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Abstract

Using the Lieb–Mattis ordering theorem of electronic energy levels, we identify and con-
struct the Hilbert space of the low energy sector of U(N) quantum Hall/Heisenberg fer-
romagnets at filling factor M for L Landau/lattice sites. The carrier Hilbert space of ir-
reducible representations of U(N) is described by rectangular Young tableaux of M rows
and L columns, and associated with Grassmannian phase spaces U(N)/U(M)×U(N−M).
Replacing U(N)-spin operators by their expectation values in a Grassmannian coherent
state allows for a semi-classical treatment of the low energy U(N)-spin-wave coherent
excitations (skyrmions) of U(N) quantum Hall ferromagnets in terms of Grasmannian
nonlinear sigma models.
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1 Introduction

The magnetic interaction between adjacent 〈α,β〉 dipoles is described by the U(2) (two-
component electrons) Quantum Heisenberg Model Hamiltonian

H = −
1
2

∑

〈α,β〉

Jxσx(α)σx(β) +Jyσy(α)σy(β) +Jzσz(α)σz(β) , (1)

with σx ,y,z(α) Pauli matrices at site α and Jx ,y,z coupling constants. For positive J , the domi-
nant coupling between two dipoles may cause nearest-neighbors 〈α,β〉 to have lowest energy
when they are aligned (ferromagnetic case). The generalization of this model to N -component
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electrons arises in, for example, the two-body exchange interaction for N -component planar
electrons in a perpendicular magnetic field [1], which adopts the form of a U(N) Quantum
Hall Ferromagnet (QHF) Hamiltonian on a square lattice

H = −J
∑

〈α,β〉

N
∑

i, j=1

Si j(α)S ji(β) , (2)

written in terms of U(N)-spin operators

Si j(α) = c†
i (α)c j(α) ,

�

Si j(α), Skl(β)
�

= δαβ
�

δ jkSil(β)−δilSk j(β)
�

, (3)

realized in terms of creation c†
i (α) and annihilation ci(α) operators of an electron with com-

ponent i, j ∈ {1, . . . , N} in a given Landau/lattice site α ∈ {1, . . . , L} of a given Landau level
(namely, the lowest one). The sum over 〈α,β〉 extends over all near-neighbor Landau/lattice
sites, and J is the exchange coupling constant (the spin stiffness for the XY model).

In particular, the electrons become multicomponent when, for example, in addition to the
usual two spin components ↑ and ↓, they acquire extra “pseudospin” internal components
associated with: (a) layer (for multilayer arrangements), (b) valley (like in graphene and
other 2D Dirac materials), (c) sub-lattice, etc. In the case of a bilayer quantum Hall system in
the lowest Landau level, one Landau site can accommodate N = 4 internal states/components
|i〉, i = 1,2, 3,4 (“flavors”)

|1〉= | ↑ t〉 , |2〉= | ↑ b〉 , |3〉= | ↓ t〉 , |4〉= | ↓ b〉 , (4)

where t and b make reference to the “top” and “bottom” layers, respectively. Since the electron
field has N = 4 degenerate components, the bilayer system possesses an underlying U(4)
symmetry. Likewise, the ℓ-layer case carries a U(2ℓ) symmetry.

For N -component electrons, the Pauli exclusion principle allows M ≤ N electrons per Lan-
dau/lattice site (the filling factor). Selecting a ground state (|0〉F denotes de Fock vacuum)

|Φ0〉= ΠL
α=1Π

M
i=1c†

i (α)|0〉F , (5)

which fills all L lattice sites with the first M internal levels i = 1, . . . , M ≤ N , spontaneously
breaks the U(N) symmetry (SSB) since a general unitary transformation mixes the first M
“spontaneously chosen” occupied internal levels with the N−M unoccupied ones. The ground
state |Φ0〉 is still invariant under the stability subgroup U(M) × U(N − M) of transforma-
tions among the M occupied levels and the N − M unoccupied levels, respectively. There-
fore, the transformations that do not leave |Φ0〉 invariant are parametrized by the Grassman-
nian coset GN

M = U(N)/U(M) × U(N − M), which reduces to the well known Bloch sphere
S2 = U(2)/U(1) × U(1) for N = 2 spin components and M = 1 electron per Landau site
(“symmetric multi-qubits” [2]).

In this article, we aim to describe the carrier Hilbert space associated with these U(N)
representations, their coherent states [3], and the classical limit. The structure of the Hilbert
space for a U(N) QHF with L Landau/lattice sites and filling factor M is sketched in Section 2.
U(N) irreducible representations (IRs) are classified with Young diagrams. Lieb-Mattis order-
ing of electronic energy levels (based on the pouring principle for Young diagrams) identifies
rectangular Young diagrams of L columns and M rows as the carrier Hilbert space of the lower
energy sector. We also provide a Fock (boson and fermion) representation of basis states al-
ternative to the Young tableau representation.

In the classical/continuum limit L→∞ (large U(N)-spin representations or large number
of lattice sites), the U(N)-spin operators Si j become c-numbers, and the low energy U(N)-spin-
wave coherent excitations are named “skyrmions” [4–6]. These coherent excitations turn out
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to be governed by a ferromagnetic order parameter associated with this SSB and labeled by
(N − M) × M complex matrices Z parametrizing the complex Grassmannian manifold GN

M
in Section 3. In fact, Grassmannian nonlinear sigma models (NLσM) describe the classical
dynamics associated with these SU(N) quantum spin chains [7–12], generalizing the SU(2)
NLσM for the continuum dynamics of Heisenberg (anti)ferromagnets [13–15]. In references
such as [9,10], N represents the number of fermion “flavors”, whereas L is referred to as the
number of “colours” nc .

2 Lieb-Mattis theorem and low energy U(N) ferromagnetism

Given the Fourier transform

Si j(q) =
L
∑

α=1

eiqαSi j(α) , (6)

the long-wavelength (low momentum q ≃ 0) ground state excitations of QHFs are described
by the collective operators

Si j(0) =
L
∑

α=1

Si j(α) , (7)

which are invariant under site permutations α ↔ α′. The kind of IRs of U(N) related to
translation invariance are those described by rectangular Young diagrams of M rows and L
columns

�

LM
�

= M

�

L
︷ ︸︸ ︷

...
: : :

...
. (8)

This means that physical states are symmetric (bosonic) under permutations of the L lattice
sites and antisymmetric (fermionic) under permutation of the M electrons (the filling fac-
tor) at each lattice site. This reasoning gives an introductory and heuristic proof of the main
Proposition 2.

As an interesting comment, in the quantum Hall effect approach, each electron occupies
on average a surface area of 2πℓ2B (a Landau site, with ℓB the magnetic length) that is pierced
by one magnetic flux quantum φ0 = 2πħh/e. This image allows for a dual bosonic Schwinger
realization of collective U(N)-spin operators

Si j =
M
∑

µ=1

a†
iµa jµ , i, j = 1, . . . , N , (9)

this time in terms of creation a†
iµ and annihilation a jµ boson operators of magnetic flux quanta

attached to the electron µ = 1, . . . , M with component i = 1, . . . , N . From the usual bosonic
commutation relations [aiµ, a†

jν] = δi jδµν we recover the U(N)-spin commutation
relations (3). We shall not further pursue this bosonic picture here. For more information,
we address the reader to the Reference [16].

The Hilbert space of a U(N) QHF with L Landau/lattice sites at integer filling factor M
is the
�N

M

�L
-dimensional L-fold tensor product space H⊗L

N

�

1M
�

=
⊗L
α=1 H

α
N [1

M ]. In Young
diagram notation

M

�

: ⊗ L times. . . ⊗ : ↔
�

1M
�⊗L
=
�

1M
�

⊗ L. . . ⊗
�

1M
�

. (10)
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Basis vectors of HαN [1
M ] are the M -particle Slater determinants (for M = 1 we have “quNits”,

as a N -ary quantum-digit generalization of qubits) written in Fock and Young tableau notation
as

ΠM
µ=1c†

iµ
(α)|0〉F =

i1
:

iM

, (11)

obtained by filling out columns of the corresponding Young diagram with components
iµ ∈ {1, . . . , N} in strictly increasing order i1 < · · · < iM . One can see that there are exactly
�N

M

�

different arrangements of this kind (the dimension of HαN [1
M ]). This tensor product rep-

resentation of U(N) is reducible. For example, the Clebsch-Gordan decomposition of a tensor
product of L = 2 IRs of U(N) of shape [1M ], with filling factor M = 2 and N ≥ 4 components,
is represented by the following Young diagrams

⊗ = ⊕ ⊕ ↔ [12]⊗ [12] = [22]⊕ [2, 12]⊕ [14] , (12)

where we have highlighted in red the rectangular case [22] for later discussion. The P(= M L)-
particle ground state (5) can be written in Young tableau notation

|Φ0〉= ΠL
α=1Π

M
i=1c†

i (α)|0〉F =
1 ... 1
: : :

M ... M
, (13)

and then it belongs to the carrier Hilbert space HN [LM ] of the rectangular IR [LM ] with di-
mension

D[LM ] =

∏N
i=N−M+1

�i+L−1
i−1

�

∏M
i=2

�i+L−1
i−1

�

M=1
−→
�

L + N − 1
L

�

N=2
−→ L + 1 . (14)

Note thatH2[L1] is just the usual (2 j+1)-dimensional Hilbert space for the angular momentum
j = L/2 representation of SU(2). We denote Young diagrams of P = M L boxes/particles by (a
partition of P)

h= [h1, . . . , hN ] =

h1
︷ ︸︸ ︷

... ... ... ... ...
: : : : :

...

h1 ≥ · · · ≥ hN ,
h1 + · · ·+ hN = P .

(15)

The shorthand [h, M. . ., h, 0, . . . , 0] = [hM ] is often used. Before presenting the central proposi-
tion of this work, we should define the concept of “dominance order ⪰” of Young diagrams of
P particles as: h dominates h′ (h is “more symmetric” than h′) if

[h1, . . . , hN ]⪰ [h′1, . . . , h′N ]⇔ h1 + · · ·+ hk ≥ h′1 + · · ·+ h′k ∀ k . (16)

Lieb-Mattis’ theorem [17] states that, under general conditions on the symmetric Hamiltonian
of the system, if h⪰ h′ then E(h)< E(h′), with E(h) the ground state energy inside each IR h
of U(N). Then we can establish the following

Proposition: The rectangular Young diagram of shape [LM ] dominates all Young di-
agrams arising in the Clebsch-Gordan direct sum decomposition of the L-fold tensor prod-
uct (10).

Therefore, the ground state will always belong to the rectangular [LM ] sector. For in-
stance, the rectangular sector [22] ⪰ [2,12] ⪰ [14] dominates in the Clebsch-Gordan decom-
position (12). Intuitively, dominance means that one can go from h to h′ by moving a certain
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number of boxes from upper rows to lower rows, so that h is “more symmetric”. Therefore,
we shall concentrate on the low-energy carrier Hilbert space HN [LM ] of the rectangular IR
[LM ] to which the ground state |Φ0〉 in (5) belongs. In particular, we shall construct coher-
ent (Skyrmion) ground state excitations. For the role of other mixed permutation symmetry
sectors we address the reader to [18].

3 Grassmannian coherent states and nonlinear sigma models

Grassmannian (fermionic) coherent states can be seen as U(N) rotations/excitations over the
ground state |Φ0〉

|Z〉L =
exp
�

∑

1≤ j≤M ,M+1≤i≤N+M Zi jSi j

�

|Φ0〉
p

det(1M + Z†Z)
, (17)

created by appying U(N)-spin collective Si j , i > j, ladder operators. These Grassmannian co-
herent states are then labeled by (N−M)×M complex matrices Z . For N = 2 spin components,
↑ and ↓, and M = 1 we recover spin j = L/2 (atomic) coherent states

|z〉L =
ezS21 |Φ0〉
p

1+ |z|2
= (1+ |z|2)− j

j
∑

m=− j

√

√

�

2 j
j −m

�

z j−m| j, m〉 , (18)

where we have spanned in terms of the usual angular momentum (Dicke) states
{| j, m〉, m = − j, . . . , j}, with |Φ0〉 = | j,− j〉 and z = tan(θ/2)eiφ is the sthereographic pro-
jection of the Bloch sphere S2 onto the complex plane C. Actually, atomic coherent states can
also be written as a tensor product of qubits

|z〉L =
�

cos(θ/2)| ↑〉+ sin(θ/2)eiφ | ↓〉
︸ ︷︷ ︸

|z〉

�⊗L
= |z〉⊗L . (19)

For L = 2⇒ j = L/2= 1, we identify the spin triplet | j, m〉 states

|1,1〉= | ↑↑〉 , |1, 0〉=
| ↑↓〉+ | ↓↑〉
p

2
, |1,−1〉= | ↓↓〉 . (20)

For N = 4 and filling factor M = 1 we have

|Z〉L =
[|1〉+ z2|2〉+ z3|3〉+ z4|4〉]⊗L

(1+ |z2|2 + |z3|2 + |z4|2)L/2
, (21)

where Z = (1, z2, z3, z4)t denotes a point on the complex projective space
CP3 = U(4)/U(1)×U(3) or the Grassmannian G4

1.
In order to study the semi-classical/thermodynamical limit L→∞ of U(N) QHF, one has

to replace U(N)-spin operators Si j by their coherent state expectation values 〈Z |Si j|Z〉, which
play the role of a matrix order parameter

S(Z)≡ 2
L
〈Z |
�

S −
L
2
1N
�

|Z〉L = Q(Z)†EMQ(Z) , (22)

EM = diag(1, M. . . 1,−1, N−M. . . ,−1) , (23)

with

Q(Z) =

�

∆1 −Z†∆2

Z∆1 ∆2

�

, (24)
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∆1 = (1M + Z†Z)−1/2 , ∆2 = (1N−M + Z Z†)−1/2 . (25)

The low energy physics of the U(N) QHF [when considering only nearest-neighbor inter-
actions Jαβ = J δα,β±1 in the exchange Hamiltonian (1)] is described by a NLσM field theory
with action in the continuum limit (L→∞ and lattice constant ℓ→ 0)

A[Z] =

∫

d x0d x1d x2

�

tr(EMQ†∂x0
Q) +J tr(∇⃗S · ∇⃗S)

�

, (26)

where ∂x0
≡ ∂0 means partial derivative with respect to time t = x0, ∇⃗= (∂x1

,∂x2
)≡ (∂1,∂2) is

the gradient and ∇⃗S ·∇⃗S is the scalar product. The first (kinetic) term of the action is the Berry
term, provided by the coherent state representation of the path integral quantization. The
second term describes the energy cost when the order parameter S is not uniform (see [7–12]
and [16] for more information). The topological current

Jµ =
i

16π
ϵµνλtr(S∂νS∂λS) (27)

(ϵ is the Levi-Civita antisymmetric symbol in 1+2 dimensions), leads to the topological (Pon-
tryagin) charge or Skyrmion number

C =
∫

d x1d x2J0 . (28)

See e.g. Ref. [12] for more information.

4 Conclusion

We have presented several group-theoretical tools to study interacting N -component fermions
on a lattice, like U(N) quantum Hall ferromagnets arising from two-body exchange interactions
of N -component fermions. In particular, we have restricted ourselves to the lower energy
permutation symmetry sector (according to the Lieb-Mattis theorem) corresponding to fermion
mixtures described by rectangular Young diagrams with M rows (the filling factor) and L
columns (Landau/lattice sites).

The “spontaneously chosen” ground state |Φ0〉 breaks the original U(N) symmetry and the
associated U(N) ferromagnetic order parameter S [the expectation value of collective U(N)-
spin operators S in a Grassmannian coherent state |Z〉] describes coherent state excitations
(“Skyrmions”) in the semi-classical L → ∞ limit, whose dynamics is governed by a Grass-
mannian nonlinear sigma model.

The subject of SU(N) fermions and SU(N) magnetism has been recently further fueled
in condensed matter physics with exciting advances in cooling, trapping and manipulating
fermionic alkaline-earth atoms trapped in optical lattices (see e.g. [19, 20] for a realization
of a SU(N) generalization of the Hubbard model). Multilayer quantum Hall arrangements,
bearing larger U(N) symmetries, also display interesting new physics (see [21] for the bilayer
case); Such is the case of superconducting properties of twisted bilayer (and trilayer) graphene
predicted by [22] and observed by [23]. Furthermore, magnetic Skyrmion materials display a
robust topological magnetic structure, being a candidate for the next generation of spintronic
memory devices.
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