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SO(1,3) Yang-Mills solutions on Minkowski space via cosets
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Abstract

We present a novel family of Yang–Mills solutions, with gauge group SO(1,3), on
Minkowski space that are geometrically distinguished into two classes, viz. interior and
exterior of the lightcone. We achieve this by foliating the former with SO(1,3)/SO(3)
cosets and the latter with SO(1,3)/SO(1,2) cosets and analytically solving the Yang–Mills
equation of an SO(1,3)-invariant gauge field. The resulting fields and their stress-energy
tensor, when translated to the Minkowski space, diverge at the lightcone, but we demon-
strate how this stress-energy tensor could be regularised due to its unique algebraic
structure.
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1 Introduction

Analytic solutions of Yang-Mills theory with compact gauge groups, such as SU(2), and finite
action are very few, like the ones presented in [1–3] or more recently in [4–6]. Here we
improve upon this situation by presenting new solutions [7], albeit with a non-compact gauge
group G=SO(1,3), i.e. the Lorentz group. The latter appears in a gauge theory formulation of
general relativity and could be relevant for emergent/modified theories of gravity including
supergravity and matrix models.

The construction of these solutions relies on the fact that, owing to the natural action of
the Lorentz group on Minkowski space R1,3, there exists foliations of R1,3 into G-orbits that
are reductive and symmetric coset spaces G/H. Specifically, on the inside of the lightcone we
have H=SO(3) and on the outside of the lightcone we have H=SO(1,2). The former is the
Riemannian two-sheeted hyperbolic space H3, foliating the future and past of the lightcone
with timelike parameter u, while the latter is a pseudo-Riemmanian de Sitter space dS3, foli-
ating the exterior of lightcone with spacelike parameter u. The Yang–Mills dynamics on these
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spaces are separately studied by considering a G-invariant gauge connection A and employing
dimensional reduction on R × G/H that yields a Newton’s particle, parameterized by u and
subject to an inverted double-well potential, which admits analytic solutions.

These field configurations are then pulled back to the respective domains of the Minkowski
space, yielding the color-electromagnetic fields—diverging at the lightcone—that we then use
to compute the stress-energy tensor. The latter turns out to have the same form in both the
domains; this form, curiously, takes the shape of a pure improvement term. This fact can be
used to regularize the stress-energy tensor across the lightcone so that one can have matching
of the fields, defined on two domains of the spacetime, at the lightcone.

2 Minkowskian geometry and its foliations

We can foliate the Minkowski space R1,3, with metric (ηµν) = (−,+,+,+) for µ,ν= 0, 1,2, 3,
in two parts as depicted in Figure 1a: (a) the lightcone-interior T with two-sheeted hyperbolic
space H3 and (b) the lightcone-exterior S with single-sheeted de Sitter space dS3.

For the first case, the hyperbolic space H3 is embedded in R1,3 algebraically as

y·y ≡ ηµν yµ yν = −1 , (1)

and foliates—with a timelike parameter u obeying eu =
p

|x ·x |—the lightcone-interior T as1

ϕ
T

: R×H3→ T , (u, yµ) 7→ xµ := eu yµ ,

ϕ−1
T

: T →R×H3 , xµ 7→ (u, yµ) :=

�

ln
Æ

|x ·x | ,
xµ
p

|x ·x |

�

.
(2)

With this, the metric on T becomes conformal to a Lorentzian cylinder R×H3:

ds2
T
= e2u
�

−du2 + ds2
H3

�

, (3)

where ds2
H3 is the flat metric on H3 arising from (1).

In the second case, we can embed dS3 inside the Minkowski space R1,3 by

y · y ≡ ηµν yµ yν = 1 . (4)

The foliation of S follows analogous to the previous case, albeit with a spacelike foliation
parameter u satisfying eu =

p

|x ·x | ≡
p

r2 − t2:

ϕ
S

: R× dS3→ S , (u, yµ) 7→ xµ := eu yµ ,

ϕ−1
S

: S →R× dS3 , xµ 7→ (u, yµ) :=

�

ln
Æ

|x ·x |,
xµ
p

|x ·x |

�

,
(5)

such that the metric on S becomes conformal to the metric on a cylinder R× dS3,

ds2
S
= e2u
�

du2 + ds2
dS3

�

, (6)

where the flat dS3-metric ds2
dS3

is induced from (4).

1We employ standard conventions x0=t, x1=x , x2=y, x3=z, x⃗ := (x1, x2, x3) and r =
p

x⃗ · x⃗ in this article.
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(a) Foliation of interior (yellow region) and ex-
terior of the lightcone with H3- and dS3-slices
respectively. Every slicing has internal coordi-
nate y and foliation parameter u.

(b) Every H3 vector Vα is related to
V0 ∼ (1,0, 0,0)⊤ with a unique boost Λα,
yielding its stability subgroup: Λα SO(3)Λ-1

α .

(c) The above H3 vectors Vα lies in one-to-one
correspondence with cosets Λα SO(3) so that
H3, as a 3-dimensional submanifold σ(y) in-
side SO(1,3), arises through a choice of repre-
sentative σ in each of these cosets.

Figure 1: Minkowski foliations and demonstration of H3 ∼= SO(1,3)/SO(3).

3 Algebra/geometry of symmetric SO(1,3)-cosets

We consider here reductive coset spaces G/H with 6-dimensional Lie group G = SO(1,3)
that are also symmetric. This yields homogeneous spaces H3 and dS3 with stablity subgroups
H=SO(3) and H=SO(1, 2) respectively. The equivalence of SO(1,3)/SO(3) with H3 is geo-
metrically illustrated through Figures 1b and 1c.

The six generators {IA} of the Lie algebra g= Lie(G) are nothing but the canonical rotation
(Ja) and boost (Ka) generators of the Lorentz group:

J1=
� 0 0 0 0

0 0 0 0
0 0 0 -1
0 0 1 0

�

, J2=
� 0 0 0 0

0 0 0 1
0 0 0 0
0 -1 0 0

�

, J3=
� 0 0 0 0

0 0 -1 0
0 1 0 0
0 0 0 0

�

, K1=
� 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

�

, K2=
� 0 0 1 0

0 0 0 0
1 0 0 0
0 0 0 0

�

, K3=
� 0 0 0 1

0 0 0 0
0 0 0 0
1 0 0 0

�

. (7)

Moreover, for reductive cosets, g splits into a Lie subalgebra h = Lie(H) and its orthogonal
complement2 m; this is also reflected in the splitting of the generators {IA} as follows

g = h⊕m =⇒ {IA} = {Ii} ∪ {Ia} , with i = 4, 5,6 , and a = 1,2, 3 , (8)

where {Ii} spans h and {Ia} spans m. They satisfy following commutation relations

[Ii , I j] = f k
i j Ik , [Ii , Ia] = f b

ia Ib , and [Ia, Ib] = f i
ab Ii . (9)

2The orthogonality here is with respect to the Cartan–Killing metric, given by the trace of adjoint representation
of these generators {IA}.
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Similarly, the left-invariant one-forms of SO(1,3) split into {eA} = {ei} ∪ {ea}, such that the
following structure equations—with same structure coefficients as in (9)—are satisfied

dea + f a
ib ei ∧ eb = 0 , and dei + 1

2 f i
jk e j ∧ ek + 1

2 f i
ab ea ∧ eb = 0 . (10)

Here ea yields the metric on G/H while ei = ei
a ea are linearly dependent.

3.1 Case I: H3 ∼= SO(1,3)/SO(3)

For SO(1,3)/SO(3) the splitting (8) and structure coefficients (9) are given by

Ii = Ji−3 , Ia = Ka =⇒ f k
i j = ϵi−3 j−3 k−3 , f b

ia = ϵi−3 a b , f i
ab = −ϵa b i−3 . (11)

The identification of coset space SO(1,3)/SO(3) with H3 is seen from the following maps

α
T

: SO(1,3)/SO(3)→ H3 , [ΛT ] 7→ yµ = (ΛT )
µ
0 ,

α−1
T

: H3→ SO(1,3)/SO(3) , yµ 7→ [ΛT ] ,
(12)

where the representative ΛT of the coset [ΛT ] := {Λ= ΛT h : h ∈ SO(3)} is given by

ΛT =

�

γ γβββ⊤

γβββ 1+ (γ−1)βββ⊗βββ
βββ2

�

, with βa =
ya

y0
, γ=

1
p

1−βββ2
= y0 , (13)

and βββ2 = δab β
aβ b ≥ 0. It is straightforward to verify that the above map α

T
is well-defined

and, in fact, ΛT is a generic boost obtained from coset generators Ia ∈ m as

ΛT = exp(ηa Ia) , with βa = ηa
p
ηηη2

tanh
Æ

ηηη2 , for ηηη2 = δab η
aηb . (14)

We can now obtain the left-invariant one-forms by employing the Maurer–Cartan prescription:

Λ−1
T dΛT = ea Ia+ei Ii , ea =

�

δab−
ya y b

y0(1+y0)

�

dy b , and ei = ϵi−3 a b
ya

1+y0
dy b , (15)

such that ea reproduces the metric on H3 while ei become linearly dependent as follows

ds2
H3 = δab ea ⊗ eb , and ei = ei

a ea , with ei
a = ϵa i−3 b

y b

1+y0
. (16)

3.2 Case II: dS3
∼= SO(1,3)/SO(1,2)

For the coset space SO(1,3)/SO(1, 2) we chose the splitting (8) as follows

Ii ∈ {K1, K2, J3} , and Ia ∈ {J1, J2, K3} , (17)

such that the structure coefficients (9) comes out to be

f k
i j = ϵi−3 j−3 k−3 (1−2δk6) , f b

ia = ϵi−3 a b (1−2δa3) , and f i
ab = ϵa b i−3 , (18)

where no summation convention is used inside the brackets. As before, we demonstrate the
equivalence between dS3 and SO(1,3)/SO(1,2) through following well-defined maps

α
S

: SO(1,3)/SO(1, 2)→ dS3 , [ΛS] 7→ yµ := (ΛS)
µ
3 ,

α−1
S

: dS3→ SO(1, 3)/SO(1,2) , yµ 7→ [ΛS] ,
(19)
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where the representative left-coset element ΛS is again obtained though exponentiation with
coset generators {J1, J2, K3}. The resultant Maurer–Cartan one-forms look like

Λ−1
S dΛS = ea Ia+ ei Ii , ea = dy3−a−

y3−a

1+y3
dy3 , and ei = −ϵi−3 a b

y3−a

1+y3
dy3−b . (20)

These one-forms behave as expected with (ηab)=(−,+,+) due to the stabilizer SO(1,2):

ds2
dS3
= ηab ea ⊗ eb , and ei = ei

a ea , with ei
a = ϵi−3 a b

y3−b

1+y3
. (21)

3.3 The lightcone exception

Before we move on, let us make a remark on the lightcone itself that sits here as an excep-
tion in the following manner. It can be shown that both future and past of the lightcone are
individually isomorphic to SO(1,3)/ISO(2), where the stability subgroup is a Euclidean group
E(2)=ISO(2) generated by two translations and one rotation. However, this coset space is
non-reductive and, on top of that, this does not give rise to any foliation here, making this
case unsuitable to study Yang–Mills dynamics as discussed in Section 4.

4 Yang–Mills fields from dimensional reduction

The study of Yang–Mills dynamics on R × G/H via dimensional reduction is a well-known
topic with excellent review in [8]. Given an orthonormal frame {eu:=du, ea} on the cylinder
R× G/H, we can write a generic connection one-form A in the “temporal" gauge Au=0 and
its curvature two-form F = dA+A∧A as follows

A = Aa ea =⇒ F = Fua eu ∧ ea + 1
2Fab ea ∧ eb . (22)

Next, we expand the gauge fieldAa in terms of full SO(1,3)-generators (8) asAa=Ai
a Ii+Ab

a Ib
and impose G-invariance on this, yielding following two conditions3

Ai
a = ei

a , and Aa
b =Aa

b(u) , with f c
ia Aa

b = f a
ib Ac

a . (23)

Furthermore, for the symmetric spaces that concerns us, one finds that Aa
b(u) = φ(u)δ

a
b such

that our G-invariant gauge field A depends on a single real function φ:

A = Ii ei +φ(u) Ia ea . (24)

The components of the field strength F , using (23) and (10), computes to

Fua = φ̇ Ia , and Fab = (φ
2−1) f i

ab Ii , with φ̇ := ∂uφ , (25)

yielding the the color-electric field Ea = Fau ∈ m and -magnetic field Ba =
1
2ϵabcFbc ∈ h on

the cylinder. Finally, to work out the dynamics of φ(u) we look at the Yang–Mills action

SYM = −
1

4g2

∫

trad(F ∧ ∗F) , (26)

which simplifies drastically in both cases, viz. interior of the lightcone T with M3 := H3 and
exterior of the lightcone with M3 := dS3, as follows

SYM =
6
g2

∫

R×M3

dvol
�1

2 φ̇
2 − V (φ)
�

, V (φ) = −1
2(φ

2−1)2 , (27)

3We can write the second relation more succinctly as [Ii , eAa] = f b
ia
eAb for eAa :=Aa

b Ia ∈ m.
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Figure 2: Plot of V (φ).

where dvol = 1
3!ϵabc du ∧ ea ∧ eb ∧ ec is the volume form.

We immediately observe that the above action represents a
mechanical particle φ(u) in an inverted double-well poten-
tial V (φ) depicted in Figure 2, which yields the equation of
motion for an anharmonic oscillator,

φ̈ = −
∂ V
∂ φ

= 2φ (φ2−1) . (28)

This admits analytic solutions in terms of Jacobi elliptic functions. For example, in the bounded
case where the mechanical energy 1

2 φ̇
2 + V (φ) =: ε ∈ [−1

2 , 0] we have

φε,u0
(u) = f−(ε) sn
�

f+(ε)(u−u0), k
�

, with f±(ε) =
Æ

1±
p
−2ε , k2 =

f−(ε)
f+(ε)

, (29)

and a ‘time’-shift parameter u0. This also include special cases, such as a “kink”:

φ =











0 , for ε= −1
2 ,

tanh (u−u0) , for ε= 0 ,

±1 , for ε= 0 .

(30)

Now in order to pull these solution back to T we transform the orthonormal frame {eu, ea}
on R×H3, using the map ϕ

T
(2) and abbreviation |x | :=

p

|x ·x |, as follows

eu := du =
t dt − r dr

t2 − r2
, and ea =

1
|x |

�

dxa −
xa

|x |
dt +

xa

|x |(|x |+ t)
r dr
�

. (31)

The SO(1,3)-invariant gauge field A≡ A (24) can be casted into a Minkowski one-form

A =
1
|x |

¨

ϵ k−3
ab xa

|x |+ t
dx b Ik +φ(x)
�

dxa −
xa

|x |
dt +

xa

|x |(|x |+ t)
r dr
�

Ia

«

, (32)

where φ(x):=φε,u0
(u(x)). We can then find the field strength F = Fµν dxµ ∧ dxν on T from

its cylinder version F (25) using vierbein components eu = eu
µ dxµ and ea = ea

µ dxµ (31). The

corresponding color-electric Ei := F0i and -magnetic Bi := 1
2ϵi jk F jk fields read

Ea =
1
|x |3

�

�

φ2−1
�

ϵ i−3
ab x b Ii − φ̇
�

t δab −
xa x b

|x |+ t

�

Ib

�

,

Ba = −
1
|x |3

�

�

φ2−1
�

�

t δa i−3 −
xa x i−3

|x |+ t

�

Ii + φ̇ ϵ
c

ab x b Ic

�

.

(33)

An interesting feature of these fields is the presence of color-electromagnetic duality,
i.e. Ea → Ba and Ba →−Ea, which works when we simultaneously interchange φ̇↔ (φ2−1)
and switch the generators as follows: Ii → Ia and Ia → −Ii (plus some obvious index adjust-
ment). More importantly, we notice that the gauge field A (32) along with the electric Ei and
magnetic Bi fields (33) become singular at the lightcone t=±r. One can find out the fields
on S using (5) and following the same recipe as above. We restrain from reproducing these
results here owing to space constraint and refer the reader to [7] for explicit form of such
fields.
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5 The stress-energy tensor

We can compute the stress-energy tensor, given by the expression

Tµν = −
1

2g2 trad

�

Fµα Fνβ η
αβ − 1

4ηµνF2
�

, with F2 = Fµν Fµν , (34)

for such Yang–Mills fields in a straightforward manner. Interestingly, we find that the compu-
tation yields the same form of stress-energy tensor on both sides of the lightcone that reads

T =
ε

g2(r2−t2)3







3t2+r2 −4t x −4t y −4tz
−4t x t2+4x2−r2 4x y 4xz
−4t y 4x y t2+4y2−r2 4yz
−4tz 4xz 4yz t2+4z2−r2






. (35)

It is worth emphasising here that the explicit form ofφ, like in (29), is irrelevant here as T only
depends on the total mechanical energy ε. Moreover, this has a vanishing trace and presence
of lightcone singularity, as expected. Surprisingly, this admits a nice compact form that can be
recasted into a pure “improvement” term as follows,

Tµν = ∂
ρSρµν , with Sρµν =

ε

g2

xρηµν − xµηρν
(x ·x)2

, (36)

where the term Sρµν can be expressed using abbreviation (S̃ρ)µν := g2(x ·x)2
ε Sρµν as

S̃0 =

�

0 0 0 0
x −t 0 0
y 0 −t 0
z 0 0 −t

�

, S̃1 =

�−x t 0 0
0 0 0 0
0 −y x 0
0 −z 0 x

�

, S̃2 =

�−y 0 t 0
0 y −x 0
0 0 0 0
0 0 −z y

�

, S̃3 =

�−z 0 0 t
0 z 0 −x
0 0 z −y
0 0 0 0

�

. (37)

Naturally, one hopes to glue the two expressions for stress-energy tensors to find a single
expression valid across the Minkowski spacetime. The price to pay here is the singularity at
the lightcone, which can be remedied through the following regularization procedure

Sreg
ρµν =

ε

g2

xρηµν − xµηρν
(x ·x +δ)2

=⇒ T reg
µν =

ε

g2

4 xµxν −ηµνx ·x + 3δηµν
(x ·x +δ)3

. (38)

This nonsingular improvement term (with a finite regularization parameter δ) yields vanishing
energy and momenta as their fall-off behaviour at spatial infinity is fast enough.

An alternate route to regularization could be to directly shift only the denominator of Tµν
in (36) via x ·x 7→ x ·x + δ. We can then improve the resultant stress-energy tensor up to the
term in (38) so as to obtain the following energy-momentum tensor candidate that is regular
and that also vanishes as δ→ 0,

Tδµν =
ε

g2

4 xµxν −ηµνx ·x
(x ·x +δ)3

∼
ε

g2

−3δηµν
(x ·x +δ)3

. (39)

6 Conclusion

Starting from the geometry of the Minkowski foliations with H3- (interior of the lightcone)
and dS3-slices (exterior of the lightcone) and exploring the origin of these symmetric spaces
through cosets of the gauge group SO(1,3), we have obtained analytic solutions of Yang–Mills
equation on Minkowski space that, however, diverge at the lightcone. We achieved this by
first solving a SO(1,3)-invariant configuration on the cylinder R×SO(1,3)/H, with H=SO(3)
on the interior and H=SO(1,2) on the exterior of the lightcone, using dimensional reduction
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technique of gauge theory and then translating these solutions to two different domains of
Minkowski spacetime, seperated by the lightcone, with their respective foliation maps. We
then computed the stress-energy tensor in both cases and found out that they have the same
form. Not only this, when written compactly, we were able to cast it into a pure improvement
term, a fact that helped us in finding a regularized candidate for the stress-energy tensor,
defined throughout the spacetime; how this modified stress-energy tensor arise from a source
term remains an open question though.
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