lane-Emden equation. The numerical solution, with boundary
conditions Ξ(0) = 1 and Ξ′(0) = 0, is shown in Fig. 1. We see that the resulting superfluid
density profile is cored. The density is found to vanish at ξ1 ' 2.75, which defines the core
radius: Rcore =

Ç

ρcore
32πGNΛ2m6 ξ1.

Meanwhile the central density is related to the core mass as [65] ρcore =
3Mcore
4πR3

core

ξ1
|Ξ′(ξ1)|

,

with Ξ′(ξ1)' −0.5. Combining these results, it is straightforward to solve for the core radius:

Rcore '
�

Mcore

1011M�

�1/5 � m
eV

�−6/5� Λ

meV

�−2/5

45 kpc . (68)

Remarkably, for m∼ eV and Λ∼meV we obtain DM cores of realistic size!
The above calculation, while instructive, ignores a number of effects which are important in

deriving realistic density profiles in galaxies. Firstly, the addition of baryons results in a phonon
gradient, which is not necessarily small compared to the chemical potential. Indeed, the deep-
MOND acceleration law (a ' paba0) is recovered whenever the phonon gradient dominates
over the chemical potential, ( ~∇π)2� µm. The story is further complicated further by the fact
that perturbations around this zero-temperature, static background are unstable (ghost-like).
However this instability can naturally be cured by finite-temperature effects [32,33]. Indeed,
owing to their velocity dispersion DM particles have a small non-zero temperature in galaxies,
hence we expect the zero-temperature Lagrangian (58) to receive finite-temperature correc-
tions in galaxies. The finite-temperature equation of state for DM superfluids was calculated
in [66].

In [35]we calculated an approximate finite-temperature density profile, consisting of a su-
perfluid core, with approximately homogeneous density, surrounded by an envelope of normal-
phase DM particles following an NFW profile. We explicitly fitted this density profile to two
representative galaxies: a representative low-surface brightness galaxy IC 2574, and a rep-
resentative high-surface brightness galaxy UGC 2953. See also [67]. The superfluid model
offers an excellent fit in both cases. See [35,68–70] for phenomenological implications of DM
superfluidity for other astrophysical systems.

A distinctive prediction of DM superfluidity is the absence of dynamical friction for sub-
sonic motion within the superfluid region [48, 70,71]. This may alleviate a number of minor
problems forΛCDM. For instance, instead of being slowed down by dynamical friction, galactic
bars in spiral galaxies should achieve a nearly constant velocity [72], as favored by observa-
tions [73].

It may also offer a natural explanation to the long-standing puzzle of why the five globular
clusters orbiting Fornax have not merged to the center to form a stellar nucleus. Indeed, in
the context of CDM, dynamical friction should have caused the globular clusters to rapidly
fall towards the center of Fornax [74, 75]. In reality Fornax shows no sign of such mergers.
See [76,77] for possible explanations within the classical DM particles context. In superfluid
DM, the globular clusters are happily swimming within the superfluid core without dissipation.

A potential key difference with ΛCDM is the merger rate of galaxies. If the infall velocity is
subsonic, then halos will pass through each other with negligible dissipation, possibly resulting
in multiple encounters and a longer merger time. If the infall velocity is supersonic, however,
the encounter will excite DM particles out of the condensate, resulting in dynamical friction
and standard merger dynamics.
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6 Other descriptions

For completeness let us briefly describe other well-studied theoretical descriptions of superflu-
idity. For this purpose we will focus on the quartic theory (21) for concreteness. Our starting
point is to take the non-relativistic limit directly at the level of the action via the field redefi-
nition

ψ(~x , t) =
1
p

2m
Ψ(~x , t)e−imt . (69)

Substituting into (21) and neglecting terms quadratic in time derivatives, we obtain

L= i
2

�

Ψ?Ψ̇ −ΨΨ̇?
�

−
1

2m

�

� ~∇Ψ
�

�

2 −
g

8m2
|Ψ|4 . (70)

Varying with respect to Ψ? gives

iΨ̇ =
�

−
1

2m
~∇2 +

g
4m2
|Ψ|2

�

Ψ . (71)

This non-linear Schrödinger equation is the celebrated Gross–Pitaevskii equation [78,79].
Performing the Madelung decomposition, familiar from ordinary quantum mechanics [80],

Ψ(~x , t) =

√

√ρ(~x , t)
m

eiθ (~x ,t) , (72)

and defining the superfluid velocity

~v(~x , t) =
1
m
~∇θ , (73)

the Gross–Pitaevskii equation gives

ρ̇ + ~∇ · (ρ~v) = 0 ;

ρ
�

~̇v +
�

~v · ~∇
�

~v
�

= − ~∇P +
n

2m2

~∇2pn
p

n
, (74)

where P = g
8m4ρ

2 is the pressure. These are the well-known equations of hydrodynamics.
The first equation is the continuity equation, while the second is Euler’s equation. Since the

latter is dissipation-free, the flow is inviscid. The last term in Euler’s equation, ∼ ~∇2pnp
n , is the

so-called “quantum pressure” term, which plays a key role in stabilizing the cored profiles in
fuzzy DM [38,48]. In our case, this is subdominant relative to the classical pressure term− ~∇P.
Furthermore, since the velocity is the gradient of a scalar, per (73), the flow is irrotational.

7 Conclusion

In these lectures we discussed a novel theory of DM superfluidity that reconciles the stunning
success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological
scales. The theory of DM superfluidity has some commonalities with self-interacting DM and
fuzzy DM. All three proposals achieve a cored DM profile in central regions of galaxies, either
through interactions or quantum effects, to alleviate existing observational puzzles/tensions
with ΛCDM on galactic scales. In all three proposals, the DM outside the core is in approx-
imately collisionless form and assumes an NFW profile. Like the quantum pressure of fuzzy
DM, the classical pressure of superfluid DM results in lower central densities and implies a
minimal halo mass necessary for collapse and virialization.
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The main difference is that DM superfluidity achieves a much larger core, encompassing
the entire range of scales probed by rotation curve observations. Nevertheless, the superfluid
core makes up only a modest fraction of the entire halo. It is large enough to encompass the
observed rotation curves, since the phonon force is critical for reproducing MOND. But it is
small enough that most of the mass lies in the approximately collisionless envelope, resulting
in triaxial halos near the virial radius. The superfluid collective excitations (phonons) mediate
a long-range force within the core, thereby affecting the dynamics of orbiting baryons and
reproducing the MOND phenomenology.
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