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1 General considerations

This review is intended to provide background material for the study of celestial holography for
asymptotically flat spacetimes. Recent reviews on celestial holography can be found in [1,2].
Complementary reviews on asymptotic symmetries include [3–5].

1.1 Defining the asymptotic symmetry group

Let us start by asking what are the theories of interest where an asymptotic symmetry group can
be defined. First, we need to specify the kinematics: a spacetime with either or both asymptotic
boundaries and finite boundaries. In these lectures we will mainly consider Minkowski space-
times and asymptotically flat spacetimes when gravity is present. Second, the bulk dynamics is
specified by a class of Lagrangians that are assumed to exist but which can be nonunique due to
field redefinitions or dualities. Particular classes of Lagrangians are “gauge theories”, i.e. La-
grangians that admit non-trivial Noether identities among their equations of motion. Because
of Noether’s second theorem, it is equivalent to the statement that there exist local variations
of the fields that keep the Lagrangian invariant up to boundary terms. Note that because of
dualities, a class of Lagrangians describing the same theory might contain gauge theories and
non-gauge theories. We will be interested in formulations that are gauge theories because
of the presence of local gauge transformations with associated locally constructed canonical
charges (in non-gauge theory formulations they would be nonlocal). Third, the “boundary
dynamics” or boundary conditions need to be specified. They are required at spatial and null
boundaries in order to define the variational principle. In addition, consistency needs to be
enforced between distinct boundaries at their intersecting “corners”.

There exists several frameworks to describe boundary conditions of gauge theories. The
main ones are the Hamiltonian formalism [6–8], the Lagrangian formalism [9–11] and the
Hamilton-Jacobi formalism [12]. There are also two distinct approaches to formulate bound-
ary conditions: in one of them, one fixes the gauge, which needs to be by definition associ-
ated with zero canonical charges, otherwise one would miss canonical charges! This has the
advantage of allowing efficient computations. This is the approach used by Bondi, van den
Burg, Metzner and Sachs at null infinity for asymptotically flat spacetimes [13,14] (additional
missed charges were found later on [15, 16]). Alternatively, one only writes geometrical ex-
pressions valid in any gauge but with background structures, as done by Penrose at null infinity
in asymptotically flat spacetimes [17], see also [18–20]. An intermediate approach is to for-
mulate boundary conditions in specific coordinates, but which still admit gauge redundancies,
e.g. the derivation [21] for asymptotically anti-de Sitter spacetimes. In all cases, the asymp-
totic symmetry group is defined as the quotient of the group of residual gauge transformations
modulo the group of trivial gauge transformations,

Asymptotic Symmetry Group=
Group of residual gauge transformations
Group of trivial gauge transformations

. (1)

Here trivial means that the gauge transformation is associated to a vanishing canonical charge.
The asymptotic symmetry group is equivalently defined as the group of global symmetries of
the class of theories given the set of boundary conditions.

There are however some loopholes in the definitions above that we need to address. First,
equivalent theories might admit distinct gauge groups. Let us take examples. Einstein gravity
or the theory of the interacting spin 2 massless field admits many formulations. One of them is
the metric formulation with field gµν and with the diffeomorphism group as gauge group. An-
other formulation is the Cartan formulation with fields eµa , Γ a

bµ with diffeomorphisms and local
Lorentz transformations as gauge transformations. In that particular case, the local Lorentz
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transformations are not associated to further charges [22] but that requires a computation!
In the (linear) spin 1 case or electromagnetism, the standard Lagrangian formulation is the
gauge potential formulation in terms of the gauge potential Aµ and associated field strength
Fµν = 2∂[µAν]. There is however a dual gauge potential formulation obtained from expressing
the Hodge dual of the field strength Gµν ≡

1
2εµναβ Fαβ , which is closed outside sources as a

result of Maxwell’s equations. It implies that it can be locally written as the total derivative a
dual gauge field, Gµν = 2∂[µBν]. The gauge group acts on Aµ as δAµ = ∂µφ where φ = φ(xµ)
is arbitrary while the dual gauge group acts on Bµ as δBµ = ∂µψ where ψ(xµ) is arbitrary. As
it turns out, the constant gauge parameter φ(xµ) = φ is canonically associated with the elec-
tric monopole charge while the constant gauge parameterψ(xµ) =ψ is canonically associated
with the magnetic monopole charge. For the spin 0 field, the standard Lagrangian formulation
is in terms of a scalar field which admits a global shift symmetry of the kinetic term, but the
theory admits a dual formulation in terms of an antisymmetric 2-form. The Lagrangian admits
the equivalent forms [23]

L = ∂ µφ∂µφ = ZµZµ + Bαβε
αβµν∂µZν =

1
4
∂[αBµν]∂

αBµν . (2)

The first and third forms are obtained by solving the second form for Bαβ or Zµ, respectively.
The dual gauge group acts on Bµν as either adding an exact form δBµν = ∂[µCν] or more
generally as adding a closed form δBµν = αµν, ∂[ααµν] = 0.

The second loophole is that gauge fixing might discard gauge transformations associated
with non-trivial charges. For example, in 3d gravity, Fefferman-Graham gauge in asymptoti-
cally anti-de Sitter spacetime discards non-trivial gauge transformations [24]. In 4d gravity,
Bondi gauge and harmonic gauge lead to distinct classes of canonical charges, see e.g. [25].
We can resolve these two loopholes by stating that the asymptotic symmetry group of a class
of theories is the union of the asymptotic symmetry groups of each formulation of that theory.
This enforces that the asymptotic symmetry group is invariant under field redefinitions and
gauge choices.

1.2 Determining the asymptotic symmetry group

Finding the asymptotic symmetry group of a class of theories is often stated as “the art of find-
ing consistent boundary conditions”1. If one defines too restrictive boundary conditions, some
physically important solutions will be discarded. If one defines too large boundary conditions,
some important quantities such as the energy will not be defined (but note that many infini-
ties could also be removed using suitable renormalization schemes). In the middle of these
uninteresting or unphysical boundaries conditions lies a non-linear zoo of possible interesting
boundary conditions.

In order to give more details, some formalism is required. We will denote the fields
of one formulation of the class of theories as Φi = {φ, Aµ, gµν, . . . }. The Lagrangian
density will be denoted as L[Φi]. Gauge transformations as δλΦ

i = Ri
λ
[Φ] where the

gauge transformation parameters are λ = λα(Φi(xµ), xµ). They form an algebra given by
δλ1
δλ2
Φi − (1 ↔ 2) = Ri

[λ1,λ2]
[φ], [λ1,λ2]α = Cα

βγ
(λβ1 ,λγ2) + δλ1

λα2 − δλ2
λα1 . We mainly

follow the notation of [4,11,26].
A field symmetry around a given field configuration Φi is a gauge parameter λα such that

its associated gauge transformation vanishes on-shell: δλΦ
i = Ri

λ
[Φ] = 0. For example, a

Killing vector of a spacetime in gravity, or the constant gauge parameter λ= 1 in electromag-
netism. Such field symmetries form a group, the exact symmetry group. Exact symmetries only
occur for very restricted classes of configurations in interacting theories, e.g. only stationary

1This can be attributed at least to Marc Henneaux.
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solutions, or they occur for very restricted classes of theories, e.g. topological theories such
as 3d gravity. The group of field symmetries of the maximally symmetric solution is typically
used as a benchmark: the asymptotic symmetry group is usually defined such that it contains
the exact symmetry group of the maximally symmetric solution [27] even though they are
motivated exceptions [28].

Gauge theories obey the Generalized Noether Theorem for field symmetries [29]. Take any
physical theory in n spacetime dimensions described by a Lagrangian density which admits
field symmetries. It exists a bijection between

• the equivalence class of gauge parameters λ(xµ) that are field symmetries, i.e. such
that the variations of all fields Φi vanish on shell (δλΦi ≈ 0). Two gauge parameters are
equivalent if they are equal on-shell;

• The equivalence class of (n− 2)-forms k that are closed on-shell (dk≈ 0). Two (n− 2)-
forms are equivalent if they differ on-shell by dl where l is a (n− 3)-form.

The infinitesimal surface charge k can be derived algorithmically from the Lagrangian up to
a remaining boundary ambiguity to be fixed by other considerations, see later on. One first
defines the presymplectic potential Θ from the variation of the Lagrangian as [30]

δL =
δL
δΦi

δΦi + dΘ[δΦi;Φi] . (3)

All derivatives acting on the fields Φi are integrated by parts in order to define Θ. One then
defines the presymplectic structure

ω[δ1Φ,δ2Φ;Φ] = δ1Θ[δ2Φ;Φ]−δ2Θ[δ1Φ;Φ] . (4)

It is a two-form in field space and n−1 form in spacetime. The infinitesimal canonical surface
charge is then obtained from the definition

ω[δλΦ,δΦ;Φi] = dkλ[δΦ;Φ] + EOM , (5)

where the last term on right-hand side is proportional to the equations of motion. An exact
field symmetry δλΦ

i = 0 leads to a conserved n− 2 form dkλ[δΦ;Φ] = 0.
Let us now discuss the remaining boundary ambiguity. One can add a boundary Lagrangian

to the action as S =
∫

dn x L[Φ] +
∫

dn−1 x LB[Φ;Ψ], which typically depend upon background
structures Ψ such as the normal to the boundary. We will denote with a L subscript the bulk La-
grangian contribution and with a B subscript the boundary contribution. This boundary action
is associated with the choice of boundary conditions. This boundary action leads to a shift of
the presymplectic potential and presymplectic structure by a boundary term as Θ = ΘL − dΘB
and ω=ωL − dωB [31–35]. In turn, this leads to the shift of the infinitesimal surface charge
as kλ = kL

λ
[δΦ;Φ]−ωB[δλΨ;δΨ;Ψ]. For exact field symmetries we have δλΦ

i = δλΨ i = 0
and the boundary contribution vanishes. However, for asymptotic symmetries it might con-
tribute, even by an infinite amount in the case where the boundary Lagrangian is chosen to
renormalize the infinite variation of the action at the boundary.

The prime examples of correspondence between exact field symmetries and conserved
surface charges are the case of global U(1) symmetry in electromagnetism and Killing vectors in
Einstein gravity. The constant U(1) gauge transformation is associated with the electric charge
Q =

∫

S ?F[A] written in form notation, while the constant dual U(1) gauge transformation is
associated with the magnetic monopole charge P =

∫

S F[A]. In these cases the surface charge
one-form kλ is an exact variation over the field space, kλ = δ(?Fλ) or kλ = δ(Fλ) where
λ= 1. In gravity, the energy E and angular momentum J can be written as

E, J =

∫

S
Kξ[gµν] , Kξ[gµν] =

∫ g

ḡ
kξ[δgµν; gµν] , (6)
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where, explicitly, [30]

Kξ[gµν] =
(dn−2 x)µν

8πG

�

p

−gDµξν −
p

− ḡ D̄µξν +

∫ g

ḡ

p

−gξµ(Dαδgνα − Dνδgαα)

�

. (7)

Let us now discuss asymptotic symmetries at asymptotic or finite boundaries. One can
distinguish two categories of boundary conditions:

1. Asymptotically closed boundary conditions are defined as boundary conditions with no
energy flux. For example, spatial infinity in asymptotically flat spacetimes by definition
cannot be reached by any finite energy [36]. The asymptotic boundary of anti-de Sitter
can be reached by finite energy but standard boundary conditions do not allow a flux
through the boundary [27, 37]. Another example is null infinity in three-dimensional
Einstein gravity.

2. Asymptotically open boundary conditions are defined as boundary conditions with a flux
of energy through the boundary (either ingoing or outgoing). The prime example is null
infinity in the presence of massless matter or gravity [13,38]. Another example is “leaky”
anti-de Sitter spacetime which needs to be glued to an exterior geometry [39].

Let us first discuss the case of closed boundaries. The standard definition of an asymptotic
symmetry is as follows. One requires that δΦi = Ri

λ
[Φ] → 0 in a suitable way towards the

boundary and that the associated surface charge Qλ be finite and conserved. The asymptotic
symmetry group is then defined as the quotient (1). The associated charges then form an
algebra [8,11,26]

{Qλ1
,Qλ2

}[Φ] =Q[λ1,λ2][Φ− Φ̄] + Kλ1,λ2
[Φ̄] (8)

under the Peierls bracket [40], where Kλ1,λ2
[Φ̄] is the central extension that only depends

upon the reference background Φ̄i with respect to which the surface charges are defined. The
requirement of fall-off δΦi = Ri

λ
[Φ] → 0 is now often waived in favor of just requiring the

charges to be finite and conserved, which is what is ultimately physical.
In the second case of open boundary conditions, the infinitesimal surface charges kλ[δΦ;Φ]

are not integrable in the sense that δkλ[δΦ;Φ] 6= 0. They can be split into an integrable and
a non-integrable part as δKλ[Φ] + Ξλ[δΦ;Φ] [15, 41] but a prescription is then required to
uniquely identify the integrable part with the final surface charge [42]. This prescription has
been related to boundary conditions and associated boundary actions in [35]. The charges
Qλ =

∫

S Kλ are required to be finite (allowing a renormalization procedure using countert-
erms). They also obey an algebra [41, 43]. We will now turn to the description of explicit
cases.

2 Celestial asymptotic symmetry groups

The asymptotic boundary of Minkowski spacetime in n dimensions consists of five parts: future
and past null infinities I±, future and past timelike infinities: Euclidean AdSn−1 or EAdSn−1
(with degenerate n − 2 sphere at r = 0 in standard coordinates) usually denoted i±, and
spacelike infinity: dSn−1 or i0 (with smallest sphere at t = 0 in standard coordinates). Near
I+ we use retarded coordinates (u, r, xA) and near I− we use advanced coordinates (v, r, xA),
where r is the radial coordinate, u= t−r is retarded time while v = t+r is advanced time. For
n= 4, xA are coordinates on S2, that can be taken to be the complex stereographic coordinates
(z, z̄) with z = eiφ tan θ2 , z̄ = z∗. We define I± as the limit as r →∞ with (u, xA) or (v, xA)

5
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fixed. In these charts the metric takes the form

ds2 = −du2 − 2dudr + r2γABd xAd xB , (9)

ds2 = −dv2 + 2dvdr + r2γABd xAd xB , (10)

where γAB is the Sn−2 round metric. Following [44], we also define the boundaries of I+ to be
the spheres I+± defined as the limit u→±∞ taken after r →∞ and similarly we define the
boundaries of I− to be I−± defined as the limit v→±∞ taken after r →∞, see Figure 1.

Figure 1: Penrose diagrams of Minkowski spacetime. On the left: Penrose diagram
with sample light cone. Vertical curves have constant r while horizontal curves have
constant t in standard Minkowski coordinates. The n − 2 angular dimensions are
suppressed. On the right: Massive particles travel from i− to i+, whereas massless
particles travel at 45o incident angle between I− and I+. Advanced (v = t + r)
and retarded u = t − r coordinates (together with angular coordinates) span the
boundaries I− and I+, respectively. [45,46]

The retarded and advanced coordinates are not appropriate to describe i0 and i±. For
these boundaries we employ a hyperbolic slicing of Minkowski spacetime [37, 47]. Near i0

we introduce coordinates (τ,ρ, xA) where t = ρ sinhτ and r = R+ρ coshτ, for large R, with
i0 being defined as the ρ → ∞ limit. Near i± we introduce coordinates (τ̂, ρ̂, xA) where
t = ±T + τ̂ cosh ρ̂ and r = τ̂ sinh ρ̂, for large T , and then i± are defined as the surfaces
τ̂→±∞. In these two charts the metric reads, respectively, as

ds2 = dρ2 +ρ2
�

−dτ2 + cosh2τγABd xAd xB
�

+O(ρ) , (11)

ds2 = −dτ̂2 + τ̂2
�

dρ̂2 + sinh2 ρ̂ γABd xAd xB
�

+O(τ̂) . (12)

Let us end with a general remark on the space of fields in Minkowski spacetime. In
Minkowski spacetime in spacetime dimension d ≥ 4, the infrared structure of any propa-
gating field at each asymptotic boundary can be decomposed in terms of multipole moments
which appear at higher and higher subleading orders in the expansion from each boundary.
In that sense, there is an infinite amount of holographic fields dual to a propagating field in
Minkowski spacetime. This is very different than in anti-de Sitter spacetime where only two
holographic fields (the “source field” and its “vacuum expectation value”) appear in the radial
expansion from the boundary [48].

6
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2.1 4d QED - U(1) Kac-Moody

We now consider QED by first looking only at the gauge potential Aµ. We work in the gauge
fixing approach and gauge fix to radial gauge and boundary temporal gauge:

Ar = 0 , Au|I+ = 0 . (13)

A gauge transformation has the form δλAµ = e2∂µλ and it preserves radial gauge when
λ= λ(xA). In solution space, at I+± , the field configuration is pure gauge A±A(x

B) = e2∂Aφ
+
±(x

B)
and the gauge invariant difference φ++(x

A) − φ+−(x
A) characterizes the electric memory ef-

fect [49, 50]. The only field left undetermined from Fµν is φ+−(x
A) and it transforms inho-

mogeneously under non-trivial gauge transformations, δλφ
+
−(x

A) = λ(xA), which allows its
identification as the Goldstone boson of the spontaneously broken large gauge symmetry [51].
There is a dual analogue to this construction.

After using the definition of the canonical charge and the field equations, the Noether
charge Q+

λ
associated to the gauge transformation with parameter λ is

Q+λ =
1
e2

∫

I+−

p
γd2zλFru (14)

=

∫

S2

p
γd2zλDC DC(φ

+
+ −φ

+
−)

︸ ︷︷ ︸

Soft/Memory Part

+

∫

I+
du
p
γd2zλ ju

︸ ︷︷ ︸

Hard Part

, (15)

where ju is a possible massless U(1) current sourced by charged matter. Since this contribution
admits a finite charge it is called the “hard” part. The first term has not monopole charge
because when λ = 1 the integrand is a total derivative and the integral vanishes from Stokes’
theorem. Yet, there is a non-trivial contribution for arbitrary λ which is sourced by φ++ −φ

+
− ,

also sourcing the electric memory effect. For this reason it is called the soft or memory part.
The associated asymptotic symmetry algebra is abelian {Q+

λ
,Q+
λ′
}= 0.

We can do the same analysis on I−. It relates to the one we have outlined above at I+
after imposing junction conditions at spatial infinity. One requires that φ+−(x

A) be antipo-
dally matched to the corresponding φ−+(x

A) and that the asymptotic symmetries preserve this
matching. The antipodal matching is necessary for the scattering problem to be well-defined
and Lorentz invariant [51] and it has been verified in the Liénard-Wiechert solution [3]. It
can also be understood directly from a Hamiltonian analysis from twisted parity conditions at
the constant t surface at r →∞ (also known as spatial infinity i0) [52] or from a Lagrangian
analysis from the behavior of waves on the boundary dS3 [53] .

We illustrate the inclusion of massive fields with a massive charged scalar ϕ. The field
equations are ∇νFµν = Jµ and (−DµDµ + m2)ϕ = 0 where Jµ = ieϕ(Dµϕ)∗ + c.c. and
Dµϕ = ∂µϕ − ieAµϕ. In this case the relevant Cauchy surface is Σ+ = I+ ∪ i+, with i+ repre-
sented as Euclidean AdS3 via the hyperbolic slicing, and with ∂ i+ matched with I++ locally at
each angle xA [47]. In order to have consistency between I+ and i+ radial gauge is not con-
venient and we instead gauge fix to Lorenz gauge ∇µAµ = 0. Residual gauge transformations
δλ̃Aµ = e2∂µλ̃ and δλ̃ϕ = iλ̃ϕ are now constrained by �λ̃= 0.

At I+ the gauge parameter λ̃ still asymptotes to a function λ(xA) of the angles while at i+

it asymptotes to a function λH(ρ, xA) on EAdS3 constrained, by the residual gauge condition
�λ̃= 0 and by compatibility with the value of λ̃ at I+, to be a solution of the problem

∆λH = 0 , lim
ρ→∞

λH(ρ, xA) = λ(xA) , (16)

where ∆ is the Laplacian on EAdS3 and its coordinates are defined with ρ → ∞ reaching
∂ i+ [47]. This problem is solved by a scalar bulk-to-boundary propagator applied to λ(xA) in
a manner analogue to the AdS3 propagator [48,54].
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The Noether charge that follows from the covariant phase space procedure still has the
same expression given in Eq. (14) as a surface integral over ∂Σ+ = I+− . However, when
rewritten as a codimension 1 integral over Σ+ we have a new contribution from the massive
field at i+: [47,55]

Q+λ =

∫

S2

p
γd2zλDC DC(φ+ −φ−)

︸ ︷︷ ︸

Soft/Memory Part

+

∫

I+
du
p
γd2zλ ju

︸ ︷︷ ︸

Hard Massless Part

+

∫

i+
dρdΩ

p
qλH jτ

︸ ︷︷ ︸

Hard Massive Part

, (17)

where λH is implicitly written in terms of λ(xA) through the bulk-to-boundary propagator
[3,47].

We close this discussion with a comment on an alternative set of asymptotic symmetries
in QED known as multipole symmetries. In this case the gauge parameter is of the form
λ`m(r, xA) = r`Y`m(xA) and the surface charges Q+

`,m for an electrostatic field are the elec-
tric multipole moments [56]. The asymptotic symmetry algebra is again a U(1) Kac-Moody
algebra.

2.2 3d flat gravity - BMS3

Three-dimensional asymptotically flat gravity is trivial in the sense that there is no propagating
degree of freedom and no black hole, according to Ida’s theorem [57]. Yet, it is non-trivial
in the sense of boundary dynamics or asymptotic symmetries: one can still define boundary
conditions such that the asymptotic symmetry group is non-trivial. In addition, while there is
no Newtonian attractive potential in 3d gravity, there are still spinning massive particles that
are defined as conical defects, with a time twist in the presence of angular momentum.

Let us review this asymptotic structure in the gauge fixing approach and in the Lagrangian
formalism for the metric field gµν. The action is the Einstein-Hilbert action. We will first
define the space of solutions at null infinity in Newmann-Unti gauge or, equivalently, as we will
show, in Bondi gauge, and derive the asymptotic symmetry charge algebra for given boundary
conditions. We will then investigate spatial infinity and derive boundary conditions that are
consistent with the antipodal identification of the symmetry groups between I+ and I−.

We denote the spacetime coordinates as (u, r,φ). In the following, µ,ν will stand for
spacetime indices while A, B will stand for sphere indices. We impose the so-called Newman-
Unti gauge condition

gr r = grφ = 0 , gru = −1 . (18)

As we will see in a moment, the imposition of boundary conditions will result in gφφ = r2

and the radial coordinate will also equal the luminosity distance in the sense of [14] and the
gauge fixing will be equivalent to Bondi gauge.

Consistently with the inclusion of Minkowski spacetime and spinning conical defects, we
impose the following boundary conditions [58]

guu =O(r0) , guA =O(r0) , gφφ = O(r) . (19)

We will need to check whether the conserved quantities will be finite given these boundary
conditions.Given this gauge choice and boundary conditions, the most general form of a metric
solving Einstein’s equation can be written as follows [15,59]

ds2 = Θ(φ)du2 − 2dudr + 2
h

Ξ(φ) +
u
2
∂φΘ(φ)

i

dudφ + r2dφ2 . (20)
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The phase space of the theory is then the set of all such metrics parameterized by the 2 func-
tionsΘ andΞ on the circle. The residual symmetries preserving the gauge choice and boundary
conditions can be deduced from the condition

Lξgµν(Θ,Ξ) = gµν(Θ+δξΘ,Ξ+δξΞ)− gµν(Θ,Ξ) , (21)

which is imposed at linear order in the vector ξµ. It implies in particular Lξgrµ = 0. The
general solution to Eq. (21) is then

ξµ∂µ :











ξu = T (φ) + u∂φR(φ) ,
ξr = −r∂φR(φ) + ∂ 2

φ
T + u∂ 3

φ
R(φ)− 1

r (∂φT + u∂ 2
φ

R)(Ξ+ u
2∂φΘ) ,

ξφ = R(φ)− 1
r ∂φT − u

r ∂
2
φ

R(φ) .

(22)

Here, the supertranslations are generated by T and superrotations by R. If we define the modes
by,

Pm = ξ(T = eimφ , R= 0) , Jm = ξ(T = 0, R= eimφ) , (23)

it is easy to see that we get the following asymptotic algebra under the standard Lie bracket
[60]

i [Pm, Pn] = 0 , (24)

i [Jm, Jn] = (m− n)Jm+n , (25)

i [Jm, Pn] = (m− n)Pm+n . (26)

In fact, the algebra can even be promoted to be exact at any r given the exact form (22) but the
Lie bracket [ξ,η] needs to be enhanced to the adjusted Lie bracket [ξ,η]∗ = [ξ,η]−δξη+δηξ
which takes into account the field dependence (here in Ξ(φ), Θ(φ)) of the vector fields [15].

The action of the vector fields can be understood as transformations directly on the solution
space using (21) from which we get,

δT,RΘ = R∂φΘ+ 2Θ∂φR− 2∂ 3
φR , (27)

δT,RΞ= R∂φΞ+ 2Ξ∂φR+
1
2

T∂φΘ+Θ∂φT − ∂ 3
φT . (28)

By virtue of (27), Θ belongs to the coadjoint representation of Diff(S1). The above equa-
tions simplify when written in terms of simpler fields. With hindsight [61], we define the
superrotation field Ψ(φ), which is invariant under supertranslations and transforms under
superrotations as,

δT,RΨ = R∂φΨ + ∂φR . (29)

This implies that Θ =
�

∂φΨ
�2 − 2∂ 2

φ
Ψ + 8GMe2Ψ , which gives it the form of a Liouville stress

tensor. The parameter M is exactly the charge conjugate to P0 = ∂t . For Ψ = 0, we have
Θ0 = 8GM and M , which corresponds to the total conical defect, cannot be generated by a
diffeomorphism. Similarly, for the other transformation, we can introduce a supertranslation
field C , from which we define Ξ as

Ξ= Θ∂φC − ∂ 3
φC + 4GJe2Ψ +

1
2
∂φΘC . (30)

This along with the previous equation fixes the transformation of the C field as,

δT,RC = T + R∂φC − C∂φR . (31)
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Like M , the zero mode Ξ0 = 4GJ is recognized after computing the charges as determined by
the angular momentum J conjugate to −∂φ . As a summary, the field space is now parameter-
ized by the supertranslation field C(φ), the superrotation field Ψ(φ), and the zero modes J
and M .

Given the symmetry algebra, we can find the corresponding generalized Noether charges
and compute the corresponding algebra. The expression of the charge (6) with convention
εurφ = 1 gives

Pn =
1

16πG

∫ 2π

0

dφ (Θ(φ) + 1) einφ , (32)

Jn =
1

8πG

∫ 2π

0

dφΞ(φ) einφ . (33)

Using the bracket algebra defined as
�

Qξ,Qξ′
�

= δξ′Qξ and the transformation laws (29)-(31),
we get the following charge algebra [58]

i [Pm,Pn] = 0 ,

i [Jm,Jn] = (m− n)Jm+n , (34)

i [Jm,Pn] = (m− n)Pm+n +
1

4G
m(m2 − 1)δm+n,0 ,

where we now have a central extension. This is due to the third derivative terms in the trans-
formation of Θ and Ξ in (27), (28). In 3 dimensions, the angular momentum is dimensionless
while the momentum has dimension inverse length. The central charge has therefore dimen-
sion inverse length. Only the generators corresponding to the exact Killing generators of the
Poincaré algebra iso(2, 1) generated by P0,P−1,P1, J−1,J0,J1 do not have a central exten-
sion. In the quantum theory, i times the Peierls bracket i[_, _] is the quantum commutator. The
above algebra can also be obtained from a Inönü-Wigner contraction of the Virasoro× Virasoro
algebra [27] that arises as the symmetry group for asymptotically anti-de Sitter spacetimes [58]
.

To complete the story, we investigate the asymptotic region of spatial infinity. While there
is considerable physical justification for the antipodal map that relates the BMS group BMS+

at I+ to the BMS group BMS− at I− [44], it is interesting to see whether one can derive this
map from a fundamental perspective. Spatial infinity is the place to look at since it is bounded
by I+− the past boundary of I+ and I−+ the future boundary of I−. Hyperbolic gauge is reached
using the gauge fixing conditions

gρρ = 1 , gρτ = gρφ = 0 . (35)

The boundary conditions specifying the set of asymptotically flat spacetimes at spatial infinity
are

gττ = O(ρ2) , gτφ = O(ρ2) , gφφ = O(ρ2) . (36)

In particular, the Minkowski metric is ds2 = dρ2 + ρ2
�

−dτ2 + cosh2τ dφ2
�

, with the usual
Minkowski time and radius is given by t = ρ sinhτ, r = ρ coshτ. The general exact solution
in this gauge can be written down as

ds2 = dρ2 +
�

ρ2h(0)ab +ρh(1)ab + h(2)ab

�

d xad x b , (37)

where the entire metric can be reconstructed from two holographic ingredients (this is specific
to 3d gravity!): the boundary metric h(0)ab and the boundary stress-tensor T ab (a, b running
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over boundary coordinates) as

h(1)ab = Tab − h(0)ab h(0)cd T cd , h(2)ab =
1
4

h(1)ac hcd
(0)h

(1)
d b . (38)

Einstein’s equations imply that the boundary metric is locally dS2 with boundary Ricci scalar
R(0) = 2, and that the stress-tensor is conserved DaT ab = 0. Here Da is the boundary covariant

derivative with respect to h(0)ab and indices are raised with the inverse boundary metric hab
(0). The

trace of the stress-tensor is not fixed, contrary to the analogous Fefferman-Graham expansion
in AdS3 [62].

To have a well-defined variational principle (and obtain integrable charges) however, one
needs to impose additional boundary conditions which are chosen as [63]

h(0)++ = h(0)−− = 0 , T+− = 0 , (39)

where we defined the boundary lightcone coordinates x± = τ±φ. The most general boundary
metric is then given by,

ds2
(0) = −

2∆2∂+X+∂−X−

cos (∆(X+ + X−)) + 1
d x+d x− , (40)

where X+ = X+(x+) and X− = X−(x−) are chiral functions and ∆ is the conical defect in the
boundary de Sitter space. We also have that 0 < ∆ ≤ 1 where ∆ = 1 is equivalent to the
absence of defect. After computing the change of coordinates to Bondi gauge, one observes
that preserving asymptotic flatness at the future and past null infinities in the sense of (19)
requires the following identification of the fields

X−(x) =
π

∆
− X+

�π

∆
− x

�

+
2π
∆

k , ∀x , (41)

where k ∈ Z labels disjoint BMS orbits. The metric is then given by

ds2 = dρ2 + 2h(0)+−

�

ρd x+ +
Ξ−(x−)

2h(0)+−
d x−

��

ρd x− +
Ξ+(x+)

2h(0)+−
d x+

�

. (42)

At this point the phase space is characterised by 3 independent null boundary fields X+(x+),
Ξ+(x+), Ξ−(x−). However only a particular combination of Ξ± appears in the charges which
implies that Ξ− can be considered pure gauge. The fields at spatial infinity are finally related
to the fields on null infinity in Bondi gauge in the following way,

Ξ(φ) =
1
2

h

Ξ+

� π

2∆
+φ

�

−Ξ−
� π

2∆
−φ

�i

, (43)

Θ(φ) =
�

∂φΨ(φ)
�2 − 2∂ 2

φΨ(φ)−∆
2e2Ψ(φ) , (44)

where eΨ(φ) ≡ ∂φX+
�

π
2∆ +φ

�

. The BMS3 algebra is therefore realised at spatial infinity. The
antipodal map between I+− and I−+ in the absence of defect, ∆= 1, follows from the fact that
null fields such as X+(x+), Ξ±(x±) propagate on dS2 from φ to φ+π from the past to future
of dS2 [63].

2.3 4d flat gravity - BMS4 and more

The motivation into to study asymptotically flat spacetimes in 3 + 1 dimensions is obvious.
It describes the physics of localized objects and events in gravity below cosmological scales.
Many approaches have been developed over the years, especially since the sixties, to study

11

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.47


SciPost Phys. Lect.Notes 47 (2022)

such classes of spacetimes and many recent developments took place following in particular
the seminal works of Barnich-Troessaert [64] and Strominger [44].

Contrary to 3 dimensions, asymptotically flat spacetimes in 4 dimensions admit 2 polari-
sation modes of gravitational waves, attractive gravitational potentials and black holes. Such
classes of spacetimes cannot be written in an exact form and expansions close to boundaries
are required. We will follow here the gauge fixing approach within the Lagrangian formalism
for the metric field.

Let us first consider future null infinity. We introduce retarded spherical coordinates
(u, r,θ ,φ) and impose the following boundary conditions,

guu =O(r0) , gAB =O(r2) ,
Æ

det(gAB) = r2
Æ

det(q̄AB) +O(r1) , (45)

where q̄AB is the unit sphere metric. The last condition on the determinant can be further
relaxed, which leads to additional Weyl asymptotic symmetries [65], but we shall not consider
such an extension here. Consistently with Einstein’s equations, a diffeomorphism exists [33]
such that gAB = r2q̄AB + O(r) which is the standard asymptotically flat coordinate system.
However, it is instructive to consider the more general set of coordinates (45) precisely because
the diffeomorphism reducing the metric to standard form is non-trivial in the sense that it is
associated with non-vanishing charges and flux-balance laws.

Assuming these boundary conditions and past stationarity, i.e. the absence of any gravita-
tional radiation past a fixed retarded time u= −T , future null infinity is asymptotically simple
in the sense of Penrose [17], and can be charted by a large class of coordinate systems that
admit an expansion in terms of inverse radial powers [66]. We will work with the following
gauge choice,

gr r = 0= grA , gru = −1 , (46)

which is called Newman-Unti gauge. This is equivalent [67] to another gauge choice that is
commonly used, called Bondi gauge where the last condition gru = −1 is replaced by,

∂r

�

det(gab)
r4

�

= 0 . (47)

The asymptotic solution to Einstein’s equation with these boundary conditions and this gauge
choice is then given by [13–15]

ds2 = −
�R
2

du2 − 2dudr + r2qABd xAd xB (48)

+
2m
r

du2 + rCABd xAd xB + . . . (49)

+
1
r

4
3

NAdud xA+ . . . , (50)

where�R is the 2d curvature associated to the metric on the 2-sphere qAB, m is called the Bondi
mass aspect, and the NA is called the angular momentum aspect. The CAB is a symmetric
traceless tensor called the shear, which contains the 2 polarization modes of the gravitational
waves at leading order in the asymptotically flat region at null infinity. It is not fixed by
Einstein’s equations in the expansion around null infinity and is rather fixed by the source
producing the radiation [68–71]. The Bondi news is given by NAB =

d
du CAB = ĊAB. Any metric

of the sphere qAB can be written as a Weyl transformation combined with a 2-diffeomorphism
xa 7→ Ga(x b) applied on the complex plane metric γab as qAB = e−Φ∂AGa∂BGbγab. Imposing
the last boundary condition (45) fixes Φ in terms of det(q̄AB) and Ga. We call Φ the superboost
field. The 2d Ricci scalar of qAB is then given by�R= DADAΦwhere DA is the covariant derivative
compatible with the metric qAB. For a 2d metric, the analogue of the Weyl tensor is the trace-
free part of the Liouville stress-tensor built fromΦ that we name N vac

AB = [
1
2 DAΦDBΦ−DADBΦ]T F
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and which corresponds up to a trace to the Geroch tensor [36]. In standard coordinates where
qAB = q̄AB, this tensor vanishes: N vac

AB = 0.
The residual gauge transformations that obey Lξgrµ = 0 and the boundary conditions (45)

are parameterized by 3 functions on the celestial sphere,

T (θ ,φ) , RA(θ ,φ) , A= θ ,φ . (51)

Here T corresponds to supertranslations and RA is associated to super-Lorentz2 transformations.
Since the charges associated with these residual transformations are finite (after necessarily
non-covariant [72] renormalization [33] in the case of super-Lorentz charges), all residual
transformations are asymptotic symmetries [15,41,47,64]. In the following we will consider
the classical asymptotic symmetry group where all functions are regular over the sphere such
that the associated charges are finite. Punctures are necessary in the quantized theory and
poles in stereographic coordinates z = cot θ2 eiφ and z̄ = cot θ2 e−iφ are then allowed3.

The supertranslation vector fields are given by,

ξ(T )≡ T (θ ,φ)∂u +
1
2

DADAT∂r −
1
r
∂ AT∂A+ . . . , (52)

where dots indicate subleading terms in r that enforce the gauge fixing conditions.
These vector fields form an abelian ideal of the full BMS4 algebra to be detailed be-
low. Their associated Noether charge is the Bondi mass aspect with a correction,
M(u, xA) = m(u, xA) + 1

8 CAB(u, xA)NAB
vac(x

A) [13,38]

QT (u) =

∫

S2

d2Ω T (xA)M(u, xA) , (53)

where the measure over the sphere is d2Ω =
p

det(q̄AB)d2 x . The four lowest harmonics of T
correspond to the four translations, which are associated with the four lowest harmonics of
m: the l = 0 harmonic corresponds to a time translation, while the l = 1 modes correspond
to spatial translations. For Minkowski, the constraint equations on m and NA obtained from
Einstein’s equations fix M = 0.

The (super-)Lorentz vector fields are given by,

ξ(R)≡
�

RA−
u
2r

DADBRB +O
�

1
r2

��

∂A+
1
2

uDARA∂u +
�

−
1
2
(r + u)DARA+O

�

1
r

��

∂r , (54)

where RA in general can be decomposed as RA = εAB∂Bφ + ∂ Aψ, with the first term cor-
responding to (super)rotations and the second term corresponding to (super)boosts. After
renormalization and a choice of prescription, their associated Noether charge is the Bondi
angular momentum aspect NA(u, xA) plus a given correction:

QR(u) =

∫

S2

d2ΩRA(xA) NA(u, xA) , (55)

where NA = NA + . . . . There are several conventions for defining NA from the metric, and
several nonequivalent prescriptions for defining the correction to NA in the literature at fixed

2In most of the literature these are called superrotations. We find however convenient to denote the divergence-
free (DARA = 0) generators as superrotations and the curl-free generators (εAB∂ARB = 0) as superboosts which
generalize the rotations and boosts, respectively.

3The restriction to holomorphic and anti-holomorphic functions for the super-Lorentz transformations is often
considered, as in the original work [64] or in [73]. Non-holomorphic functions are required for the correspondence
between subleading soft theorems and super-Lorentz transformations [16]. Relationships between Diff(S2) and the
Virasoro×Virasoro algebra have been established using so-called shadow transforms [74]. The higher dimensional
generalization to Diff(Sn−2) is natural while there is no known generalization of the group of holomorphic and
anti-holomorphic super-Lorentz transformations.

13

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.47


SciPost Phys. Lect.Notes 47 (2022)

finite u, see [39, 41, 65, 70, 75–77]. The 6 lowest harmonics give the usual Lorentz charges -
the angular momenta and center-of-mass.

The (generalized) BMS algebra of the vector fields (52)-(54) reads as

[ξ(T1),ξ(T2)]∗ = 0 ,

[ξ(R1),ξ(T2)]∗ = ξ(T̂ ) , T̂ = RA
1∂AT2 −

1
2

DARA
1T2 ,

[ξ(R1),ξ(R2)]∗ = ξ(R̂) , R̂A = RB
1∂BRA

2 − RB
2∂BRA

1 ,

(56)

where [ξ,η]∗ = [ξ,η]−δξη+δηξ is the adjusted Lie bracket [15]. This BMS algebra is rep-
resented at the level of the charges Qξ but with a non-standard Peierls bracket due to the non-
conservation of these charges along u [39,41,43,78]. In particular, the bracket {QT=∂u

,Qξ} is
equivalent to the flux-balance laws that dictate the u evolution of the Bondi mass and angular
momentum aspects [67], which follow from Einstein’s equations in Bondi or Newmann-Unti
gauge.

What we have seen so far is the symmetry at I+ and it is clear that there is a similar story at
I− when analysed in advanced coordinates (v, r,θ ,φ). In order to define scattering from I−
to I+, it is necessary to define junction conditions between the fields at I− and I+ at spatial
infinity. Strominger proposed to relate antipodally (on the 2-sphere) the charges at I+− and the
charges at I−+ in accordance with CPT and Lorentz invariance [44]. For the charges with lowest
harmonics this can also be justified from consistency with the boosted Kerr black hole4. For
the restricted BMS group without super-Lorentz transformations, boundary conditions were
found using the Hamiltonian framework at spatial infinity which implements this antipodal
map [79, 80]. When the generalized BMS group can act, the boundary conditions at I+± are
given by

CAB = (u+ C±)N
vac
AB − 2DADBC± + qAB DE DEC± + o(u0) ,

NAB = N vac
AB + o(u−1) ,

(57)

as u→±∞. The quantity C+(θ ,φ)−C−(θ ,φ) is the supertranslation-invariant displacement
memory field which sources the displacement memory effect [81]. These boundary conditions
can be derived from the BMS orbit of Minkowski spacetime (i.e. the metric resulting from a
general finite BMS diffeomorphism acted on Minkowski) whose Riemann-flat metric takes the
exact form [82–84]

ds2 = −
�R
2

du2 − 2drdu+ (r2qAB + rCvac
AB +

1
8

Cvac
C D CC D

vac qAB)d xAd xB + DBCvac
AB d xAdu . (58)

Here the vacuum shear is given by Cvac
AB = (u+C)N vac

AB −2DADBC+qAB DC DC C . The field C(xA)
is either C±(xA) depending on whether one considers the initial or final vacuum. This is the 4d
analogue of the 3d metric (20). Transitions between vacua are generated in general relativity
by gravitational wave radiation.

The leading and subleading soft graviton theorems are essentially the Ward identities of
the BMS symmetries. One defines the total fluxes at I+ as

F+ξ =Qξ|I++ −Qξ|I+− =
∫ +∞

−∞
du∂uQξ . (59)

The fluxes are similarly defined at I−. The quantization of the identities “F+
ξ
=

the antipodal map of F−
ξ

” are the leading and subleading soft graviton theorems, up

4[Strominger, private communication]
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to a switch from position basis to momentum basis [3]. Choosing the prescription
N̄A = NA − u∂AM̄ + 1

4 CAB DC CBC + 3
32∂A(CBC CBC) where NA is defined as in [41], the BMS

flux algebra is given by [39,77]

{F+
ξ(T1)

, F+
ξ(T2)
}= 0 ,

{F+
ξ(R1)

, F+
ξ(T2)
}= F+

ξ(T̂ )
, T̂ = RA

1∂AT2 −
1
2

DARA
1T2 ,

{F+
ξ(R1)

, F+
ξ(R2)
}= F+

ξ(R̂)
, R̂A = RB

1∂BRA
2 − RB

2∂BRA
1 ,

(60)

where {, } is the standard Peierls bracket, which faithfully reproduces the BMS algebra of
vector fields (56). Choosing the other prescription N̄A = NA − u∂AM̄ where NA is defined as
in [41] leads instead to the well-established geometrical definition of the angular momentum
Qξ(R=∂φ) [41,42,68,85–87], see [88] for a discussion.

Other gauges for asymptotically flat spacetimes at null infinity lead to alternative residual
gauge transformations, which can be associated to distinct charges. In harmonic gauge, several
alternative charges have been proposed: it was shown that the subleading soft graviton theo-
rems are associated with particular residual symmetries in harmonic gauge that crudely behave
as ξA ∼ uRA(θ ,φ) + . . . [89]. It was also shown that the two infinite sets of canonical multi-
pole moments [68] are associated with two other subsets of residual gauge transformations in
harmonic gauge, after a renormalization procedure and a prescription [25]. Magnetically dual
BMS supertranslations have also been defined [90–92] which however might be trivial in the
sense of associated with vanishing charges for standard asymptotically flat spacetimes [93].
At the time of finishing these lecture notes, a consistent large set of symmetries, GL(∞,R),
was found for asymptotically flat spacetimes at null infinity [94,95] based on the structure of
the infinite set of soft theorems. However, it is not clear how to obtain this global symmetry
group as asymptotic symmetry group. It seems that several coordinate systems and dualities
will be required to exhaust all possible charges of gravity in asymptotically flat spacetimes in
order to find the largest possible asymptotic symmetry group.

2.4 4d scalar field - dual U(1) Kac-Moody

The role of asymptotic symmetries for scalar fields is an interesting story. Scalar fields, similarly
to QED and gravity, admit soft theorems in which a scattering amplitude with an external
massless scalar whose energy is taken to zero can be written as a soft factor times the scattering
amplitude without the soft scalar. Correspondingly, they admit classically an infinite number
of conserved charges whose Ward identities reproduce the soft theorems [96]. While the
standard formulation of scalar fields do not admit gauge freedom, and therefore asymptotic
symmetries, dual formulations do admit asymptotic symmetries associated to local conserved
charges [23,97,98]. This case justifies the definition of the asymptotic symmetry group as the
union of the asymptotic symmetries of all formulations of the same theory related by dualities.

As a definite example, we consider the model [23] of a massless scalar field φ coupled to
a massive scalar χ described be the Lagrangian density

L = −
1
2
(∂ φ)2 −

1
2
(∂ χ)2 −

1
2

m2χ2 +
g
2
φχ2 . (61)

The equations of motion following from this Lagrangian are

�φ = −
g
2
χ2 , �χ −m2χ = −gφχ . (62)

The metric is the Minkowski metric in retarded spherical coordinates
ds2 = −du2−2dudr+ r2qABd xAd xB. The massive scalar reaches the future timelike boundary
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i+ modelled as EAdS+3 while the massless scalar reaches the null boundary I+. A combined
analysis of both boundaries is therefore required. At I+, the asymptotic fall-off conditions are
given by

φ(u, r, xA) =
ϕ(u, xA)

r
+O(r−2) , ϕ±(x

A) := lim
u→±∞

ϕ(u, xA) . (63)

The boundary EAdS+3 is obtained as τ → ∞ in the hyperbolic foliation of Minkowski

ds2 = −dτ2 +τ2
�

dρ2

1+ρ2 +ρ2qABd xAd xB
�

. The fall-off conditions are given by

−
g
2
χ2 =

j(ρ, xA)
τ3

+O(τ−4) , (64)

φ =
φi+(ρ, xA)

τ
+O(τ−2) . (65)

The field equations (62) imply at leading order in the limit τ→∞ that �(φi+ (ρ,xA)
τ ) = j(ρ,xA)

τ3 .
The junction condition between EAdS+3 and I+ can be written as

φ(ρ→∞, xA) = ϕ+(x
A) . (66)

The value ϕ+(xA) can then be computed from a 3d-2d bulk-to-boundary propagator sourced
by the boundary current j(ρ, xA) [23]: ϕ+(xA) = 1

4π

∫

i+ d3Y j(Y )
Y ·x . Here xµ = (1, xA),

Y µ = (
p

1+ρ2,ρ yA) is a representation of points on i+, defined so that Y 2 = 1, with d3Y the
measure on i+.

In terms of these quantities the Noether charge one may guess from the scalar soft theorem
is [96]

Q+λ = 4π

∫

I+−

λ(xA)ϕ−(x
A) (67)

= −4π

∫

I+
λ(xA)∂uϕ(u, xA)

︸ ︷︷ ︸

Soft Part

+

∫

S2

d2Sλ(xA)

∫

i+
d3Y

j(y)
Y (y) · x

︸ ︷︷ ︸

Hard Part

. (68)

As in the electromagnetic and gravitational case, the charge has both a soft and a hard part.
A completely analogous construction can be carried out on I− ∪ i− and compatibility be-

tween the two boundaries, ensuring charge conservation, follows from an antipodal identifi-
cation of the scalar field near i0, namely φ|I+− ( x̂) = φ|I−+ (− x̂) [96] where x̂ is the unit normal
to the celestial sphere.

Let us now discuss how one can more fundamentally define this charge by promoting it as
a Noether charge associated with asymptotic symmetries after employing a duality [23]. On
the one hand, a massless scalar such as φ is dual to a 2-form gauge field B with field strength
H = dB related to φ as H = ?dφ, in terms of which the massless scalar free action is written
as

SB = −
1
2

dφ ∧ ?dφ = −
1
2
H∧ ?H , H := dB . (69)

The massive field χ on the other hand is replaced by a collection of massive point particle
worldlines interacting with H

Spp + Sint = −m
∑

i

∫

dτi +
g

12m

∑

i

dτi

∫ τi

dτ′
d xµ

dτ′
εµνρσHνρσ(x i(τ

′)) . (70)
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The resulting action is therefore S = SB + Spp + Sint and since it depends just on H it has a
gauge symmetry δαB = α with any closed form dα = 0. Using H = dB = ?dφ one directly
obtains α∧ ?H = d(φ α).

The Noether charge following from this symmetry is evaluated from the covariant phase
space algorithm to be

Q+α =

∫

I+−

φα=

∫

I+
α∧ ?H

︸ ︷︷ ︸

Soft Part

+

∫

i+
α∧ ?H

︸ ︷︷ ︸

Hard Part

. (71)

If the 2-form α is not proportional to the S2 volume form the charge vanishes and the gauge
transformation is trivial. The non-trivial gauge transformations are of the form α = λ(xA)ε
where ε is the S2 volume form and therefore the covariant phase space formalism applied
in this manner really recovers the charge (67) guessed from the scalar soft theorem. Since
all charges mutually commute under the Peierls bracket (because δλH = 0), the algebra is
abelian: it is a U(1) Kac-Moody algebra, {Qλ,Qλ′}= 0.

3 Frontiers in gravity

3.1 Higher dimensions

Asymptotically flat spacetimes in dimensions higher than 4 are not obvious generalizations of
the cases d = 3, 4. First, there is a qualitative distinction between even and odd spacetime
dimensions which can be simply explained as follows. Massless fields reaching future null
infinity are governed by the retarded Green function which is a solution to

∂ 2
t G −

d
∑

i

∂ 2
i G = δ(t − t0)δ(~r − ~r0) . (72)

In even dimensions, the retarded Green function takes the form G(t, r)= 1
4π

�

− 1
2πr ∂r

�
d−3

2
�

∂ (t−r)
r

�

,
which can be expanded for large radius as a polynomial expansion in r. Instead, in odd dimen-

sions, the retarded Green function takes the form G(t, r) = θ (t)
2π

�

− 1
2πr ∂r

�
d
2−1� θ (t−r)p

t2−r2

�

which
admits non-analytic half-integer fall-off in r in the large r limit [99]. Penrose’s conformal
methods that are based on analyticity at null infinity are therefore inapplicable in odd space-
time dimensions. Asymptotic analyses can still be performed using the gauge-fixing approach
where explicit coordinates allow to treat even non-analytic asymptotic behavior.

The asymptotic symmetry group of asymptotically flat spacetimes at null infinity in even
d > 4 has been first obtained to be the Poincaré group and nothing else using conformal
compactification techniques [100–103]. However, a closer analysis revealed further structure.

A noticeable feature of higher dimensional gravity is that the Newtonian potential falls off
as r3−d at null infinity in the limit r →∞ while the radiation falls off much slower as r1− d

2 .
Only in d = 4 these two fall-off conditions agree but in higher dimensions, the radiation is
leading. The asymptotic symmetries are not associated with the radiative fall-off, but instead
with the Newtonian fall-off.

The standard translations are given by ξ= T (xA)∂u + . . . where T (xA) = 1 for time trans-
lations and T obeys (∆ + d − 2)T (xA) = 0 for spatial translations where ∆ = DADA is the
Laplacian. The charges associated with these asymptotic symmetries are the finite momenta.
The Bondi mass aspect can be defined in Bondi gauge as the following component of the Weyl
tensor at I+: m = rCruru. The supermomentum charges or supermomenta are then defined
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as Qξ =
∫

S dΩm(u, xA)T (xA) where T (xA) is an arbitary function over the sphere. Quite nat-
urally, one can promote these charges as Noether charge associated with supertranslations of
the form ξ= T (xA)∂u + . . . [58,104,105].

Another development arises from the displacement memory effect [106–108]. The lead-
ing displacement memory also appears at the same order r3−d as the Newtonian order which
is again lower than radiative orders r1− d

2 for d > 4 contrary to d = 4. One can identify a
component of the metric in the radial expansion close to I+ in harmonic gauge lets say ϕ
such that the leading displacement memory is sourced by the difference between the future
and past values of the field at null infinity: M = ϕ|I++ −ϕ|I+− . By definition of memory, i.e. a
transition between two vacua, there exists a gauge transformation such that δξϕ|I++ = δξϕ|I+−
since in a given asymptotic vacuum, the field ϕ is pure gauge while the source of the memory
M is gauge invariant. After analysis, this gauge transformation reads in harmonic gauge as
ξ = r4−d∆(∆+ d − 2)T (xA)∂u + . . . . It is in a sense a subleading supertranslation. Its associ-
ated charge is vanishing as Qξ = O(r4−d) and subleading supertranslations are therefore not
asymptotic symmetries in the standard sense of being associated with finite charges.

The status of super-Lorentz transformations in higher dimensions is murkier. The natural
candidate as super-Lorentz group is Diff(Sd−2). The angular momentum in the Myers-Perry
black hole solution (the generalization to higher dimensions of the Kerr black hole) appears at
order r2−d [109]. After renormalization, we expect that one can define finite surface charges
associated with generators ξ = RA(xB)∂A+ . . . of the form Qξ =

∫

dΩNA(u, xB)RA(xB) [110–
114]. Subleading memory effects have not yet been studied.

Asymptotic symmetries and charges of scalars theories, Maxwell theory, Einstein gravity
and linear higher spin fields were further studied in both even and odd dimensions in [111,
112,115–119].

3.2 Supersymmetric extensions

Given the occurrence of infinite dimensional symmetry groups as bosonic asymptotic symme-
try groups, it is very natural to ask what the supersymmetric extensions of these groups are
and which of these extensions are realized as asymptotic symmetry groups of supersymmetric
gauge and gravity theories. The motivation comes essentially from the fact that all known
exact holographic dualities involve a high level of supersymmetry. Finding supersymmetric
extensions of the BMS group brings celestial holography closer to achieving its goals. We will
restrict our comments only on the cases of gravity in 3 and 4 dimensions.

3.2.1 N = 1 super-BMS3 from N = 1 3d supergravity

Extended N > 1 BMS3 algebras have been formulated and have been realized within extended
supergravities at future (or past) null infinity. The N = 1 super-BMS3 algebra realized in
terms of surface charges under the Peierls bracket is the union of its bosonic part [58] which
we already discussed in Eq. (34),

i{Pm ,Pn}= 0 ,

i{Jm ,Jn}= (m− n)Jm+n +
c1

12
m3δm+n,0 , c1 = 0 ,

i{Jm ,Pn}= (m− n)Pm+n +
c2

12
m3δm+n,0 , c2 =

3
G

,

(73)
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and its fermionic part (Qn is Grassmann odd) [120–122]

i{Pm ,Qn}= 0 ,

i{Jm ,Qn}= (
m
2
− n)Qm+n ,

{Qm ,Qn}= Pm+n +
c2

6
m2δm+n,0 , c2 =

3
G

.

(74)

It is realized as asymptotic symmetry group of the simplest theory of 3d supergravity [122].
Larger supersymmetric extensions have been considered in [123–133].

3.2.2 N = 1 super-BMS4 from N = 1 4d supergravity

We discussed the BMS4 asymptotic symmetry algebra of asymptotically flat spacetimes at fu-
ture (or past) null infinity in Section 2.3. We now extend the smooth supertranslations and
the Diff(S2) super-Lorentz generators to arbitrary functions of the stereographic coordinates
z, z̄ which include poles on the sphere. We then consider the subalgabra where the super-
Lorentz generators are restricted to meromorphic and anti-meromorphic functions such that
T = T (z, z̄) but Rz = Rz(z) and Rz̄ = Rz̄(z̄). The asymptotic symmetry vector fields depending
upon these generators can be extended in modes as

Pk,l = zk+ 1
2 z̄ l+ 1

2 ∂u + . . . , lm = −zm+1∂z + . . . , l̄m = −z̄m+1∂z̄ + . . . , (75)

where the dots are tuned such that the vectors preserve Bondi gauge and k, l, m ∈ Z. They
obey the so-called extended BMS4 algebra [64]

[lm, ln] = (m− n)lm+n , [l̄m, l̄n] = (m− n)l̄m+n ,

[lm, Pk,l] = (
1
2

m− k)Pm+k,l , [l̄m, Pk,l] = (
1
2

m− l)Pk,m+l ,

[lm, l̄n] = 0 , [Pk,l , Po,p] = 0 .

(76)

One can supplement this bosonic algebra with the following fermionic part in terms of the
Grassman odd generators Gm, Ḡm, m ∈ Z to obtain the graded Lie algebra known as the
N = 1 super-BMS4 algebra

{Gm, Ḡn}= Pm,n , {Gm, Gn}= {Ḡm, Ḡn}= 0 , [Lm, Ḡn] = [ L̄m, Gn] = 0 ,

[Pk,l , Gn] = [Pk,l , Ḡm] = 0 , [Lm, Gk] = (
1
2

m− k)Gm+k , [ L̄m, Ḡl] = (
1
2

m− l)Ḡm+l .
(77)

Such algebra is realized as asymptotic symmetry algebra of N = 1 supergravity at null
infinity [104, 134–136]. Its subalgebra without super-Lorentz generators but Lorentz gen-
erators (m, n = −1, 0,1; k, l ∈ Z) can also be realized at spatial infinity [137]. Note that
another inequivalent extension of the BMS4 algebra with only four fermionic generators also
exists [104,138].
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