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Generalisation of affine Lie algebras on compact real manifolds
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Abstract

We report on recent work concerning a new type of generalised Kac-Moody algebras
based on the spaces of differentiable mappings from compact manifolds or homogeneous
spaces onto compact Lie groups.
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1 Introduction

Among the infinite-dimensional groups and algebras motivated by physical problems, the Vira-
soro, Kac-Moody, current and W -algebras and their representations are the most relevant rep-
resentatives, and constitute a fundamental tool in several theories, such as Conformal Field
Theory, gauge and string theories or SUGRA models (see [1–3] and references therein). It
turns out that Kac-Moody algebras, as well as the associated Virasoro algebras, provide a nat-
ural framework for the unification of symmetry and locality properties [4]. Basing on different
physical assumptions, several generalisations of these algebraic structures have been proposed,
usually from an analytic point of view, rather than on the axiomatic construction of these en-
tities [5]. In this context, the quasisimple Lie algebras [6], generalised Kac-Moody algebras
based on geometrical properties of closed surfaces [7] as well as several hierarchies of centrally
extended algebras are worthy to be mentioned [8–11].

In most of these constructions, the one-dimensional sphere S1 plays a relevant role, a fact
that suggests that, for other physical models involving more than one degree of freedom and
related to some basis manifold, a similar procedure can be proposed, provided that the man-
ifold is either compact or presents some peculiar properties that guarantee convergence of
integrals. This situation was the starting point for the general procedure initiated in [12],
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where a systematic construction of generalised Kac-Moody algebras based on compact man-
ifolds M related to either a Lie group or an appropriate homogeneous space was proposed.
Under these assumptions, harmonic functions on the manifold can be described in terms of the
representation theory of the corresponding Lie group, allowing us, in particular, to identify a
complete set of Hermitean labelling operators. An important difference of this generalisation
with respect to the well-known class of usual Kac-Moody algebras and other generalisations
resides in the fact that our construction, based on the Fourier expansion on compact manifolds,
does not imply in general the existence of simple roots, even if a root structure can always be
identified.

Besides the interest of these generalised Kac-Moody algebras from the mathematical point
of view of, as this kind of algebras is naturally related related to higher-dimensional compact
manifolds, the question of their relevance in theories involving higher dimensional space-times
such as Kaluza-Klein theories, supergravity, etc is of certainly of physical interest.

2 The algorithmic construction of generalised Kac-Moody alge-
bras

The construction of generalised Kac-Moody algebras proposed in [12] for the case of manifolds
associated to either a compact Lie group Gc or a coset space Gc/H (via the exponential map, see
[12] for details) starts with a simple compact1 Lie algebra g, a given basis {Ta, a = 1, · · · , dimg}
with structure tensor

�

Ta, Tb

�

= i fab
c Tc ,

and Killing form
¬

Ta, Tb

¶

0
= gab ≡ Tr
�

ad(Ta)ad(Tb)
�

. (1)

Denoting by V the volume elements of the associated compact n = (p + q)−dimensional
manifold M (with M≃ Gc or M≃ Gc/H, we consider a local coordinate frame yA = (ϕi , ur)
with 1≤ i ≤ p, 1≤ r ≤ q, such that the condition

∫

M
dµ(M) = 1

V

∫

M
dpϕ dqu= 1

holds. On M we consider the set of square integrable functions periodic in all ϕ−directions,
but non-periodic in the u−directions. The space L2(M) admits a complete orthonormal Hilbert
basis

B =
¦

ρI(ϕ, u) , I ∈ I
©

, (2)

with respect to the Hermitean scalar product on L2(M), where I denotes a minimal (finite)
set of labels required to identify the states unambiguously [13]. In these conditions, we define
a space of smooth mappings from M into g as

g(M) =
¦

TaI = TaρI(ϕ, u) , a = 1, . . . , dimg , I ∈ I
©

.

On this space, that inherits the structure of a Lie algebra, the Lie brackets are well defined and
adopt the generic form

�

TaI , TbJ

�

= i fab
ccI J

K TcK , (3)

1This analysis can of course be extended to any simple (real or complex) Lie algebra. However, only in the case
of compact Lie algebras, the representation theory has been analysed (see below).
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where the coefficients cI J
K are those of the Fourier expansion of products of elements in the

basis B. For the case where the manifold M is related to a compact Lie groups Gc , these can
be associated to the Clebsch-Gordan coefficients of Gc . In particular, the Killing form in g(M)
is given by

¬

X , Y
¶

1
=

∫

M
dµ(M)
¬

X , Y
¶

0
, X , Y ∈ g(M) (4)

(with
¬

X , Y
¶

0
being the Killing form in (1)), from which the relations

ρI(ϕ, u) = ηI Jρ
J (ϕ, u) ,
¬

TaI , TbJ

¶

1
= gabηI J ,

follow at once. The first relation simply means that ρJ ∈ L2(M), and thus extends in the basis
B given by (2).

In a second step, the existence of central extensions for the preceding algebras is analyzed. Fol-
lowing a general approach based on cohomological methods, the central extension is obtained
through the 2-cocycle

ωC(X , Y ) =

∫

M




X ,∂iY dϕi + ∂sY dus
�

0 ∧ γ , (5)

with γ being a closed (n− 1)-current associated to a closed loop C . In this context, it should
be taken into account that central extensions are associated to compact one-dimensional sub-
manifolds of M, i.e. curves, and that the procedure cannot be extrapolated to maps from
higher-dimensional manifolds onto M [14]. Specifically, we consider

γ(A) = (−1)AkAdy1 ∧ · · · ∧ dyA−1 ∧ dyA+1 ∧ · · ·dyn , A= 1, · · · , n , kA ∈ R .

This leads to the identity

ω(A)(TaI , TbJ ) = kAgab

∫

M
dµ(M) ρI(ϕ, u)∂AρJ (ϕ, u) = kAgabdAIJ , (6)

hence for the centrally extended algebra g(M) we get the commutator

�

TaI , TbJ

�

= i fab
ccI J

K TcK + gab

n
∑

A=1

kAdAIJ . (7)

It is not casual that this algebra has a deep similitude with the current algebra defined through

�

Ta(y), Ta′(y
′)
�

= i faa′
bTb(y)δ

n(y − y ′)− i
n
∑

A=1

kA∂Aδ
n
�

y − y ′
�

, (8)

and possessing Schwinger terms. Actually, centrally extended extensions of the generalised
Kac-Moody algebras associated to the compact manifolds S2 and S1 × S1 were determined
in [15] by means of current algebras, showing the validity of the procedure.

In a third step, derivations ∂A of the generalised Kac-Moody algebra g(M) are considered.
This is a technically delicate step, as the variables ϕ are periodic, whereas the variables u do
not exhibit periodicity properties. In other words, the operators d j = −i∂ϕ j are (commuting)
Hermitean, while the operators ds = −i∂us are not Hermitean. In order to obtain a complete
set of commuting Hermitean operators, we use the identification of the manifold M with a
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compact Lie group (coset space). To this extent, an embedding gc ⊆ gm of gc into a higher-
rank Lie algebra gm is used, with gc the Lie algebra of Gc , and such that the basis functions of
(2) belong to an irreducible unitary representation of gm. The generators of the latter can be
realised as Hermitean differential operators acting naturally on the manifold; in particular, the
elements h1, · · · , hk of the Cartan subalgebra of gm (where k is the rank of gm), are realised as
the Hermitean operators

h j = −i f A
j (y)∂A , 1≤ j ≤ k .

A particularity of these operators is that the boundary term associated to all u−directions van-
ishes. Among the operators

�

d1, · · · , dp, h1, · · · , hk

	

we determine a maximal set of commuting
operators

Dj = −i f A
j (y)∂A , j = 1, · · · , r ,

that satisfy the constraints

∂A f A
j (y) = 0 , and f r

j |= 0 , j = 1, · · · , r , (9)

related to Hermiticity. In these expressions, f r
j | represent the boundary terms associated to all

u−directions that must vanish. Note further that when M= Tn, as all directions are periodic,
we have r = n, but for a generic n−dimensional manifold M we have r < n. It can be easily
shown that the Di act diagonally on the functions ρI , leading to an eigenvalue problem

Dj(ρI(y)) = I( j)ρI(y) ,

with I( j) the corresponding eigenvalue.

The Hermitean operators Dj and central extensions of the generalised Kac-Moody algebra are
deeply related through the closed (n− 1)−forms ( j = 1, · · · , r)

γ j = k j

n
∑

A=1

(−1)A f A
j (y) dy1 ∧ · · · ∧ dyA−1 ∧ dyA+1 ∧ · · · ∧ dyn , j = 1, . . . , r , k j ∈ R , (10)

with corresponding 2-cocycles given by (see equation (6))

ωk(TaI , TbJ ) = kkJ(k)gabηI J . (11)

Summarising, the generalised Kac-Moody algebra bg(M) associated to the compact Lie algebra
g and the compact manifold M is determined by the following data

1. Generators TaI belonging to g(M);

2. Commuting Hermitean operators D1, · · · , Dr ;

3. Central charges k1, · · · , kr associated to the Hermitean operators.

If I( j) denotes the eigenvalue of Dj (see (10)), the non-vanishing brackets of the generalised
Kac-Moody algebra associated to M are

�

TaI , TbJ

�

= i fab
ccI J

K TcK + gabηI J

r
∑

j=1

k j I( j) ,

�

Dj , TaI

�

= I( j)TaI , (12)

where I( j) is the eigenvalue of Dj . Recall again that the central charges and the Hermitian
operators are both associated to the closed (n− 1)−form given by (10).

As shown in [12], the choice of Gc = U(1)n leads to a generalised Kac-Moody algebra that
structurally coincides with the generalised algebras based on the torusTn studied and analyzed
in [6], and that actually correspond to specific cases of the wide class of so-called ‘quasi-simple
Lie algebras’.
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3 Identification of roots in bg(M)
The fourth step is devoted to the identification of a root structure based on equation (12) as-
sociated to generalised Kac-Moody algebras. Supposed that the initial simple Lie algebra g has
rank ℓ and let Σ denotes the root system with respect to the Cartan subalgebra H i , i = 1, · · · ,ℓ,
we consider the root operators Eα,α ∈ Σ in the Cartan-Weyl basis. Defining

ĝ(M) = Span
¦

TaI , Dj , k j , a = 1, · · · , dimg, I ∈ I, j = 1, · · · , r
©

, (13)

the Cartan subalgebra of the latter is spanned by H i , Dj and k j (i = 1, . . . ,ℓ, j = 1, · · · , r).
Taking the Cartan-Weyl basis H i

I , EαI and the Killing form as defined in (4), application of the
procedure described in [16] shows that the Killing form of ĝ(M) satisfies

¬

TaI , TbJ

¶

= ηI J gab ,
¬

Dj , TaI

¶

=
¬

k j , TaI

¶

= 0 ,
¬

ki , k j

¶

=
¬

Di , Dj

¶

= 0 ,
¬

Di , k j

¶

= δi
j .

(14)

From this we get the (infinite-dimensional) root spaces (where n= (n1, · · · , nr))

g(α,n) =
¦

EαI , with I(1) = n1, · · · , I(r) = nr

©

, α ∈ Σ , n1, · · · , nr ∈ Z ,

g(0,n) =
¦

H i
I , with I(1) = n1, · · · , I(r) = nr

©

, n1, · · · , nr ∈ Z ,
(15)

with commutation relations
�

g(0,n),g(α,m)
�

⊂ g(α,m+n) ,
�

g(α,m),g(β ,n)
�

⊂ g(α+β ,m+n) , α+ β ∈ Σ .

An important difference with respect to the usual Kac-Moody algebras is that, in this case, the
commutator between elements depends also on the representation theory of Gc , specifically
in connection with the Clebsch-Gordan coefficients cI J

K . This shows that the construction
goes beyond the traditional root theory, as it also involves the so-called labelling problem for
embedded algebras [13].

Explicit construction of these generalised structures was obtained in [12] for the case of
manifolds isomorphic to the spheres Sn, specifically for the values n = 2 with SU(2)/U(1),
n= 3 for SU(2) and SO(4)/SO(3), n= 5 for SU(3)/SU(2) and n= 6 for G2/SU(3).

Concerning the representation theory of generalised Kac-Moody algebras, the case of the
n-dimensional torus Tn has been inspected in some detail in [12], corresponding to the Lie
group U(1)n. An extrapolation to other more complicated manifolds is a delicate task, the
technical difficulties of which have not yet been solved satisfactorily. However, for the two-
dimensional case and the manifolds T2 and S2, an alternative ansatz has been proposed in
[17] and [18], based on the observation that the Kac-Moody and the corresponding Virasoro
algebras associated to these manifolds can be constructed naturally from the usual Kac-Moody
and Virasoro algebras. More specifically, in this case we have assumed that the Laurent modes
of the usual Kac-Moody and Virasoro algebras can themselves be (Fourier) developed in an
adapted manner on the two-sphere and the two-torus, respectively [17]. This assumption
enabled us to reproduce the generalised Kac-Moody algebras associated to S2 or T2, in a semi-
direct product with a subalgebra of vector fields of the two-torus and the two-sphere

Vir(M)⋉ bg(M) , with M= S1 , or T2 . (16)

The algebras Vir(M) can been seen as extensions of the Virasoro algebras in these cases. The
interesting observation of this construction is that it leads naturally to central extensions. The
fermions [17] and boson [18] realisations subsequently obtained lead automatically to a Fock
space construction and thus to a unitary representation bounded from below. In the case of
the bosonic construction, we have introduced vertex operators along the lines of the vertex
operator in string theory [19,20].
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4 Concluding remarks and future prospects

We have reported on recent work concerning on the construction of generalised Kac-Moody
algebras for the class of compact Lie groups and certain coset spaces determined by a closed
subgroup, and the analysis of some of its main features that may be of interest in physical
applications, such as the existence of a root system and central extensions. The procedure can
formally be developed for any compact manifold or homogeneous space of the specified type,
with the main difficulties being of computational nature. Whether this class of extensions
fits naturally in the description of physical phenomenology, is a problem that has still to be
explored in more detail.

The next natural step, besides specific applications, consists in proposing an analogous
construction for the case where the basis manifold M is no more compact. Some results
in this direction actually exist, such as the work [9], but a general approach has not been
formulated yet. Among the obstructions observed in this general frame, the acute divergence
problems that arise in the integration theory of non-compact manifolds, as well as the technical
difficulties emerging in the cohomological formulation of central extensions (see equation (5)),
are the most relevant. Inspection of several examples suggest that additional techniques have
to be considered to cover this case appropriately, in order to obtain a description the validity of
which is not restricted to very particular manifolds. A successful approach in this sense could
possibly be of interest in the context of M−theory or supergravity models, studying whether
there is a connection between the central extensions of the generalised Kac-Moody algebra
and super-membrane solutions in extended SUGRA.

The fermionic [17] and bosonic [18] construction obtained in the case of S2 and T2 can
be easily extended to the n−tori Tn. This extension leads to a hierarchy of algebras (with the
notations of (16))

Vir(Tn)⋉ bg(Tn) ⊂ Vir(Tn−1)⋉ bg(Tn−1) ⊂ · · · ⊂ Vir⋉ bg , (17)

where at the last stage we have the usual Virasoro and Kac-Moody algebras. This series of
embeddings could play a role in toroidal compactifications, a very important notion in higher
dimensional supergravity.
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