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Abstract

A new tensor interaction is the only possibility to explain the 2.8σ tension observed by
the BaBar collaboration in the CP asymmetry in τ→ KSπντ with physics beyond the
Standard Model (BSM) realized above the electroweak scale. However, the strong phase
generated by the interference between vector and tensor phases is suppressed by at
least two orders of magnitude due to Watson’s final-state-interaction theorem, and the
strength of the CP-violating tensor interaction is strongly constrained by bounds from
the neutron electric dipole moment and D–D̄ mixing. As a result, a confirmation of the
tension at Belle II would point to light BSM physics.
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1 Introduction

CP-violating observables are particularly interesting because of their potential connections to
baryogenesis mechanisms. Here, we consider the asymmetry of the decay width for
τ→ KSπντ

AτCP =
Γ (τ+→ π+KSν̄τ)− Γ (τ−→ π−KSντ)
Γ (τ+→ π+KSν̄τ) + Γ (τ−→ π−KSντ)

. (1)

This asymmetry is non-vanishing already in the Standard Model (SM), driven by indirect CP
violation in K0–K̄0 mixing [1, 2], and can be predicted accurately from the CP violation as
measured in semileptonic kaon decays. Including corrections from the experimental condi-
tions and time-dependent efficiencies, the corresponding prediction Aτ,SM

CP = 3.6(1)×10−3 [2]
disagrees with the measurement by the BaBar collaboration [3]

Aτ,exp
CP = −3.6(2.3)(1.1)× 10−3 (2)

at the level of 2.8σ. In this note we summarize our arguments why this tension cannot be
resolved by BSM physics above the electroweak scale [4].
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2 Effective Lagrangian and decay rate

BSM physics if entering above the electroweak scale is described by an effective Lagrangian
whose relevant terms at the hadronic scale read

L∆S=1
su = −

GFp
2

Vus

�

cV (s̄γ
µu)(ν̄γµ`) + cA(s̄γ

µu)(ν̄γµγ5`)+

+ cS(s̄u)(ν̄`) + icP(s̄u)(ν̄γ5`) + cT (s̄σ
µνu)(ν̄σµν(1+ γ5)`)

�

+ h.c., (3)

where cV = −cA = 1 and all other coefficients are equal to zero in the SM. The interference
between the in general complex Wilson coefficients can then produce a weak phase that could
generate a direct CP-violating contribution to the decay rate. However, for a non-vanishing CP
asymmetry one needs the interference of two amplitudes

A j = |A j|e
iδs

j eiδw
j , j ∈ {1, 2}, (4)

with relative strong and weak phases δs = δs
1 − δ

s
2 and δw = δw

1 − δ
w
2 and both phases have

to be non-vanishing, i.e.

ACP∝ |A1 +A2|2 − |Ā1 + Ā2|2 = −4|A1||A2| sinδs sinδw. (5)

For τ→ KSπντ the decay rate takes the form [4]

dΓ
ds
= G2

F |Vus|2SEW
λ

1/2
πK (s)(m

2
τ − s)2(M2

K −M2
π)

2

1024π3mτs3
×

×
�

ξ(s)
�

|V (s)|2 + |A(s)|2 +
4(m2

τ − s)2

9sm2
τ

|T (s)|2
�

+ |S(s)|2 + |P(s)|2
�

, (6)

where

V (s) = f+(s)cV − T (s), S(s) = f0(s)
�

cV +
s

mτ(ms −mu)
cS

�

,

T (s) =
3s

m2
τ + 2s

mτ
MK

cT BT (s), (7)

and similarly for the axial-vector and pseudoscalar terms. This structure implies that there
cannot be a contribution from the vector–scalar interference because they involve the same
hadronic form factor f0(s), leaving the vector–tensor interference as the only possibility [5].
The corresponding asymmetry

Aτ,BSM
CP =

Im cT

ΓτBR(τ→ KSπντ)

∫ m2
τ

sπK

ds′κ(s′)| f+(s′)||BT (s
′)| sin

�

δ+(s
′)−δT (s

′)
�

(8)

depends on the imaginary part of the tensor Wilson coefficient Im cT and the weighted integral
of the phase difference of vector and tensor form factors δ+(s)−δT (s).

3 Hadronic form factors

While the normalization is known from lattice QCD [6], it had been assumed in previous work
that the tensor form factor stays constant as a function of s [5]. However, elastic unitarity

Im f+(s) =
λ

1/2
πK (s)

s
f+(s)

�

f 1/2
1 (s)

�∗
, Im BT (s) =

λ
1/2
πK (s)

s
BT (s)

�

f 1/2
1 (s)

�∗
, (9)
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Figure 1: Left: | f+(s)/ f+(0)| from [11] (black solid line) in comparison to the Omnès
factor (10) (red dashed line). Right: δ+ from a Breit–Wigner approximation for the
K∗(892) (red dashed line) in comparison to the phase from the experimental fit [11]
(blue dot-dashed line). The gray band gives our estimate of inelastic effects.

implies that both phases are equal to the πK isospin-1/2, P-wave phase shift δ1/2
1 (s) up to

inelastic corrections, a manifestation of Watson’s final-state theorem [7]. In both cases, the
energy dependence is therefore dominated by the Omnès factor [8]

Ω(s) = exp
§

s
π

∫ ∞

sπK

δ
1/2
1 (s

′)

s′(s′ − s)

ª

, (10)

which implements in a model-independent way the dominance by the K∗(892) resonance.
Phenomenologically, this result follows from the observation that spin-1 resonances can be
described equivalently by vector or antisymmetric tensor fields [9,10], so that the same reso-
nances that contribute to f+(s)will appear in BT (s) as well, most notably the K∗(892). The first
inelastic effects arise around the K∗(1410), see Fig. 1, and assuming that
δ+(s)−δT (s)∼ 2δinel

+ (s) we estimate
�

�Aτ,BSM
CP

�

�® 0.03|Im cT |, (11)

suppressing the integral in (8) by about two orders of magnitude compared to δT (s) = 0 [5].

4 Limits on Im cT

At the high scale, the tensor current originates from the SU(2) × U(1) gauge-invariant La-
grangian

LT = Cabcd L̄ i
LaσµνeRb ε

i j q̄ j
Lcσ

µνuRd + h.c.

= C3321

�

(ν̄τσµνRτ)(s̄σ
µνRu)− Vus(τ̄σµνRτ)(ūσ

µνRu)
�

+ h.c., (12)

where R = (1 + γ5)/2. While the first term indeed contributes to the tensor current in
τ→ KSπντ, the second induces a u-quark electric dipole moment (EDM) via renormalization
group evolution [12], see Fig. 2 (left), and thus a contribution to the stringently constrained
EDM of the neutron dn. Using the 90% C.L. bound dn = gu

T (µ)du(µ)< 2.9×10−26 e cm [13,14]
together with the tensor charge [15] gu

T (µ= 2 GeV) = −0.233(28) we obtain

|Im cT (µτ)| ≤
4.4× 10−5

log Λ
µτ

® 10−5, (13)
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Figure 2: Diagrammatic representation of the u-quark EDM (left) and the contribu-
tion to D–D̄ mixing (right) originating from single and double insertions of the tensor
operators, respectively.
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Figure 3: Allowed regions in the Im c21
T –Im c11

T plane from the neutron EDM and D–
D̄ mixing (for φ = ±π/4 and Λ = 1TeV), compared to the favored region from the
τ→ KSπντ CP asymmetry.

where the last bound holds for Λ ¦ 100GeV. Since an explanation of the τ → KSπντ CP
asymmetry requires Im cT ∼ 0.1, one therefore needs cancellations in the neutron EDM of one
part in 104. In principle, such a cancellation is possible from an operator with a different flavor
structure C3311.

The neutron EDM then probes the combination Vud Im c11
T + VusIm c21

T , where c21
T = cT and

c11
T derives from C3311, so that, in principle, some symmetry might be conceivable that enforces

this cancellation exactly. However, an orthogonal constraint follows from D–D̄ mixing, which
is sensitive to (Vcd c11

T + Vcsc
21
T )

2 by a double insertion of the operators, see Fig. 2 (right), so
that in addition to tuning the neutron EDM constraint to 10−4, this second combination has
to be close to purely imaginary to evade the constraint from D–D̄ mixing. Using the global
fit from [16], we find the combined exclusion regions as given in Fig. 3. We note that due to
the double insertion required in effective field theory, the leading D–D̄ effect only enters at
dimension 8, but in an ultraviolet complete model there are in general already dimension-6
contributions, to the effect that the corresponding bound will become much stronger. In this
way, an explanation of the τ → KSπντ CP asymmetry would require an intricate conspiracy
of BSM couplings, which for all practical purposes excludes such a scenario.
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5 Conclusions

The BaBar measurement of the τ→ KSπντ CP asymmetry differs from the SM by 2.8σ. We
have shown that based on very general arguments a non-standard explanation from heavy
BSM physics, realized above the electroweak scale, is exceedingly unlikely: such a direct CP
violation could only come from a tensor–vector interference, but the strong phase is greatly
suppressed by Watson’s theorem, and a large BSM Wilson coefficient required to compensate
for this suppression is in conflict with limits on the neutron EDM and D–D̄ mixing. If confirmed
at Belle II [17], this would point to some exotic light BSM physics.
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