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Improved Galactic diffuse emission model strengthens the case
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Abstract

After more than a decade since its discovery, the Galactic center gamma-ray excess –
discovered with the Fermi Large Area Telescope – remains puzzling. While the spectrum
of the signal can be explained by either dark matter or an unresolved population of mil-
lisecond pulsars, the spatial morphology of this excess seems to hold the key to separate
the two theories. In this contribution, we present the results of a recent study in which
we use bleeding edge models for interstellar gas, inverse Compton emission, and stellar
mass models to reanalyze the Galactic center excess. We find that the spatial morphol-
ogy of the excess is highly correlated with stellar matter in the Galactic bulge, providing
strong support for the millisecond pulsar hypothesis.
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1 Introduction

Searches for new physics with gamma-ray telescopes are limited by our understanding of the
astrophysical background, specially in the center of the Milky Way. Despite this limitation,
analyses [1–7] of Fermi-LAT data from the Galactic center (GC) have observed an excess of
extended GeV gamma rays which is not readily explained by known astrophysical sources.

This GC excess (GCE) could in principle be explained by the self-annihilation of GeV-scale
dark matter particles (e.g., [1,4,7–11]) or by a large population of gamma-ray emitting pulsars
[4, 6, 12, 13]. While the predicted spectrum for either of these two hypothetical sources is
degenerate, their spatial morphologies are expected to be quite different [14]. Interestingly,
a string of recent articles [15–20] have found a correlation1 between the spatial morphology
of the GCE and that of stellar mass in the Galactic bulge. If these results are confirmed with
realistic (good-fitting in an absolute sense) Galactic diffuse emission models (GDE), then it
would completely clarify the nature of the Fermi GeV excess.

In this contribution (see Ref. [23] for in-depth discussions), we present a much improved
model for the GDE in the inner Galaxy, and evaluate its impact on the characteristics of the
GCE. Consistent with previous results by some of us (e.g., Ref [15–17]), we find that the spatial
morphology of the GCE is best matched by stellar bulge rather than dark matter templates.

2 Description of our new Galactic diffuse emission model

We have constructed a new GDE model2 for the Galactic center region which contains numer-
ous substantial improvements with respect to previous studies. First, our atomic hydrogen
model is based on explicit radiation-transport modeling of line, absorption, and continuum
emission [23] which allows for a more realistic representation of the distribution of hydro-
gen in the GC. Second, our inverse Compton (IC) templates reproduce the state-of-the-art
templates recently constructed by the GALPROP team [24]. Following the methodology pio-
neered by the Fermi collaboration [25], we have divided these two components of the GDE
in Galactocentric rings so that they have sufficient freedom to accommodate for any potential
negative/positive residuals present in the data. Third, we used bleeding-edge models for the
stellar bulge [18] and Fermi bubbles [17]. Figure 1 shows residual maps for the atomic hydro-
gen distribution in the GC. These are constructed by subtracting the standard hydrogen gas
maps in Ref. [26] from our new hydrodynamic hydrogen models. The observed differences
between the new and old models are due to a combination of factors: (i) the hydrodynamic
gas maps assume a gas flow model constructed from smoothed-particle-hydrodynamic sim-
ulations whereas the standard ones assume circular orbits of gas, (ii) while we account for
continuum emission and absorption lines in the construction of the new gas maps, the stan-
dard ones do not, and (iii) we allow for the hydrogen excitation temperature to vary along the
longitudinal and latitudinal directions (in Galactic coordinates), whereas the standard maps
assume a constant excitation temperature across the Galaxy [26]. Interestingly, we have found
that our new GDE model fit the GC data significantly better than the previous generation of
hydrodynamic gas models [15,17,27], as well as the standard gas templates [28].

The recovered spectra for the different interstellar gas ring templates are presented in
Fig. 2. As can be seen, the spectra for each ring displays a marked hadronic/bremsstrahlung-
like behaviour, demonstrating the adequacy of the particular ring subdivision adopted in our
pipeline. The total gas-correlated spectra in our region of interest was presented in Fig. 13 of
Ref. [23].

1Though we note that Refs. [21,22] have claimed different results.
2All the astrophysical templates are publicly available at https://doi.org/ 10.5281/zenodo.6276721.
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Figure 1: Residual atomic hydrogen maps (HIhydrodynamic − HIinterpolated) in units of
1020cm−2, where HIhydrodynamic refers to the new hydrodynamic gas maps introduced
in Ref. [23], and HIinterpolated to the standard gas maps widely used in the community
(e.g., Ref. [28]). The new hydrodynamic gas maps account for continuum emission
and absorption, allow for the hydrogen excitation temperature to vary with l and b,
and do not assume circular orbits for the motion of interstellar gas.
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Figure 2: Spectra of the different interstellar annular gas templates included in the
fit. See Fig. 1 and Fig. 5 in Ref. [23] for further details. These were obtained using
a bin-by-bin analysis technique [15, 19] with which we agnostically reconstruct the
spectra of each template based solely on their spatial morphology. The left panel
shows the spectra for atomic hydrogen and the right panel the spectra of the molec-
ular hydrogen, assumed to be traced by Carbon monoxide (CO) [15]. Both appear
physically plausible and stable.

3 Main results

By running a maximum-likelihood procedure independently at each different energy bin (bin-
by-bin method described in Ref. [23]) we computed the statistical significance of various tem-
plates for the GCE. In particular, we included four classes of dark matter (DM) profiles, and
two maps tracing the distribution of stars in the inner Galaxy (as described in the Appendix
of Ref. [23]). The statistical significance for each new source is obtained by computing the
probability of ∆TS as shown in Eq. 2.5 of [17], and noting that each additional template has
15 degrees of freedom. Table 1 shows a summary of our statistical tests for different combi-
nations of templates for the GCE. As can be seen in this table, using this procedure we find
that the data strongly supports the inclusion of the Nuclear Bulge (NB) template first, and
subsequently, the Boxy Bulge (BB) template. Importantly, in consistency with previous analy-
ses [15–17, 19, 20], we find that once the NB and BB templates have been added to the ROI
model, the data no longer require any of the DM templates that have been considered in the
literature.
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Table 1: Statistical significance of the GCE templates for the HI maps with vary-
ing Texc. The Base model comprises the new hydrodynamic gas maps introduced
in this work (divided in four concentric rings), dust correction maps, inverse Comp-
ton maps, the 4FGL point sources, and templates for the Fermi Bubbles, Sun, Moon,
Loop I, and isotropic emission (see the Appendix of Ref. [23]). Additional sources
considered in the analysis are: Nuclear bulge (NB) [29], boxy bulge (BB) [18], NFW
profile with γ = 1.2, cored dark matter [30], and ellipsoidal versions of these (see
Fig. 3 in [19]). Note that as usual, all dark matter model templates are squared as is
appropriate for pair-pair annihilation.

Baseline Additional ∆TS Significance
model source
Base Cored ellips. 0.0 0.0 σ
Base Cored 0.1 0.0 σ
Base BB 282.2 15.3 σ
Base NFW ellips. 647.2 24.2 σ
Base NFW 807.1 27.3 σ
Base NB 1728.9 40.8 σ

Base+NB Cored ellips. 0.1 0.0 σ
Base+NB Cored 0.7 0.0 σ
Base+NB NFW ellips. 1.0 0.0 σ
Base+NB NFW 3.4 0.2 σ
Base+NB BB 261.0 14.7 σ

Base+NB+BB NFW ellips. 0.1 0.0 σ
Base+NB+BB Cored ellips. 0.4 0.0 σ
Base+NB+BB Cored 0.7 0.0 σ
Base+NB+BB NFW 2.6 0.1 σ

4 Conclusions

We obtained with high significance an improved fit to the diffuse gamma-ray emission observed
by Fermi-LAT. When our new GDE model is used to estimate the statistical significance of
the various spatial templates that have been proposed for the GCE, we confirm that that the
fit strongly prefers the stellar template to the DM-like template at high significance. Once
the stellar templates are included in the fit, there is no longer any evidence for a DM-like
signal in the data be it cuspy or cored. This finding is robust under the variation of various
parameters, for example the excitation temperature of atomic hydrogen, and a number of tests
for systematic issues.
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