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Abstract

The constituents of dark matter are still an unresolved puzzle. Several Beyond Standard
Model (BSM) Physics offer suitable candidates. In this study here we consider the Two
Higgs Doublet model augmented with a complex scalar singlet (2HDMS) and focus on
the dark matter phenomenology of 2HDMS with the complex scalar singlet as the dark
matter candidate. The parameter space allowed from existing experimental constraints
from dark matter, flavour physics and collider searches has been studied. The discovery
potential for such a 2HDMS at HL-LHC and at future e+e− colliders has been worked
out.
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1 Introduction

Dark Matter (DM) remains an unsolved puzzle at the interface between particle physics and
cosmology, only 4-5% of the Universe are composed by ‘known’ matter components, but about
25% is built of dark matter. Since the Standard Model (SM) does not accommodate a suit-
able DM candidate, several Beyond Standard Model (BSM) extensions have been proposed
to accommodate DM candidates ranging from scalar, fermion to vector candidates and with
mass scales from below eV up to TeV particles. We concentrate in this contribution on thermal
weakly interacting massive particles (WIMP) that is expected in the mass range of GeV up to
TeV, accessible at future collider experiments at the LHC and a high-energy e+e− linear collider
(ILC, CLIC).

Among popular BSM candidates are models with an extended Higgs sector such as the Two
Higgs Doublet model (2HDM) [1], providing a dark matter candidate within the Inert Doublet
model [1]. Alternate models are such multi-Higgs models but extended via real or complex
singlet scalars serving as dark matter candidates. Such extensions involving real scalar singlets
have been extensively studied [2–4] while complex scalar extensions to the 2HDM have also
been recently studied in the context of modified Higgs sectors [5]. Such models have also the
potential to explain the matter-antimatter asymmetry and to accommodate both inflation as
well as gravitational waves phenomenology [6, 7]. The parameter space of such extensions
of the SM [8] gets strong constraints from direct searches for DM as well as from precision
measurements of the 125 GeV SM-like Higgs boson and in particular from limits of both its
visible as well as invisible branching ratios [9].

2 Extended two Higgs doublet model

2.1 Symmetries

We consider the CP-conserving softly broken Type II Two Higgs Doublet model augmented
with a complex scalar singlet (2HDMS) [5] consistent with flavour changing neutral currents
(FCNCs) at tree-level. It allows for the presence of the mixing term between the two Higgs
doublets, Φ1 and Φ2, i.e., m2

12, while the explicit Z2 breaking terms are absent. The complex
scalar singlet S is stabilised by a Z ′2 symmetry such that S is odd under Z ′2 while the SM fields
are even under the new Z ′2 symmetry. The fields Φ1 and S are even under Z2 while Φ2 is odd
under Z2.

We consider the case where Z ′2 remains unbroken both explicitly and dynamically, i.e. the
scalar singlet doesn’t obtain a vacuum expectation value. Therefore, the scalar potential V
with a softly broken Z2- and a conserved Z ′2 symmetry is V = V2HDM + VS , where, the softly
broken Z2-symmetric 2HDM potential is:

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c) + λ1
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and the Z ′2-symmetric singlet potential, VS , is

VS = m2
SS∗S + (

m2′
S

2 S2 + h.c) + (
λ′′1
24 S4 + h.c) + (

λ′′2
6 (S

2S∗S) + h.c) +
λ′′3
4 (S
∗S)2 (3)

+S∗S[λ′1Φ
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†
2Φ2] + [S2(λ′4Φ
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†
2Φ2) + h.c.] . (4)

The doublet fields have the components Φ1 = (h+1 , 1p
2
(v1 + h1 + ia1))T ,

Φ2 = (h+2 , 1p
2
(v2 + h2 + ia2))T , S = 1p

2
(hs + ias) and tanβ = v2

v1
is the ratio of the up-type

and down-type Higgs doublet vevs v1,2 (with v(= v2
1 + v2

2 ) ≃ 246 GeV. Under the assumption
that the complex singlet scalar does not develop a vev —for this study imposed—, the Higgs
sector, after EWSB, remains the same as in 2HDM, i.e, consisting of two CP-even neutral scalar
Higgs particles h, H, a pseudoscalar Higgs A and a pair of charged Higgs particles H± [1].
All Higgs-dark-matter portal couplings are explicitly given in [10].

2.2 Theoretical and phenomenological constraints

The Sylvester’s criterion and copositivity [11, 12] has been applied to guarantee bounded-
ness from below for the Higgs potential, leading to constraints on all coupling parameters
λi , i = 1, . . . , 5, λ′j , j = 1, . . . , 5, λ′′k , k = 1, . . . , 3. The mass of the lightest CP-even Higgs
particle mh = 125 GeV has been chosen to be in concordance with the measured Higgs state
via HiggsSignals [13] and collider constraints from LEP and LHC have been applied for the
heavy Higgs states via HiggsBounds [14]. The branching ratio BR(h→ χχ) < 0, 11 (< 0.19),
fulfilling the limits from ATLAS (CMS). Electroweak precision constraints on STU parame-
ters have been taken into account as well as constraints from flavour physics BR(b → sγ),
BR(Bs → µ+µ−), using SPheno [15]. ∆(gµ − 2). Concerning the dark matter particle, the
bounds on the relic density from PLANCK measurements, Ωh2 = 0.119 [16], as well as con-
straints from direct detection (XENON-1T [17] ) and indirect detection (FERMI-LAT [18])
experiments have been applied using micrOMEGAs [19].

3 Results

3.1 Benchmark points

This model has been implemented using SARAH [20] code implemented into SPheno for the
spectrum generation. In order to calculate collider observables the code chain Madgraph [21]
-Pythia [22] -Delphes [23] -Madanalysis [24] has been used.

As can be seen from Figs.1a) and b) the mass of the dark matter particle χ as well as the
coupling λ′2 get strongest constraints from the direct detection search from XENON-1T: in the
shown example where the heavier Higgs particles are about 725 GeV, the mass mχ ∼ 338 GeV.
Scanning the available parameter space allowed to specify different benchmark areas, see
Table I. BP1 and BP3 are very similar, however, they differ significantly in the couplings λ′1, λ′2
and λ3 leading to different collider phenomenology.

3.2 Collider phenomenology

In this section, we discuss the possible signals of this model at HL-LHC and future e+e− col-
liders. As already mentioned, the invisible decay of the heavy Higgs into the dark matter
candidate is a source of missing energy at colliders. Therefore, the direct production of heavy
Higgs bosons and consequent decay of the Higgs to χ along with visible SM particles can give
rise to distinct signatures for this scenario as opposed to the 2HDM like scenario. We investi-
gate these possibilities and their prospects in the context of

p
s = 14 TeV LHC at the targeted
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integrated luminosity of 3-4 ab−1 and of future e+e− colliders (ILC,CLIC) up to
p

s = 3 TeV
and integrated luminosities of 5 ab−1.

3.2.1 Prospects at LHC

The main processes contributing to neutral Higgs production at the LHC are gluon fusion
(mediated by the top quark loop), vector boson fusion (VBF), associated Higgs production
(Vhi), bb̄hi , t t̄hi [1]. For the charged Higgs pair, the possible production channels are H+H−

and W±H∓ [1]. At the LHC Run 3 at
p

s = 14 TeV, all possible Higgs production processes
(including SM and BSM Higgses) are summarised in Table II.

In the presence of the heavy Higgs H decaying into two dark matter candidates, one gets
invisible momentum in the final state and one can look into the following final states:

a) 1 j (ISR)+missing ET [25],

b) 2 j+ missing ET [26] .

We estimate the significance for the mono-jet and VBF channels using the cuts from an existing
cut-and-count analyses performed in [4] for

p
s = 14 TeV LHC, further details see [10]. For a)

we achieve a cut efficiency for the signal in BP3 of about∼ 18% and we obtain a 0.111σ excess
at 3ab−1 using gluon fusion production channel (at leading order (LO)). For b) we get a signal
efficiency of 4.5% for BP3 and a signal significance of about ∼ 0.2 σ at 3 ab−1. Therefore,
we observe that due to the small invisible branching ratio and heavy Higgs masses ∼ 820 GeV
(and hence small production cross section) in BP3, the final states will be inaccessible at the
upcoming HL-LHC run.

3.2.2 Prospects at a high-energy e−e+ Linear Collider (ILC, CLIC)

The cleaner environment and lower background along the beam line compared to hadron
colliders make the electron-positron linear colliders an attractive choice for precision studies
of new physics.

The International Linear Collider (ILC) [27] , is a proposed e+e− linear collider design
with simultaneously polarized e± beams and several stages of center-of-mass energies, i.e.
at the SM-like Higgs threshold (

p
s = 250 GeV), at the top threshold (

p
s = 350 GeV) and

at about
p

s = 500 GeV up to
p

s = 1 TeV with a maximum target integrated luminosity of
L= 500 fb−1. The othe proposed high-energy e+e− linear collider design is CLIC [28,29] with
an energy upgrade up to

p
s = 1.5,3 TeV and at least a polarized e−beam. An overview of

the physics potential at future high-energy linear colliders is given in [30]. ILC (CLIC ) gain
advantage over the LHC in the possibility of exploiting the polarisation of the beams crucial
both at the high energy stages but also already at the first stage of

p
s = 250 GeV [31, 32].

Although the invisible decay in BP3 is H → χχ̄ ≃ 4.8% and only a low production cross section
times branching ratio is predicted, we observe that the 2b+ missing ET channel is observable
with a = 3.99σ significance at an integrated luminosity of L= 5 ab−1.

4 Conclusions and Outlook

We have studied dark matter phenomenology in a Two Higgs Doublet model with a complex
scalar singlet where the scalar singlet doesn’t obtain a vacuum expectation value. Benchmark
scenarios consistent with all current experimental and cosmological constraints have been
worked out. Particular stringent bounds on the available parameter range for the couplings are
set by bounds from the direct detection. Due to very small rates of the heavy Higgs production,
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Table 1: Relevant parameters of the benchmark points used for the study [10].

Parameters BP1 BP2 BP3
λ1 0.23 0.1 0.23
λ2 0.25 0.26 0.26
λ3 0.39 0.10 0.2
λ4 -0.17 -0.10 -0.14
λ5 0.001 0.10 0.10

m2
12(GeV2) -1.0×105 -1.0×105 -1.0×105

λ′′1 0.1 0.1 0.1
λ′′3 0.1 0.1 0.1
λ′1 0.042 0.04 2.0
λ′2 0.042 0.001 0.01
λ′4 0.1 0.1 0.1
λ′5 0.1 0.1 0.1

tanβ 4.9 6.5 6.5
mh (GeV) 125.09 125.09 125.09
mH(GeV) 724.4 816.4 821.7
mA(GeV) 724.4 812.6 817.9

mH± (GeV) 816.3 816.3 822.2
mχ(GeV) 338.0 76.7 323.6
Ωh2 0.058 0.119 0.05

σSI
p × 1010 (pb) 0.76 0.052 2.9
σSI

n × 1010 (pb) 0.78 0.054 3.1

Table 2: The leading order (LO) cross section (in fb), further details see [10].

Processes Cross section (in fb) at
p

s = 14 TeV
BP1 BP2 BP3

h (ggF) 29.3×103 29.3×103 29.3×103

H 22.61 5.238 6.632
A 35 8.58 10.8

h j j (V BF) 1.296×103 1.265×103 1.25×103

H j j 1.843 1.845 0.56
Aj j 2.885 2.88 40.91
Wh 1.148×103 1.133 1.134 pb
W H 1.195×10−3 1.11e-03 1.199×10−3

WA 4.3×10−4 5.892e-04 5.734×10−4

Zh 880.8 677.2 697.9
ZH 0.93 0.2783 0.3408
ZA 3.999 1.413 1.689
bbh 2534 2541 2541 pb
bbH 21.52 17.92 17.92 fb
bbA 23.39 18.9 19.04fb
t t̄h 478.3 477.1 477.9
t t̄H 0.1988 0.06571 0.7891
t t̄A 0.2552 0.08036 0.09826

H+H− 0.06603 0.03033 0.03416
W±H∓ 102.4 3.453 4.145
χχ̄ + 1 j 0.006356 0.0681 0.8819
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Figure 1: Relic density and direct detection cross-section predicted by the model
depending on the DM mass mχ [10]. The parameter m2

S has been varied in the range
from 100-400000 GeV2 and fixed tanβ = 5. The other parameters are chosen as in
benchmark scenario BP1, see Table I.

the dark matter candidates will probably not be detectable via monojet or di-jet studies even at
the HL-LHC. However, at a high-energy linear collider with polarized beams and precise initial
energy, such a dark matter scenario is expected to be detectable. In addition, the option of
direct dark matter pair production plus an ISR-photon is still under studies and offers another
promising phenomenology. Further studies on exploring the mixing angles in the Higgs sector
to shed light on the dark matter behaviour is still ongoing as well.
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