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Application to the Kitaev model with armchair edges

Hirokazu Taguchi1, Akihisa Koga1⋆ and Yuta Murakami2

1 Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
2 Center for Emergent Matter Science, RIKEN, Wako 351-0198, Japan

⋆ koga@phys.titech.ac.jp

International Conference on Strongly Correlated Electron Systems
(SCES 2022)

Amsterdam, 24-29 July 2022
doi:10.21468/SciPostPhysProc.11

Abstract

We consider the time-dependent thermal pure quantum state method and introduce
the efficient scheme to evaluate the change in physical quantities induced by the time-
dependent perturbations, which has been proposed in our previous paper [H. Taguchi et
al., Phys. Rev. B 105, 125137 (2022)]. Here, we treat the Kitaev model to consider the
Majorana-mediated spin transport, as an example. We demonstrate how efficient our
scheme is to evaluate spin oscillations induced by the magnetic field pulse.
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1 Introduction

Thermal pure quantum (TPQ) state method is one of the powerful methods to examine the
thermodynamic quantities in the finite clusters [1–3] and it successfully has been applied to the
quantum spin systems such as the Heisenberg models on the frustrated Kagome lattices [2,4,5]
and the Kitaev model [6–12]. Recently, the time-dependent quantities have been examined
in the framework of the TPQ method [3]. Since the TPQ state is not the eigenstate of the
Hamiltonian, the expectation value, in general, depends on the time t even without the time-
dependent Hamiltonian, yielding to unphysical oscillations. We have proposed the scheme to
reduce ill oscillations in physical quantities [13]. In this study, we briefly explain the time-
dependent TPQ method and our scheme. We then demonstrate an advantage of our scheme,
considering the Majorana-mediated spin transport in the Kitaev model [14–16].

This paper is organized as follows. In Sec. 2, we introduce the Kitaev model with edges
and explain the TPQ method. In Sec. 3, we demonstrate the numerical results obtained by
the TPQ method to clarify that our scheme has an advantage in evaluating the local physical
quantities. A summary is given in the last section.

2 Model and Method

2.1 Kitaev model with edges

In the study, we consider the Kitaev model [17,18], which is one of the quantum spin models
on the honeycomb lattice and is composed of the direction dependent Ising interactions. It is
known that there exists a local conserved quantity defined on each plaquette. This leads to
the important feature in the Kitaev model; the quantum spin liquid state is realized, where the
magnetic moments and long-range spin-spin correlations are exactly zero. Nevertheless, in the
Kitaev model, the spin excitations propagate, which are mediated by the itinerant Majorana
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Figure 1: 24-site Kitaev cluster with armchair edges. Green, red, and blue lines
indicate x , y , and z bonds, respectively. The static magnetic field hR is applied in
the right (R) region and no magnetic field is applied in the middle (M) region. A
time-dependent pulsed magnetic field is introduced in the left (L) region.
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fermions [14]. This phenomenon can be observed in the Kitaev system excited by the magnetic
field pulse. One of the simple setups is the system with armchair edges, as shown in Fig. 1.
The system is composed of the left (L) and right (R) edge regions, and the middle (M) region,
and the tiny static magnetic field is applied only to the R region. The magnetic pulsed field is
introduced to the L region. The Hamiltonian is given by the static and time-dependent parts
as

H(t) = H0 +H ′(t) , (1)

H0 = −J
∑

〈i, j〉x

S x
i S x

j − J
∑

〈i, j〉y

S y
i S y

j − J
∑

〈i, j〉z

Sz
i Sz

j − hR

∑

i∈R

Sz
i , (2)

H ′(t) = −hL(t)
∑

i∈L

Sz
i , (3)

where 〈i, j〉µ indicates the nearest-neighbor pair on the µ(= x , y, z)-bonds. The x-, y-, and
z-bonds are shown as green, red, and blue lines in Fig. 1. Sµi is the µ component of an S = 1/2
spin operator at the ith site and J is the exchange coupling between the nearest-neighbor
spins. hR(= 0.01J) represents the static magnetic field in the R region. The time-dependent
magnetic field in the L region is given by the Gaussian form as

hL(t) =
A
p

2πσ
exp

�

t2

2σ2

�

, (4)

where A and σ are strength and width of the pulse. Here, we set σ = 2/J and A = 1. In
this study, we examine the expectation value of the local quantity after the magnetic pulse is
introduced in the L region.

2.2 Thermal Pure Quantum state method

Here, we explain the TPQ method to examine the expectation value of the physical quantity
at finite temperatures. When t → −∞, the system is described by the static Hamiltonian H0
and the expectation value for a certain operator Ô is given by the trace calculations as

〈Ô〉=
1
Z0

Tr
�

Ôe−βH0
�

, (5)

where β = 1/T , T is the temperature, Z0(= Tr
�

e−βH0
�

) is the partition function. It is known
that at zero temperature (T = 0), only the ground state contributes to the expectation value.
On the other hand, at finite temperatures, all eigenstates are required to evaluate the expec-
tation value, which make it hard to treat larger clusters numerically. Instead, we use the TPQ
state method [1,2]. The expectation value is represented as

〈Ô〉= 〈ΨT |Ô|ΨT 〉 , (6)

where |ΨT 〉 is the TPQ state at the temperature T . In contrast to the former method, one does
not have to calculate all eigenvalues and eigenstates, and thereby the TPQ state method has
an advantage in treating larger systems.

We briefly describe how to construct the TPQ state. A TPQ state at T →∞ is simply given
by a random vector,

|Ψ0〉=
∑

ci|i〉 , (7)

where {ci} is a set of random complex numbers satisfying
∑

i |ci|2 = 1 and |i〉 is an arbitrary
Hilbert basis. By multiplying a certain TPQ state by the Hamiltonian, the TPQ states at lower
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temperatures are constructed. The kth TPQ state is represented as

|Ψk〉=
(L −H0)|Ψk−1〉
||(L −H0)|Ψk−1〉||

, (8)

where L is a constant value, which is larger than the maximum eigenvalue of the Hamiltonian
H0. The corresponding temperature is given by

Tk =
L − Ek

2k
, (9)

where Ek(= 〈Ψk|H0|Ψk〉) is the internal energy. The thermodynamic quantities such as entropy
and specific heat can be obtained from the internal energy and temperature. We repeat this
procedure until Tk = T and obtain the TPQ state at the temperature T , |ΨT 〉.

The time-dependent quantities are also evaluated in the framework of the TPQ method [3].
The expectation value at time t for an operator Ô is given as

〈Ô(t)〉 =
1
Z0

Tr
�

Ô(t)e−βH0
�

,

= 〈ΨT |Ô(t)|ΨT 〉 ,
= 〈ΨT (t)|Ô|ΨT (t)〉 , (10)

where Ô(t) = U†(t)ÔU(t), |ΨT (t)〉 = U(t)|ΨT 〉, and U(t) is the time evolution operator.
Therefore, we can discuss the time-evolution of the system in terms of the time-evolution of
the TPQ state. When one discusses the real-time dynamics triggered by the Hamiltonian H ′(t),
it is useful to examine a change in the quantities as,

∆O(t) = 〈Ô(t)〉 − 〈Ô〉 . (11)

In the following, we focus on this quantity.
The TPQ method has an advantage in treating larger clusters, while we sometimes suffer

from unavoidable numerical problems. When the TPQ method is applied to the finite cluster,
the obtained results are sensitive to its size and/or shape. This is due to, at least, two effects.
One of them is that low energy properties in the thermodynamic limit cannot be described
correctly in terms of finite clusters. Therefore, the large system size dependence in the phys-
ical quantities appears at low temperatures although the TPQ method reproduces the correct
results at higher temperatures. The other is the random dependence in the initial TPQ state.
In general, this can be excluded, by taking a statistical average of the results for independent
TPQ states. Nevertheless, we sometimes meet with difficulty in evaluating time-dependent
quantities due to their large variance. This originates from the fact that each TPQ state is not
an eigenstate of the Hamiltonian, leading to ill oscillations in the physical quantities with re-
spect to time even without time-dependent perturbations, unless the quantities are conserved
ones. Namely, the sample dependence is somewhat large even at high temperatures.

To avoid the latter problem, we prepare two time-dependent TPQ states from the common
TPQ state as, |ΨT (t)〉 and |Ψ0

T (t)〉= U0(t)|ΨT 〉 [13], where U0(t) is the time-evolution operator
for the system described by H0. Then, we calculate 〈〈Ô(t)〉〉 = 〈Ψ0

T (t)|Ô|Ψ
0
T (t)〉 instead of

〈Ô〉 and evaluate the change in the quantities (11), where unphysical oscillations should be
canceled. This allows us to obtain ∆O(t) efficiently and to discuss correctly how the time-
dependent Hamiltonian H ′(t) affects the system at finite temperatures.

3 Results

We here demonstrate how efficient our scheme is to evaluate the change in the quantities at
finite temperatures. To clarify this, we treat the 24-site Kitaev cluster with armchair edges
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(Fig. 1) and evaluate the change in the moment at the ith site ∆Sz
i (t) by means of the TPQ

states constructed from a certain random state. The quantity is described in two distinct ways
as

〈Sz
i (t)〉 − 〈S

z
i 〉 = 〈ΨT (t)|Sz

i |ΨT (t)〉 − 〈ΨT |Sz
i |ΨT 〉, (12)

〈Sz
i (t)〉 − 〈〈S

z
i (t)〉〉 = 〈ΨT (t)|Sz

i |ΨT (t)〉 − 〈Ψ0
T (t)|S

z
i |Ψ

0
T (t)〉 . (13)

Then, we compare the results of the conventional scheme eq. (12) and our scheme eq. (13).
We calculate the change in the spin moments in the system after the magnetic pulse is in-

troduced in the L region. In the M region, the moments are never induced due to the existence
of the local conversed quantities [17]. In fact, we have confirmed the absence of the moments
in the framework of the TPQ method (not shown). Now, we focus on two sites (i = 12 and
24) in the R region. These sites are equivalent since the Kitaev cluster treated here has a
translational symmetry in the direction along the edge, as shown in Fig. 1. Figure 2 shows

Figure 2: Green, red, and black lines indicate time-dependent quantities at
T/J = 0.05, which are calculated by the formulations eqs. (12), (13), and (14),
respectively.

the change in the moment in the R region at the temperature T/J = 0.05, which is obtained
from only one TPQ state |ΨT 〉. We start with the simulation from the time t = −20/J , where
hL(t) is small enough. Nevertheless, we find that the changes in the spin moment described
by eq. (12) are immediately induced in both sites i = 12 and 24 although the latter may be
invisible. To understand this phenomenon, we also consider the quantity

〈〈Sz
i (t)〉〉 − 〈S

z
i 〉 = 〈Ψ

0
T (t)|S

z
i |Ψ

0
T (t)〉 − 〈ΨT |Sz

i |ΨT 〉 , (14)

which is calculated in terms of the time-evolution operator U0(t). We find in Fig. 2 that, around
t ∼ −20/J , the quantities are the same as the results obtained from eq. (12). This means the
existence of unphysical oscillations originating from the initial TPQ state. Beyond t ∼ 2/J ,
we find that the difference in the results obtained from eqs. (12) and (14) becomes larger.
This suggests that the physically meaningful oscillations are induced by the time-dependent
perturbations (magnetic pulse introduced in the L region). In fact, by taking the statistical
average in these quantities obtained from many independent TPQ states, we can confirm that
the spin oscillations are correctly described by eq. (12). However, for the result obtained by
one TPQ state, the induced oscillation around t ∼ 4/J and the initial unphysical oscillation
are of the same order in this case. Therefore, the statistical average for the results obtained
from a large number of TPQ states may be necessary to obtain the numerically reliable results.
On the other hand, we clearly find that the formulation eq. (13) correctly describes the change
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in the moment; no oscillation behavior appears before the Gaussian pulse is introduced in the
L region, and the quantities for both sites are almost the same, which is consistent with the
symmetry argument in the system. It is naively expected that the accurate results should be
obtained by the statistical average for a smaller number of samples. Therefore, we can say
that our scheme (13) has an advantage in evaluating the local physical quantities.

4 Conclusion

We have treated the Kitaev model with edges to examine the time-evolution of the spin mo-
ments by means of the time-dependent thermal pure quantum state method. We have ex-
plained the detail of our scheme proposed in our previous paper, where two kinds of the
time-evolution operators are applied to the common TPQ state. Then, we have demonstrated
that ill oscillations in the physical quantities, which originate from the fact that each TPQ
state is not an eigenstate and causes a problem in the conventional time-evolution scheme,
are suppressed. We have evaluated the change in the moment at each site in the Kitaev model.
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