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Abstract

We study the ionization and light yields produced by nuclear recoils at low energies
in pure crystals and noble liquids in the context of Lindhard’s integral equation, incor-
porating the effects of binding energy, improved modeling of the electronic stopping,
and electronic straggling. We consider three different models for the electronic stopping
power that incorporate Coulomb repulsion effects at low energies, and Bohr electronic
stripping for high energies. Finally, we discuss possible new effects near threshold.
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1 Introduction

Dark Matter, Neutrinos and other rare searches [1] required to be detected by direct sub-keV
recoil energy spectrum from terrestrial and astrophysical sources. For pure element ionization
detectors like Si [2], Ge [3], liquid Argon (LAr) [4] and liquid Xenon (LXe) [5], the typical
recoil energy analyzed is less than 1 keV, where at this regime only a fraction of this energy
goes to ionization. The convertion of the total recoil energy to visible or electronic energy is
given by the ionization efficiency or quenching factor. Lindhard integral equation with binding
energy [6] already have proven to success in describing low energy measurments for ionization
efficiency in silicon [7], this rediscovered approach can be used to obtained the ionization
deposit energy that an non ionizable particle gives to a pure media when interacts with a
single nuclei, by separating electronic from nuclear processes.

Although Lindhard integral equation1 with constant binding energy describes accurately
the data of silicon below 4 keV, it required an outranged value from the expected one, Frenkel
pair energy [8]. Furthermore, other studies [9, 10] evidenciate that the electronic stopping
power computed by Lindhard [11] might be overestimated at low energies.

For DM or CEνNS searches with Si and Ge ionization detectors the ionization efficiency
(quenching factor) plays an important role for calibration. Different quenching factor leads
to different shape of energy spectrum specially near threshold (100 eVee). Quenching factor
has the effect to move the events of the spectrum to low energy, where some of them can pass
the threshold. This lead to a systematic error fluctuation in low energy detection experiments,
where usually spectrum rate for different quenching factor models are reported, [12,13].

2 Ionization and Lindhard Integral Equation

When a non ionizing particle, like DM or a neutrino, interacts with a crystal detector it deposit
a total recoil energy ER. When this happens part of the recoil energy is used to disrupt the
atomic-binding U , so then the ion now moves with an kinetic energy E (small than ER). This
process continue until the energy of the ion is not enough to disrupt the atomic binding. In
this work we are going to use Lindhard units ϵ = C E, where C = 11.5/Z7/3(1/keV). The
energy is divided into atomic motion (ν̄) due to all subsequent ions collisions and ionization
energy due to excite electrons (η̄). So we define the ionization efficiency or quenching factor
by the quotient of the energy that goes to ionization over the total recoil energy deposited in
the material,

fn =
η̄

ϵR
. (1)

We are going to assume as work hypothesis that the ionization occurs only when the ion have
the necessary energy to disrupt the atomic bonding of the crystal and moves freely. We claim
that this argument is reasonable for energies up to 60 eV (recoil energies).

The basic integral equation deduced by Lindhard [14] takes into account, in this case for
atomic motion ν̄; that the atomic motion energy given by the ion with energy E is equal to the
atomic motion energy given by the ions after scattering, where one of them takes in to account
ionization and the other target ion have to spend some energy in disrupting the binding,

∫

dσn,e

︸ ︷︷ ︸

total cross section
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= 0 . (2)

1Dont confuse with Lindhard parametrization model for ionization efficiency.
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Where Tn is the nuclear recoil energy given by the incident ion to the ion at rest,
∑

i Tei is the
energy transfer to electron during the ion colision, U is the atomic binding energy, σn,e is the
inelastic nuclear ion-ion corss section and is a fucntion of Tn and

∑

i Tei and ν̄e is the atomic
motion due to electrons (negligible). As we can see at low energies the part of atomic motion
given by electron can be neglected. Lindhard gives an asymptotic approximate solution to
Eq.(2) that is just valid at high energies.2 Lindhard approximate solution works fine in many
cases, e.g. Si, Ge, etc, for energies above 10 keV, but already for Si this parametrization fails
below 4 keV [7].

3 Simplify Integro Differential Equation

In order to handle the integral equation Eq.(2), we make the following basic assumptions
(most of them made by Lindhard); I we consider that nuclear recoil energy and the energy
given to electrons are small compared to the initial kinetic energy of the ion E, II effects of
electronic and atomic collisions can be treated separately. In contrast to Lindhard we are not
going to neglect the effects of binding energy.

Furthermore, in order to get a solvable integro-differential equation, we need to relax ap-
proximation I up to second order. Also we consider nuclear stopping power using the universal
nuclear cross section, that can have some variations depending on the inter atomic potentials
used. With this and other details we can deduce a second order integro differential equation,
that can be solve by using the shooting method [6],

−
1
2

kϵ3/2ν̄′′(ϵ) + kϵ1/2ν̄′(ϵ) =

∫ ϵ2

ϵu
d t

f
�

t1/2
�

2t3/2
[ν̄(ϵ − t/ϵ) + ν̄(t/ϵ − u)− ν̄(ϵ)] , (3)

where, t = ϵ2 sin2(θ/2) (center of mass frame), σn is the nuclear scattering cross section
and, Se = kϵ1/2 is electronic stopping power of the medium, if the electronic stopping is zero
at all energies, then the quenching factor also might be zero. This equation predicts an en-
ergy threshold at 2u. By firt considering a constant binding energy model and the electronic
stopping power given by Lindhard, we succes in describe Si and Ge measuremnts at low ener-
gies [6].

4 Low and High energy Effects for Electronic Stopping Power

4.1 High energies effects

One of the limitations of the aforementioned approach in Si, relies in having a cut off too high
compared to the expected threshold given by the energy to create a Frenkel-pair (≈ 30 eV) [8].
To affront this limitations, in this study we considered a varying binding energy model and
Coulomb repulsion effects for low energies and electron stripping at higher energies. Hence,
Lindhard electronic stopping is not valid at low energies (≈ 5<keV).

Also we are going to considered electronic straggling effects in to the cascade process, this
is done by expanding at second order in

∑

i Tei the term ν̄
�

E − Tn −
∑

i Tei

�

in Eq.(2). The
main effect of including electronic straggling is to low the quenching factor near threshold
and slightly increase it at high energies. These effects can be added directly into Eq.(3).

2 fn = kg(ϵ)/(1+ kg(ϵ)) , g(ϵ) = ϵ + 3ϵ0.15 + 6ϵ0.7 .
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For high energy the electronic stopping has to be corrected by velocity effects that reduce
the effective number of electron in the ions, this can be modeled by using the Bohr strip-
ping criteria [15]. The oscillatory effects for electronic stopping as function of the number of
electrons of the incoming ion are very well known. Since due to Bohr stripping the effective
number of electrons reduce, implies that for energies much lower than the Bragg peak (<20
Mev in Si) this effect may be active. This oscillations are caused by an appearance of a phase
shift,Firedel sum rule [16], to maintain neutrality of electron Fermi gas, it can be tested that
this effect produce a better agreement with the model and the available data for electronic
stopping in silicon.

4.2 Low energies effects

At low energies, it is very well known that the electronic stopping tents to damp in a non
proportional velocity dependence [17], due to at very low relative velocities (compared to v0)
colliding nuclei will not penetrate the electron clouds of each other strongly, this defines the
Coulomb repulsion effects for electronic stopping power.

The general formula for electronic stopping according kinetic theory [18]

Se = (Ξ)Nmv

∫ ∞

R
vFσt r(vF )NedV , (4)

where R is the distance of closest approach, that is computed by solving E = 1
2 V (R) for a given

inter-atomic potential, σt r is the transport cross section, Ne the electron density, vF the Fermi
velocity of the electron gas and Ξ a geometrical factor previously mentioned by Tilinin [9].
This factor is only relevant for high atomic number elements, like Ge, where for Si the effect
can be neglected and approximate Ξ ≈ 1. Here we consider three different models for the
analysis, Tilinin [9] (Transport cross section and kinetic theory), Kishinevsky [19] (based on
Firsov model with inter-atomic interaction included ) and Arista [20] (based on the dielectric
function formalism, based in Lindhard ideas). Furthermore we consider four inter-atomic
potentials;Thomas-Fermi, Moliere, AVG and Ziegler [21,22]. Both the scale factor ξe and the
inter-atomic potential used affects the electronic stopping and the binding energy, specially at
low energies.

For the binding energy model we include the Frenkel energy, i.e. the energy to create a free
ion in the crystal lattice, mainly important at low energies, and we include inner excitation
of the electron clouds, that are mainly important at high energies. In general high binding
energies, tent to reduce the quenching factor.

Usually Density Functional Theory is used to model electronic stopping and binding ener-
gies. The kinetic energy for electrons usually is taken to be the average free electron energy of
a Fermi gas (3/5)EF where this assumption may work at high energies. But for low energies
interaction, Tilinin [9]makes the observation that only electrons near the Fermi energy can be
excited, due to Pauli exclusion principle, since inner electron occupy the energy levels. So if
we take in to account this observation, we can change in the model that the average electron
kinetic energy to be just EF . By doing this it can be shown that the atomic scale change by
a factor of 5/3. This implies for the electronic stopping the appearance of an scaling factor
of ξ = 2.15. Before this Lindhard observed the need to ad a corrective factor to electronic
stopping in the range among one or two. This argument may give a reasonable explanation
about the physical origin of this scale factor in the context of density functional theory. In this
study we are going to consider this atomic scaling factor ξ, as a free parameter among the
range 1 to 2.15, furthermore this also affects the binding energy model and nuclear recoils
interactions.
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5 Ionization Efficiency for Noble Gases

For noble gases we can apply our model for the quenching factor for LXe and LAr, using recent
measurements of the ionization yield QER

y and the scintillation efficiency L y [23]. Reconstruc-
tion is done by exploiting the full anticorrelation between the S1 (scintillation photons nγ)
and S2 (ionized electrons ne), where it is usually to assume that each excited or ionized atom
leads to one scintillation photon or electron, hence for the total quanta defined by the number
of ions Ni and excitons Nex produced, Ni + Nex = nγ + ne independent of recombination.

The fraction of ionizations due to recombination is predicted by the Thomas-Imel box
model [24].This model has been shown to work well for spatially small tracks. The charge
yield is proportional to Eq.(1) by the electron recoil energy Eer = fnER and the energy Wi to
create an electron-hole pair in the liquid, Ni = fn(

ER
Wi
)

QER
y =

Ni

Eer
=
(1− r)Ni

Eer
, 1− r =

1
γNi

ln (1+ γNi) , (5)

where γ is a free parameter of the model typically of the order of 10−2. In analogy for the light
yield,

L y =
Ni(r + Nex/Ni)

Eer
, (6)

where Nex/Ni will be considered as a constant, the typical values are of the order of ≈ 1/2.
We compute the charge and light yields for LAr and LXe, using the constant binding energy
model and Se = kϵ1/2, as a first attempt to explain recent low energies measurements.

6 Results and Applications

We show in Fig.(1), the preliminary result for Si, compared with the constant binding energy
model and Lindhard’s. Now we can describe five orders of magnitude of data. We fit the inter-
atomic scale parameter to electronic stopping power (Se) data for Si-Si ions [25–27], that
scales the electronic and nuclear stopping and has important effects at low energies. In this
study we obtained Ξ= 1.46 to be a best fit for Se data. Even though the model is independent
of Lindhard’s, we see a very good match with our model at high energies.

Excess signals produced by flat background can be expected to appear at low energies due
to new effects, binding energy, considered by Eq.(3) than Lindhard’s model fail to reproduce.
For flat nuclear recoil spectrum or background signals, e.g. thermal neutrons, we can explain
an EXCESS signal considering that typically Monte Carlo (MC) simulations used Lindhard’s
theory to reconstruct from recoil to visible energy in experiments. If in substitution we use
our model for quenching factor, we reconstruct a signal that have an EXCESS at low energy
compared from this MC simulations. The physical origin of this excess relies in the inter-
atomic interactions due to binding energy (energy stored in a defect of the crystal), electronic
and nuclear stopping.

Defect production in crystals is a recent are of study [28], that has potential to be applied
for low energy detection. With our model and the Kinchin and Pease theory [29] , is very
straight forward to compute the number of Frenkel pairs in a crystal in Si. We note that the
expected number of events for our model is great than the prediction by using Lindhard’s
model.

For germanium we can use Eq.(4) to compute the electronic stopping power and introduce
it to Eq.(3) (with straggling) for fn computation. But as mentioned before Tilinin approach
fails for large atomic numbers like Ge. In this case it is necessary to introduced and model
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Figure 1: Silicon quenching factor measurements points taking from [6,32–34]. The
points are compared with, (line dotted) the solution of Eq.(3) with new effects added
at low and high energies, (dotted) Lindhards, and (red)the solution of Eq.(3) with
constant binding energy and Lindhard electronic stopping power.

the geometrical factor Ξ that may appear in Eq.(4). This can be modeled by considering
the electron ionization cross section, the rate of electrons emitted by collision and trajectory
different from a straight line of scattering. The model is still in progress and under revision,
here we show the preliminary results in Fig.(3).

Finally we show in fig the results for Charge and light yield in LXe and LAr, see figures from
[30]. We fit the parameters for Thomas Imel box model, giving γX e = 0.0127, γAr = 0.025,
(Nex/Ni)X e = 0.47 and (Nex/Ni)Ar = 0.687. The results are compare to measurements taken
from [23] and NEST semi-empirical model.

7 Conclusions

We present a general model based on integral equations for ionization in pure crystals and
noble liquids. The model predicts the turnover of fn at low energies, already observed in Xe
for ER < 1 keV. We incorporate corrections due to electronic straggling and atomic scaling in
the Int. Diff. Eq. For silicon Coulomb effects allow us to fit the data up to 3 MeV and have
a threshold near Frenkel-pair creation energy. For germanium our model shows potential to
explain recent measurements [31]. We show charge and light yields for LXe and LAr consis-
tent with actual data. Much work can be done from here, e.g directional quenching factor,
straggling for ν̄, etc.
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Figure 2: (left) Excess signal predicted from this work compared to Lindhard’s ex-
pectations. (right) Number of defects from this work (blue) compared to Lindhard
model (red).

Figure 3: Germanium preliminary quenching factor computation based on the solu-
tion of Eq. (3), where the geometrical factor mentioned by Tilinin is considered.
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