
SciPost Phys. Proc. 11, 001 (2023)

Quantum spin nematic liquid in the low-dimensional
anisotropic magnets -S=1/2 delta spin chain

with the anisotropic ferromagnetic interaction in magnetic field-

Toru Sakai1,2⋆, Rito Furuchi1, Hiroki Nakano1 and Kiyomi Okamoto1

1 Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
2 National Institutes for Quantum Science and Technology (QST),

SPring-8, Hyogo 679-5148, Japan

⋆ sakai@spring8.or.jp

International Conference on Strongly Correlated Electron Systems
(SCES 2022)

Amsterdam, 24-29 July 2022
doi:10.21468/SciPostPhysProc.11

Abstract

The magnetization process of the S = 1/2 delta chain with the anisotropic ferromagnetic
interaction is investigated using the numerical diagonalization of finite-size clusters. It
is found that the spin nematic liquid phase appears in higher magnetization region, as
well as the SDW liquid one in lower region.
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1 Introduction

The spin nematic state [1] is one of interesting topics in the field of the strongly correlated
electron systems. It is the quadrupole order of spins. Recently many theoretical and numer-
ical studies on the spin nematic state have been reported about various quantum spin sys-
tems. In most theoretical works the mechanism of the spin nematic order is based on the spin
frustration [1–4] or the biquadratic exchange interaction [5–7]. In this paper we propose a
theoretical model without the spin frustrations, or the biquadratic interaction, that exhibits
the spin nematic liquid phase in magnetic field. It is the S = 1/2 delta spin chain [8] with
the anisotropic ferromagnetic interaction. In one-dimensional systems like this model, the
nematic order is reduced to the quasi-long-range order characterized by the power-law de-
cay of the spin correlation function, which is called the Tomonaga-Luttinger liquid (TLL). We
investigate this model using the numerical diagonalization of finite-size clusters and obtain
the phase diagrams with respect to the anisotropy and the magnetization, which include the
nematic-correlation dominant TLL phase.

2 Model and Calculation

The magnetization process of the S = 1/2 delta chain shown in Fig. 1 is investigated. It is
described by the Hamiltonian

H =H0 +HZ , (1)

H0 = J1
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where λ is the anisotropy and H is the magnetic field. J1 and J2 are fixed to −1 and +1, re-
spectively. For the length L system, the lowest energy of H0 in the subspace where

∑

j Sz
j = M ,

is denoted by E(L, M). The reduced magnetization m is defined by m= M/Ms, where Ms de-
notes the saturation of the magnetization, namely Ms = L. The energy E(L, M) is calculated
by the Lanczos algorithm under the periodic boundary condition (S⃗2L+1 = S⃗1).
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Figure 1: Delta spin chain.
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3 Ground State without Magnetic Field

Since the system (1) is not frustrated, the spin pair at the J1 bond behaves like the S = 1 object.
Thus for λ= 1 and H = 0 the ground state is expected to be in the Haldane phase [9]. The Néel
order would be realized for sufficiently large λ. Using the phenomenological renormalization
[10], the phase boundary can be estimated by the fixed point equation
L∆π(L,λ) = (L + 2)∆π(L + 2,λ), where ∆π is the excitation gap with k = π in the subspace
with M = 0. The scaled gap L∆π for J3 = 0.2 is plotted versus λ for L = 8, 10, 12 and 14 in
Fig. 2(a). The extrapolation of the size-dependent fixed point for L and L + 2 assuming the
size correction proportional to 1/(L+1), as shown in Fig. 2(b), results in λc = 2.1376±0.0001
in the infinite length limit.
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Figure 2: (a) L∆π for J3 = 0.2 is plotted versus λ for L = 8, 10, 12 and 14. (b)
Extrapolation of the size-dependent fixed point for L and L + 2 assuming the size
correction proportional to 1/(L + 1).

4 Field-Induced TLL Phases

The system (1) is expected to behave as the S = 1 antiferromagnetic chain with anisotropy.
With the Ising-like anisotropy (λ > 1), it would be an effective S = 1 chain model with the
easy-axis single-ion anisotropy. According to the previous numerical diagonalization study on
the magnetization process of the S = 1 antiferromagnetic chain [11], the two-magnon TLL
phase, where each magnetization step is δSz = 2, is realized for the sufficiently large easy-axis
anisotropy, while the conventional TLL phase appears near the isotropic case. The single-
magnon excitation gap and the 2kF excitation gap of the two magnon bound state are defined
as∆1 and∆2kF

, respectively. The phase boundary between the conventional and two-magnon
TLL phases can be estimated as the point of∆1 =∆2kF

, because∆1 (∆2kF
) is gapless (gapped)

in the former phase, while gapped (gapless) in the latter one. The scaled gaps L∆1 and L∆2kF

of the system (1) at m = 1/2 for J3 = 0.4 are plotted versus λ for L = 8 and 12 in Fig. 3. It
confirms the gapless and gapped behaviors of∆1 and∆2kF

are switched at the expected phase
boundary. Thus we determine the phase boundary λc as ∆1 =∆2kF

at each magnetization.

5 Critical Exponent Analysis

In the field-induced two-magnon TLL phase, the nematic spin correlation perpendicular to
H and the SDW one parallel to H are expected to exhibit the power-law decay. These are
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Figure 3: Scaled gaps L∆1 and L∆2kF
at m = 1/2 for J3 = 0.4 are plotted versus λ

for L =8 and 12.

described by the following spin correlation functions

〈Sz
0Sz

2r〉 − 〈S
z〉2 ∼ cos(2kFr)r−ηz , (4)

〈S+1 S+2 S−2r−1S−2r〉 ∼ r−η2 . (5)

The correlation with the smaller exponent η is dominant. Namely, the nematic spin correla-
tion dominant TLL phase is realized for η2 < ηz , while the SDW dominant one for η2 > ηz .
According to the conformal field theory, these critical exponents can be estimated by the forms
of several energy gaps

η2 =
E(L, M + 2) + E(L, M − 2)− 2E(L, M)

Ek1
(L, M)− E(L, M)

, (6)

ηz = 2
E2kF
(L, M)− E(L, M)

Ek1
(L, M)− E(L, M)

, (7)

for each magnetization M , where k1 is defined as k1=L/2π. The exponents η2 and ηz esti-
mated for L = 12 and 14 are plotted versus m for J3 = 0.4 and λ = 2.5 in Fig.4. It indicates
that the spin nematic dominant TLL phase (η2 < ηz) is realized at larger m while the SDW one
at smaller m. Since the relation η2ηz = 1 should be satisfied in the TLL phase, the crossover be-
tween the two dominant spin correlations should occur at the magnetization with η2 = ηz = 1.
Fig. 4 suggests that the system size dependence of ηz is too large to estimate the crossover
point in the infinite length limit. Thus we determine the crossover magnetization as η2 = 1.

6 Phase Diagrams

Finally the phase diagrams with respect to λ and m is presented for J3 = 0.2, 0.4 and 1.0
in Figs. 5 (a), (b) and (c) respectively. The boundaries between the conventional and two-
magnon TLL are given as solid diamonds (L = 10), circles (L = 12) and squares (L = 14),
determined as ∆1 =∆2kF

. The crossover lines between the nematic and the SDW correlation
dominant TLL phases are given as stars, determined by η2 = 1. The boundaries between the
Haldane and Néel ordered phases at m = 0 estimated by the phenomenological renormaliza-
tion are up triangles and the ones between the conventional and two-magnon TLL at m = 1
calculated for L = 14 are down triangles. CTLL, NTLL and SDW2TLL correspond to the con-
ventional TLL phase, the nematic correlation dominant two-magnon TLL phase, and the SDW
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Figure 4: Exponents η2 and ηz estimated for L = 12 and 14 are plotted versus m for
J3=0.4 and λ =2.5

dominant two-magnon TLL phase, respectively. The shape of the phase diagram depends on
J3. For smaller J3, the magnetization process from the Haldane phase would meet the quan-
tum phase transition from CTLL to NTLL or SDW2TLL. In contrast, for larger J3 the one from
the Néel ordered phase would meet the quantum phase transition from SDW2TLL or NTLL to
CTLL.
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Figure 5: Phase diagrams of the λ-m plane for J3 = 0.2 (a), 0.4 (b) and 1.0 (c).
The up triangle is the boundary between the Haldane and Néel ordered phases. The
down triangle is determined by∆1 =∆2 at m= 1 limit, where∆2 is the two-magnon
excitation gap.

7 Summary

The magnetization process of the S = 1/2 delta chain with the anisotropic ferromagnetic
interaction is investigated using the numerical diagonalization. It is found that for sufficiently
large easy-axis anisotropy the spin nematic correlation dominant TLL phase appears at higher
magnetization region, while the SDW dominant one at lower magnetization.
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