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Abstract

Parametric couplings in engineered quantum systems are a powerful tool to control,
manipulate and enhance interactions in a variety of platforms. It allows us to bring sys-
tems of different energy scales into communication with each other. This short chapter
introduces the basic principles and discusses a few examples of how one can engineer
parametric amplifiers with improved characteristics over conventional setups. Clearly,
the selected examples are author-biased, and other interesting proposals and implemen-
tations can be found in the literature. The focus of this chapter is on parametric effects
between linearly coupled harmonic oscillators, however, parametric modulation is also
applicable with nonlinear couplings and anharmonic systems.
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1 Introduction

Parametric modulation offers the exciting possibility to manipulate and control resonant inter-
actions between engineered quantum systems. Such systems are artificial mesoscopic systems
whose dynamics are governed by the laws of quantum mechanics. Taking for example cavity
optomechanical platforms, the basic system consists here of a photonic mode inside a cav-
ity coupled to a mechanical mode via radiation pressure force. The general configuration
combines a low frequency mechanical mode with a high frequency photonic mode, and the in-
teraction between them is activated by applying an external driving tone. The optomechanical
Hamiltonian reads (ħh= 1)

Ĥom =ωm b̂† b̂+ωc( x̂)â
†â ≈ωm b̂† b̂+
�

ωc + g
�

b̂+ b̂†
�

â†â
�

, (1)

with â(b̂) as the annihilation operator of the photonic field (mechanical mode) of resonant
frequency ωc(ωm). The mechanical motion modulates the cavity field and in general it is suf-
ficient to consider the interaction up to linear order in the displacement x̂ = (b̂+ b̂†)xzp f with
x x p f as the zero point fluctuations amplitude, such that the optical shift per displacement is
g = ∂ωc/∂ x . One can then perform a displacement transformation â = α(t)eiφ + d̂ with the
classical field induced by the drive α(t) and d̂ denoting the deviations around the displace-
ment. For weak coupling g one can linearize the interaction leading to the Hamiltonian

Ĥom ≈ωm b̂† b̂+ωc d̂
†d̂ + G(t)
�

b̂+ b̂†
� �

d̂e−iφ + d̂†e+iφ
�

, (2)

with the parametric modulation G(t) = gα(t). Applying appropriate driving tone(s) allows
to explore the realm of mechanical modes in the quantum regime. For a detailed review of
optomechanical systems please see Ref. [1].

Other engineered quantum systems which benefit from parametric modulation are super-
conducting circuit platforms. Parametric modulation forms here the basis for tunable couplers
for qubits and for processing information on chip. There are abundant design choices – from
a theory perspective they all are like magical loops. The basic principle can be brought down
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to having superconducting rings intersected with a number of Josephson junctions. The loop
is either driven with external microwave tones or the flux through the loop is modulated.
An example of such a magical ring is the Josephson parametric converter (JPC) [2], a loop
intersected with four Josephson junctions realizing the three wave mixing interaction

ĤJPC = g3

�

â+ â†
� �

b̂+ b̂†
� �

ĉ + ĉ†
�

, (3)

with the coupling strength g3 between three microwave modes a, b, c. A pump tone at fre-
quency ωp applied to the mode c allows us to approximate ĉ = c̄e+iωp t+iφ under a stiff pump
approximation [3]. Substituting this into ĤJPC we recover the same form of the optomechan-
ical parametric Hamiltonian in Eq.(2) with G(t) = 2g3 c̄ cos(ωp t +φ).

Hence, taking these simple examples of engineered systems, we see that either platform
generates the same linear dynamics between two oscillators. This similarity can be extended
to larger networks of parametrically coupled oscillators. From a theoretical perspective this
allows for the freedom to propose protocols and applications based on parametric processes
which can be applied to either architecture (with benefits and limitations distinct to each
platform). In the next sections we first discuss in more detail the two coupled oscillator case
and then turn to the the example of designing parametric amplifiers with improved properties
over conventional designs.

2 Engineering coherent and dissipative processes

2.1 Engineering coherent processes

In the former section, we have introduced two engineered system architectures which real-
ize parametric coupling between two oscillators. Now we dive more into the details of the
resulting engineered processes. We start by considering the most basic example of two har-
monic oscillators with distinct frequencies ωa and ωb. The two oscillators are coupled via a
parametric modulation M(t) and the Hamiltonian reads (ħh= 1)

Ĥ = Ĥ0 +M(t)
�

â+ â†
� �

b̂+ b̂†
�

, Ĥ0 = ωa â†â+ωa b̂† b̂ , (4)

where â(b̂) annihilates an excitation in oscillator a(b), while â†(b̂†) creates an excitation.
The operators obey bosonic commutation relations, i.e., [ô, ô†] = 1, (o = a, b). Here Ĥ0
denotes the free energy of the two oscillators and the interaction between the oscillators is
quadratic in creation and annihilation operators, which leads to a linear system of equations
of motion for the operators. We now move into an interaction frame with respect to the free
Hamiltonian Ĥ0, i.e., we perform a unitary transformation of the form Ĥ′ = Û†(t)ĤÛ(t)−Ĥ0

with Û(t) = e−iĤ0 t . Note that such an interaction frame is distinct from the interaction picture
used in quantum mechanics [4]. In an interaction picture operators evolve with the ‘boring’
Hamiltonian Ĥ0, while the states evolve with V̂ (t) = Ĥ− Ĥ0. In contrast, in the interaction
frame (or rotating frame) states and operators evolve with the same Hamiltonian Ĥ′. Thus,
it is not really a picture, it simply neglects the ‘boring dynamics’ associated with Ĥ0 after the
unitary transformation has been performed. The Hamiltonian for the two oscillators in the
interaction frame becomes

Ĥ′ =M(t)
�

â b̂†e−i(ωa−ωb)t + â† b̂†e+i(ωa+ωb)t + h.c.
�

. (5)

In this interaction frame it becomes obvious that for constant coupling, i.e., M(t) = M,
the interaction processes are non-resonant and thus suppressed for ωa ≫ ωb and moderate
coupling strength M≪ ωa ±ωb. In contrast, parametric modulation allows for engineering
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these processes in such a way that they become resonant. The simplest single-tone parametric
modulation takes the form

M(t) = 2λ cos(ωd t +φ) = λ
�

e+i(ωd t+φ) + e−i(ωd t+φ)
�

, (6)

where λ denotes the driving strength, ωd the driving frequency and φ accounts for a possible
phase of the drive. By substituting this into the Hamiltonian given in Eq.(5) we find that for
driving at these frequency difference of the oscillators resonant frequenciesωd =ωa−ωb the
hopping interaction becomes resonant:

Ĥ′ = ĤFC + ĤCR = λ
�

â b̂†e+iφ + â† b̂e−iφ
�

+ ĤCR , (7)

where ĤCR contains the so-called counter-rotating (CR) terms which are in general neglected
under a rotating wave approximation. The process in ĤFC is called frequency conversion
(FC), as a photon with frequency ωa is converted to ωb and vice versa. Crucially, the external
modulation enables a perfect way to control the interaction: λ determines the strength of the
interaction and one can as well imprint a phase φ onto the process. However, driving at the
sum of the resonant frequencies of the two oscillatorsωd =ωa+ωb, we obtain the parametric
amplifier (PA) interaction:

Ĥ′ = ĤPA + Ĥ′CR = λ
�

â† b̂†e+iφ + â b̂e−iφ
�

+ Ĥ′CR , (8)

which describes the simultaneous creation of two excitations in both oscillators, also
called a two-mode squeezing interaction as one linear combination of the fields be-
comes squeezed. Clearly, we can as well have a two-tone parametric drive with
M(t) = 2
∑

n=1,2λn cos(ωd,n t + φn), allowing for the simultaneous realization of the fre-
quency conversion and the parametric amplifier processes.

2.2 Engineering dissipative processes

So far we have considered the engineering of resonant processes between two oscillators which
were coherent in nature. Now we want to turn to another process between two oscillators
which we refer to as a dissipative process. The latter means that the process is mediated
by a damped auxiliary system. Recall that conventional dissipation can be modeled within a
system-bath theory [5], where the system of interest is coupled to a large reservoir. Within
a Born-Markov approximation, i.e., assuming that the system-bath coupling is weak and that
the bath is unchanged under the system-bath interaction, the reduced density matrix ρ̂S of the
system can be modeled as a Lindblad master equation d

d t ρ̂S = −i[ĤS , ρ̂S] +L[ẑ]ρ̂S , with the
superoperator L[ẑ]ρ̂S = ẑρ̂S ẑ† − 1/2ẑ†ẑρ̂S − 1/2ρ̂S ẑ†ẑ and ẑ as the so-called jump-operator.
The first term denotes a possible coherent evolution of the system under ĤS , while the second
term describes the incoherent dynamics induced by the bath. In a conventional setting the
incoherent dynamics is detrimental to the system, e.g. quantum states decohere and infor-
mation is lost into the bath. In contrast, within the framework of reservoir engineering one
uses dissipation to one’s advantage. Here one specifically designs the environment to achieve
desired dynamics or to cool a system to specific states [6]. We are interested in using such
dissipation engineering to generate a dissipative process between two oscillators. Therefor
we extend our two oscillator setup. Instead of coupling them directly, we couple them indi-
rectly via an auxiliary mode c. Taking the example of hopping interactions we start from the
system-bath (SB) Hamiltonian

ĤSB =∆ĉ† ĉ +λ
�

ĉ†
�

â+ b̂
�

+ h.c.
�

+ Ĥc,diss , (9)

with Ĥc,diss denoting the coupling of the auxiliary mode to a (zero-temperature) bath with
rate κ, and ∆ accounting for a detuning of the c-mode. Assuming that the c-mode is strongly
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damped and weakly coupled to the main oscillator pair a and b, we can adiabatically eliminate
it [7], and obtain the master equation

d
d t
ρ̂ = −iΛ
��

â† + b̂†
� �

â+ b̂
�

, ρ̂
�

+ ΓL
�

â+ b̂
�

ρ̂,

with Λ=
∆λ2

∆2 + κ
2

4

, and Γ =
κλ2

∆2 + κ
2

4

, (10)

denoting effective coherent and dissipative coupling strength Λ and Γ respectively. The ef-
fective coherent dynamics with strength Λ are only present for finite detuning ∆ ̸= 0. They
induce frequency shifts and coherent hopping between the oscillators. The dissipative process
on the other hand can be reformulated as

L
�

â+ b̂
�

ρ̂ = L [â] ρ̂ +L
�

b̂
�

ρ̂ +
�

âρ̂ b̂† −
1
2

�

b̂†â, ρ̂
	

+ h.c.
�

. (11)

The first two terms describe local damping of the mode a and b respectively, while the remain-
ing terms correspond to a swapping interaction between the two oscillators, we refer to this
as dissipative hopping as it is mediated by the reservoir (the damped c-mode). Due to this
indirect hopping the phase associated with the dissipative hopping process differs from the
coherent hopping process.

2.3 Breaking the symmetry of reciprocity

We have learned how to engineer coherent and dissipative processes via parametric modula-
tion. In what follows, we are going to discuss how the interplay of a coherent and a dissipative
process allows for the breaking of the symmetry of reciprocity. The basic method can be il-
lustrated as follows [8]. Starting out with two independent systems A and B which interact
coherently (and bi-directionally) via a Hamiltonian Hcoh = λ/2 ÂB̂ + h.c. where Â(B̂) is a sys-
tem A(B) operator, and λ denotes the coupling strength. To achieve nonreciprocity, we assume
both systems have been jointly coupled to the same engineered reservoir. In the Markovian
limit, the engineered reservoir can be adiabatically eliminated and the full dissipative dynam-
ics of the systems is then described by the Lindblad master equation

d
d t
ρ̂ = − i
�

Ĥcoh, ρ̂
�

+ ΓL
�

Â+ηeiϕ B̂†
�

. (12)

Directionality is now achieved by balancing the dissipative and the coherent interaction, i.e.,
by setting λ = ηΓ and ϕ = ±π/2. The sign of the phase ϕ determines the ‘direction’ of the
interaction: for ϕ = −π/2 system B is influenced by the evolution of system A, but system
A evolves independently of system B or vice versa for ϕ = π/2. Crucially, to realize non-
reciprocity the Markovian limit is not a necessary condition, it only affects the directionality
bandwidth, i.e., non-Markovian effects decrease the frequency range over which a system is
uni-directional [9]. For example, in [10] it was possible to observe strong nonreciprocity in
an optomechanical array, despite having a non-Markovian reservoir.

Unidirectionality of information transport is of paramount importance for reading out a
quantum system without perturbing the signal source. For nonreciprocal photon transmis-
sion, approaches based on refractive-index modulation [11], optomechanical interaction [12],
and interfering parametric processes [13] have been considered. The directionality protocol
described here can serve as a recipe to realize directional photonic devices.
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3 Quantum-limited parametric amplifiers

With the advances in quantum technologies over the last years, especially in superconducting
circuitry, it has become necessary to detect and process signals containing only a few photons.
To enable the detection of such weak signals with high efficiency, new amplifiers have been
developed which have the ability to operate efficiently in the quantum regime. The aim is
here to amplify the weak signal without noise contamination beyond the so-called quantum
limit, i.e., Pout = G (Pin + n̄add) with the output signal Pout containing the input signal Pin, en-
hanced by the gain factor G > 1. The minimal added noise n̄add is determined by the operation
mode of the amplifier [14], which can be either phase-insensitive (n̄add = 1/2), i.e., amplifying
both quadratures of the light field, or phase-sensitive (n̄add = 0), amplifying one quadrature
of the field. In what follows we are going to focus on cavity-based amplifiers, although ex-
tended structures such as traveling-wave amplifiers exist too [15]. A promising route to design
quantum amplifiers is based on parametric modulation of coupled modes and the default in-
teractions are ĤDPA = λâ†â† + λ∗ââ, describing degenerate parametric amplification (DPA)
also called single mode squeezing, and ĤPA = λâ† b̂† + λ∗â b̂, corresponding to two mode
squeezing of the so-called idler and signal modes a and b. Both interactions enable quantum
limited amplification and there are numerous ways to realize them, for more details please see
for example [16]. However, cavity-based amplifiers have some intrinsic shortcomings, as they
amplify signals over a bandwidth ∆ω which is inversely proportional to the amplitude gain,
i.e, ∆ω∝ 1/

p
G. This means that by enhancing the gain, the bandwidth of the gain profile

shrinks. The latter is quantified by a so-called gain-bandwidth product, which is constant for
the upper examples of amplifiers. The origin for this is that the mechanism of amplification
involves approaching an instability (or ’lasing’ threshold), allowing for growth but effectively
introducing anti-damping which decreases the linewidth of the resonance. Another disad-
vantage is that the back-reflected signal is amplified as well. Moreover, these amplifiers are
reciprocal and thus amplify in both directions, which makes it not possible to connect them
directly to the signal source, as amplified noise arising from the measurement chain could
disturb the source significantly. In the following sections we will discuss how we can design
quantum-limited amplifiers overcoming these shortcomings.

3.1 Phase-insensitive amplifier without gain-bandwidth limit

We start with a phase-insensitive amplifier without a gain bandwidth-product. We couple the
signal and idler mode not directly, but via an auxiliary mode c, thus we call it the dissipative
amplifier (DA). The basic interaction Hamiltonian becomes

ĤDA = gĉ†
�

d̂1 +ηd̂†
2

�

+ h.c. , (13)

where ĉ† denotes the creation operator of the auxiliary mode, while the operators d̂1,2 destroy
an excitation in the signal and idler mode respectively. The mode d1,2 is coupled with strength
g(gη) to the auxiliary system, with η as a dimensionless factor accounting for an asymmetry
in the couplings. Here we work in an interaction frame with respect to the free Hamiltonian
and already applied a rotating wave approximation. Taking what we have learned above about
parametric modulation, we assumed that the system is driven with two pump tones, one at
the frequency difference of the signal and auxiliary mode, and one at the sum of the idler and
auxiliary mode.

To illustrate the origin of the amplification process, we adiabatically eliminate the auxiliary
mode c (assuming it is strongly damped with rate κc), and obtain the effective dissipative
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Figure 1: Dissipative amplification process between two modes d1,2 realized via a
coupling to an overdamped auxiliary mode (left). The frequency dependent gain
shows no reduced bandwidth when the gain is enhanced (right).

process between the idler and signal modes (η= 1 for simplicity)

ΓL
�

d̂1 + d̂†
2

�

ρ̂ = ΓL
�

d̂1

�

ρ̂ + ΓL
�

d̂†
2

�

ρ̂ + Γ
�

d̂1ρ̂d̂2 −
1
2

�

d̂2d̂1, ρ̂
	

+ h.c.
�

, (14)

with Γ = 4g2

κc
. The expansion of the non-local superoperator in the second step explains what

processes are mediated by the auxiliary mode. The first term denotes damping of the signal
mode with rate Γ , while the second term denotes anti-damping of the idler mode. The remain-
ing terms realize the effective coupling between the two modes, which by itself just realizes
a coherent rotation of the modes. The combined process can be understood as dissipative
phase-insensitive amplification, and the qualitatively equivalent coherent process would be
ĤPA [17].

To quantify the properties of the amplifier we work with the full system Hamiltonian in
Eq.(13) and assume that all modes are coupled to external waveguides with rate κ. Utilizing
input-output theory [18] and we obtain the power gain (η= 1,ω′ = 2ω/κ)

G[ω] =
�p

G0 −ω′2
�2
+ω′2
�

1+ω′2
�2

[1+ω′2]3
, G0 = (2C − 1)2 , (15)

for a signal injected into the mode d1 (details of the calculation can be found in [19]). Cru-
cially, the gain can be made arbitrarily large by increasing the cooperativity C = Γ/κ with no
corresponding reduction of bandwidth (which remains ∼ κ), see Fig. 1. Thus, there is no fun-
damental limitation on the gain-bandwidth product in this system. Moreover, including the
asymmetry parameter η the bandwidth increases for η < 1 until the onset of visible mode-
splitting at η =

p

1− 1/C. In addition, although the mode-space has increased due to the
mode c the amplifier is still quantum limited. In the large gain limit, the added noise yields
n̄add ≈ 1/2+ n̄T

d2
+2(1+ n̄T

d2
+ n̄T

c )/
p

G0, with n̄T
o as the thermal occupation of the bath of mode

o = c, d2. Thus, if mode d2 is driven purely by vacuum noise, then in the large-gain limit the
amplifier approaches the standard quantum limit of a phase-preserving amplifier.

3.2 Phase-sensitive amplifier without gain-bandwidth limit

It is also possible to design a phase-sensitive amplifier without a gain-bandwidth product. We
have learned above that parametric modulation of a pair of linearly coupled cavity modes
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results in two basic interactions: frequency conversion for modulating at the frequency differ-
ence of the mode pair, or parametric amplification if one drives at the sum of their frequencies.
We utilize both of these interactions simultaneously, i.e., we start from the Hamiltonian involv-
ing the gain (G) and conversion (C) process

ĤGC =(G1 + G2) X̂1X̂2 + (G2 − G1) P̂1 P̂2 , (16)

in the quadrature basis X̂n = (d̂n + d̂†
n)/
p

2 and P̂n = −i(d̂n − d̂†
n)/
p

2(n ∈ 1,2). The coupling
coefficients Gn containing the amplitude of two external modulation tones. We can couple
both modes to external waveguides with rate κ and determine the scattering matrix
�

X̂1,out[ω]
P̂2,out[ω]

�

= s[ω]

�

X̂1,in[ω]
P̂2,in[ω]

�

, s[ω] =

�

R[ω] T−[ω]
T+[ω] R[ω]

�

, (17)

with the reflection and the transmission scattering amplitudes (ω′ = 2ω/κ)

R[ω] =
∆C +
�

1+ω′2
�

∆C − [1− iω′]2
, T±[ω] =
p

G± [1−∆C]
∆C − [1− iω′]2

,
p

G± =
2
�p

C1 ±
p

C2

�

1−∆C
. (18)

The gain-bandwidth-limit free regime is obtained for −1≤∆C ≤ 0. T+[ω] corresponds to the
amplitude gain, where the output of the P2-quadrature contains the amplified X1-quadrature.
Note, the amplifier is reciprocal, i.e., we obtain the same scattering matrix for the X2- and
P1-quadratures. The amplification is quantum limited as there is no gain in reflection, i.e.,
we have n̄add = |R[0]|2/2G+ → 0 for large gain. Thus, we have amplification in transmis-
sion involving as well a frequency conversion process. The bandwidth of the gain becomes

∆ω =
q

p

2 [∆C2 + 1]− [∆C + 1] κ , which takes its maximal value of
p

2κ for ∆C = −1,
while it would vanish for ∆C → 1 (the standard amplification regime). Besides the maximal
bandwidth, the tuning of the system to ∆C = −1 has even more advantages. The reflection
vanishes on resonance R[0] = 0, making the system perfectly impedance matched. Moreover,
we have a true phase-sensitive amplifier, in the sense that the orthogonal quadrature gets
squeezed below the shot-noise value. However, the gain-independence of the amplification
bandwidth does not translate to the squeezing bandwidth, but the bandwidth is larger than
for a single-mode setup, i.e., for the same gain value an enhancement of the bandwidth by
the factor G1/4/

p
2 is obtained. Thus, under optimal tuning conditions one can have a two-

mode phase-sensitive amplifier that is ideal with respect to a number of metrics: it has distinct
input and output ports, no reflection gain, is quantum-limited and it does not suffer from a
gain-bandwidth limit [20].

3.3 Nonreciprocal amplifiers without gain-bandwidth limit

Next, we are going to briefly discuss how one can engineer a nonreciprocal amplifier without a
gain-bandwidth product by applying the directionality recipe discussed in Sec.2. We focus on
the coherent phase-sensitive amplifier discussed above, i.e., described by the Hamiltonian in
Eq. 16, which is straightforwardly rendered nonreciprocal by combining it with its dissipative
counterpart [8]:

d
d t
ρ̂ = − iG
�

X̂1X̂2, ρ̂
�

+ ΓL
�

X̂ − iX̂2

�

, (19)

for simplicity we focus here on the QND-case G1 = G2 ≡ G/2, where the dissipative process
preserves the QND structure of the coherent Hamiltonian. The master equation is valid in the
Markovian regime, i.e., where the engineered reservoir is already adiabatically eliminated. To
generate the required dissipative process, we take the engineered reservoir to be a damped
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auxiliary mode c with HSB =
p

Γκc/2(X̂1 P̂c + X̂2X̂ c). Using input-output theory and applying
the directionality condition G = Γ , we obtain the gain and reverse gain (in the non-Markovian
regime)

GP2X1
[ω] =

G0

�

1+ ω
2

γ2

�

�

1+ 4ω2

κ2
c

��

1+ 4ω2

κ2

�2 , ḠP1X2
[ω] = G[ω]

ω2

κ2
c
�

1+ ω
2

κ2
c

� , G0 =
64Γ 2

κ2
, (20)

the P2-quadrature becomes the amplified copy of X1-quadrature as before, but in contrast to
the reciprocal case, the reverse amplification process of the P1-quadrature is suppressed. On
resonance, i.e., for ω = 0, the reverse gain vanishes independently of the value of κc and
therewith independently of the Markovian limit. However, we clearly see that the Markovian
limit is preferable, as for κc →∞ the reverse gain vanishes over a wide frequency regime.
Thus, deviations from the Markovian limit impact the bandwidth over which directionality is
observed.

Furthermore, a nonreciprocal phase-insensitive amplifier can be accomplished as well by
combining the dissipative amplification process in Eq. (14) with its coherent counterpart ĤPA.
Such an amplifier has been introduced in the framework of a graph-theoretical approach [21],
and has been successfully implemented in superconducting circuit architectures [22,23]. How-
ever, the additional coherent interaction effectively introduces anti-damping, thus the advan-
tage of having no gain-bandwidth limit is lost. It turns out, by using a single engineered
reservoir, either phase-sensitivity or no gain-bandwidth limitation can be achieved in a reso-
nant directional amplifier (but not both properties simultaneously). However, one can achieve
both of these desirable conditions in a design that utilizes two engineered reservoirs, e.g. the
master equation

d
d t
ρ̂ = − iG
�

d̂†
1 d̂†

2 + d̂1d̂2, ρ̂
�

+ Γ1L
�

d̂†
1 − id̂2

�

+ Γ2L
�

d̂1 − id̂†
2

�

, (21)

describes a directional quantum amplifier that is both phase-preserving, and which does not
suffer from a gain-bandwidth constraint, for further details please see Ref. [24].

4 Conclusion

Parametric modulation enables a high control over interactions among coupled subsystems,
and many applications in quantum information science are based on it, e.g., entanglement
generation, state preparation, computational gates or read-out. This chapter provided here a
very brief introduction, starting out from parametric modulated couplings among a few har-
monic oscillators to engineer coherent and dissipative processes. Clearly this was just the top
of the iceberg, and hopefully encourages the reader to further explore the realm of parametric
effects in engineered quantum systems.
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