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Abstract

We introduce the so-called Magic Star (MS) projection within the root lattice of finite-
dimensional exceptional Lie algebras, and relate it to rank-3 simple and semi-simple
Jordan algebras. By relying on the Bott periodicity of reality and conjugacy properties of
spinor representations, we present the so-called Exceptional Periodicity (EP) algebras,
which are finite-dimensional algebras, violating the Jacobi identity, and providing an al-
ternative with respect to Kac-Moody infinite-dimensional Lie algebras. Remarkably, also
EP algebras can be characterized in terms of a MS projection, exploiting special Vinberg
T-algebras, a class of generalized Hermitian matrix algebras introduced by Vinberg in
the ’60s within his theory of homogeneous convex cones. As physical applications, we
highlight the role of the invariant norm of special Vinberg T-algebras in Maxwell-Einstein-
scalar theories in 5 space-time dimensions, in which the Bekenstein-Hawking entropy of
extremal black strings can be expressed in terms of the cubic polynomial norm of the
T-algebras.
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1 Projecting root lattices onto the magic star

Within the r-dimensional root lattice of g2, f4, e6, e7 and e8 (with r = 2, 4,6,7, 8, resp.), one
can find a plane (defined by the two Cartans of an a2 subalgebra) on which the projection of
the roots results into the so-called “Magic Star" (MS) (reported in Fig. 1). To the best of our
knowledge, the MS was firstly observed in late ’90s by Mukai1 [2], and later re-discovered and
treated in some detail by Truini [3] (see also [4]), within a different approach relying Jordan
Pairs [5]; see also [1].

Figure 1: The Magic Star of exceptional Lie algebras [2, 3]. Jq
3 denotes a rank-3

simple Jordan algebra, realized as matrix algebra of 3× 3 Hermitian matrices over
Hurwitz’s division algebras A= R,C,H,O (of real dimension q = dimRA= 1, 2,4, 8,
resp.). The limit case of g2 (corresponding to q = −2/3) corresponds to a trivial
Jordan algebra, given by the identity element only: J−2/3

3 ≡ I := diag(1,1, 1).

The existence of the MS relies on the so-called (not necessarily maximal, generally non-
symmetric) MS embedding/decomposition2

qconf
�

Jq
3

�

⊃ a2 ⊕ str0

�

Jq
3

�

, (1)

where qconf
�

Jq
3

�

and str0

�

Jq
3

�

stand for the quasi-conformal resp. the reduced structure Lie
algebra of Jq

3 (see e.g. [13,14] for basic definitions, and a list of Refs.).
Over C, (1) implies [3,4]

qconf
�

Jq
3

�

= a2 ⊕ str0

�

Jq
3

�

⊕ 3× Jq
3 ⊕ 3× Jq

3 . (2)

Upon setting q = 8, 4,2, 1,0,−2/3,−1, one obtains the exceptional sequence (or exceptional
series) Table 1, cf. e.g. [8].3

Jq
3 stands for the rank-3 simple Jordan algebra [10] (cfr. e.g. [9], and Refs. therein)

associated to the parameter q, which for q = 8,4, 2,1 is the real dimension of the division
algebra A on which the corresponding Jordan algebra is realized as a 3×3 generalized matrix

1Mukai used the name “g2 decomposition".
2For an application to supergravity, see [6] (where MS embedding was named Jordan pairs’ embedding), as

well as [7], in which the MS embedding was elucidated to be nothing but the D = 5 instance of the so-called
super-Ehlers embedding.

3Note that we consider b3, corresponding to q = −1/3 and absent in [8].
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Table 1

q 8 4 2 1 0 −1/3 −2/3 −1

qconf
�

Jq
3

�

e8 e7 e6 f4 d4 b3 g2 a2

str0

�

Jq
3

�

e6 a5 a2 ⊕ a2 a2 C⊕C C 0 −

algebra with the property of A-Hermiticity: q = dimRA = 8,4, 2,1 for A = O,H,C,R, resp.,
and Jq

3 ≡ JA3 ≡ H3 (A) are equivalent notations. Remarkably, qconf
�

Jq
3

�

and str0

�

Jq
3

�

span the
entries of the fourth resp. second row/column of the Freudenthal-Tits Magic Square [11,12]
when setting q = 8,4, 2,1. From the classification of finite-dimensional, semi-simple cubic
Jordan algebras [10], J0

3 ≡ C⊕C⊕C is the completely factorized (triality symmetric) rank-

3 Jordan algebra, whereas J−1/3
3 ≡ C ⊕ C and J−2/3

3 ≡ C are its partial and total diagonal
degenerations, respectively.

Within this report, we will consider things over R. In this case, there are at least two non-
compact real forms of the “enlarged" exceptional sequence

�

qconf
�

Jq
3

�	

q=8,4,2,1,0,−1/3,−2/3,−1
which can be easily interpreted in terms of symmetries of rank-3 real Jordan algebras: they
are given in Tables 2 and Table 3. and they both pertain to the following non-compact, real
form of (2)): qconf e8

qconf
�

Jq
3

�

= sl3,R ⊕ str0

�

Jq
3

�

⊕ 3× Jq
3 ⊕ 3′ × Jq′

3 . (3)

Table 2: The split real form of the exceptional sequence. In this case, for q = 8, 4,2,1,
Jq

3 ≡ JAs
3 ≡ H3(As), where As is the split form of A=O,H,C, respectively.

q 8 4 2 1 0 −1/3 −2/3 −1

qconf
�

Jq
3

�

e8(8) e7(7) e6(6) f4(4) so4,4 so4,3 g2(2) sl3,R

str0(J
q
3) e6(6) sl6,R sl3,R ⊕ sl3,R sl3,R R⊕R R 0 −

Table 3: Another (non-split) non-compact real form of the exceptional sequence.

q 8 4 2 1 0 −1/3 −2/3 −1

qconf
�

Jq
3

�

e8(−24) e7(−5) e6(2) f4(4) so4,4 so4,3 g2(2) sl3,R

str0(J
q
3) e6(−26) su∗6 (sl3,C)R sl3,R R⊕R R 0 −

2 Spinor content of exceptional Lie algebras and Fierz identities
in 8+ q dimensions

The following maximal, Jordan algebraic embeddings

JA3 ⊃ R⊕ JA2 ,

JAs
3 ⊃ R⊕ JAs

2 , (4)

enjoy the following matrix realization as (ri ∈ R, Ai ∈ A or As, i = 1,2, 3)

JA3 ∋ J =





r1 A1 A2

A1 r2 A3

A2 A3 r3



⇒ J ′ =





r1 A1 0
A1 r2 0
0 0 r3



 ∈ R⊕ JA2 , (5)
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where the bar denotes the conjugation in A or in As. Usually, the matrix elements r1 and r2
are associated to lightcone degrees of freedom, i.e.

r1 := x+ + x−, r2 := x+ − x− . (6)

Furthermore, the following algebraic isomorphisms hold (cf. e.g. [15]):

JA2 ∼ Γ1,q+1 , (7)

JAs
2 ∼ Γq/2+1,q/2+1 , (8)

where Γ1,q+1 and Γq/2+1,q/2+1 are (generally simple) Jordan algebras of rank 2 with a quadratic
form of (Lorentian resp. Kleinian) signature (1, q+ 1) resp. (q/2+1, q/2+1), i.e. the Clifford
algebras of O (1, q+ 1) resp. O(q/2+1, q/2+1); for this reason, it is customary to refer to (4)
as to the the spin-factor embeddings.

By setting A=O, i.e. q = 8, in (4), and considering the various symmetries of Jordan alge-
bras, one obtains the graded structure of suitable real forms of finite-dimensional exceptional
Lie algebras with respect to the corresponding pseudo-orthogonal Lie algebras, thus obtaining
the spinor content of the exceptional algebras themselves:

1. For what concerns the derivations der (namely, the Lie algebra of the automorphism
group) of the rank-3 Jordan algebras, one obtains the 2-graded structure of the real,
compact form of f4, namely:

der
�

JO3
�

⊃m,s der
�

R⊕ JO2
�

⇔







f4(−52) ⊃m,s so9 ,

f4(−52) = so9 ⊕ 16 ,
(9)

where 16 is the Majorana spinor irrepr. of so9, and the upperscripts “m" and “s" re-
spectively indicate maximality and symmetric nature. The fact that the 2-graded vector
space so9⊕16 can be endowed with the structure of a (simple, exceptional) Lie algebra,
and thus satisfies the Jacobi identity (in particular, for three elements in 16), relies on a
remarkable Fierz identity for so9 gamma matrices.

2. At the level of the reduced structure Lie algebra str0, one obtains the 3-graded structure
of the real, minimally non-compact form of e6, namely:

str0

�

JO3
�

⊃m,s str0

�

R⊕ JO2
�

⇔



















e6(−26) ⊃m,s so9,1 ⊕R ,

e6(−26) = 16′−1 ⊕
�

so9,1 ⊕R
�

0 ⊕ 161 ,
or

e6(−26) = 16−1 ⊕
�

so9,1 ⊕R
�

0 ⊕ 16′1 ,

(10)

where 16 and 16′ are the Majorana-Weyl (MW) spinors of so9,1, which constitute an
example of Jordan pair which is not a pair of Jordan algebras (see e.g. [5], as well
as [3, 4] for a recent treatment); also, the indeterminacy denoted by “or” depends on
the spinor polarization of the embedding [16]. The fact that the 3-graded vector space(s)
in the r.h.s. of (10) can be endowed with the structure of a (simple, exceptional)
Lie algebra, and thus satisfies the Jacobi identity (in particular, for three elements in
16 ⊕ 16′), relies on a remarkable Fierz identity for so9,1 gamma matrices. Note that
str
�

JO3
�

≃ str0

�

JO3
�

⊕ R is isomorphic to the Lie algebra of the automorphism group
Aut
�

JO3 ,JO′3

�

of the Jordan pair
�

JO3 , JO′3

�

:

str
�

JO3
�

≃ Lie
�

Aut
��

JO3 , JO′3

���

≃ der
�

JO3 , JO′3

�

. (11)
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3. At the level of the conformal Lie algebra conf, one obtains

conf
�

JO3
�

⊃m,s conf
�

R⊕ JO2
�

⇔







e7(−25) ⊃m,s so10,2 ⊕ sl2,R ,

e7(−25) = so10,2 ⊕ sl2,R ⊕
�

32(′),2
�

,
(12)

where 32 is the MW spinor of so10,2, and the possible priming (denoting spinor conju-
gation) depends on the choice of the spinor polarization [16]. By further branching the
sl2,R, one obtain a 5-grading of contact type (recently reconsidered within the classifi-
cation worked out in [17]) of the real, minimally non-compact form of e7, namely:

e7(−25) ⊃ so10,2 ⊕R ,

e7(−25) = 1−2 ⊕ 32(′)−1 ⊕
�

so10,2 ⊕R
�

0 ⊕ 32(′)1 ⊕ 12.
(13)

The fact that the 5-graded vector space(s) in the r.h.s. of (13) can be endowed with
the structure of a (simple, exceptional) Lie algebra, and thus satisfies the Jacobi identity
(in particular, for three elements in 32(′) ⊕ 32(′)), relies on a remarkable Fierz identity
for so10,2 gamma matrices. Note that conf

�

JO3
�

is isomorphic to the Lie algebra of the
automorphism group Aut

�

F
�

JO3
��

of the reduced Freudenthal triple system constructed
over JO3 :

conf
�

JO3
�

≃ Lie
�

Aut
�

F
�

JO3
���

≃ der
�

F
�

JO3
��

. (14)

4. Finally, at the level of the quasi-conformal Lie algebra4 qconf [13, 14], one obtains the
2-graded structure of the real, minimally non-compact form of e8, namely:

qconf
�

JO3
�

⊃m,s qconf
�

R⊕ JO2
�

⇔







e8(−24) ⊃m,s so12,4 ,

e8(−24) = so12,4 ⊕ 128(′) ,
(15)

where 128 is the MW spinor of so12,4, and, again, the possible priming (standing for
spinorial conjugation) relates to the choice of the spinor polarization [16]. Further de-
composition of so12,4 yields to a 5-grading of “extended Poincaré" type [17]:

e8(−24) ⊃ so11,3 ⊕R ,

e8(−24) =







14−2 ⊕ 64′−1 ⊕
�

so11,3 ⊕R
�

0 ⊕ 641 ⊕ 142 ,
or

14−2 ⊕ 64−1 ⊕
�

so11,3 ⊕R
�

0 ⊕ 64′1 ⊕ 142 ,

(16)

where 64 is the MW spinor of so11,3 and the “or” indeterminacy depends on the spinor
polarization [16]. The fact that the 2-graded vector space so12,4⊕128(′) can be endowed
with the structure of a (simple,exceptional) Lie algebra, and thus satisfies the Jacobi
identity (in particular, for three elements in 128(′)), relies on a remarkable Fierz identity
for so12,4 gamma matrices. Equivalently, the fact that the 5-graded vector space(s) in the
r.h.s. of (16) can be endowed with the structure of a (simple, exceptional) Lie algebra,
and thus satisfies the Jacobi identity (in particular, for three elements in 64⊕64′), relies
on a remarkable Fierz identity for so11,3 gamma matrices.

4We recall that the quasi-conformal realization of e8(−24) concerns a non-linear action on an extended derived
Freudenthal triple system EF

�

JO3
�

≃ R⊕ F
�

JO3
�

[13].
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3 From Bott periodicity to exceptional periodicity

Thus, we have related the existence of (finite-dimensional, simple) exceptional Lie algebras
to some remarkable Fierz identities holding in q+ 8 dimensions (in particular, with signature
9+ 0, 9+ 1, 10+ 2,and 12+ 4, for q = 1,2, 4 and 8, respectively).

Now, by observing that the reality properties of spinors and the existence and symmetry of
invariant spinor bilinears are periodic mod 8 (Bott periodicity), one can define some algebras
which (for the moment, formally) generalize the spinor content of the real forms of exceptional
Lie algebras discussed above: these are the so-called “Exceptional Periodicity” (EP) algebras
[1,18], and, as vector spaces, they are defined as follows (n ∈ N∪{0} throughout5):

1. Level der:
f
(n)
4(−52) := so9+8n ⊕ψso9+8n

, (17)

where ψso9+8n
≡ 24+4n is the Majorana spinor of so9+8n.

2. Level str0:
e
(n)
6(−26) :=ψ′so9+8n,1,−1 ⊕

�

so9+8n,1 ⊕R
�

0 ⊕ψso9+8n,1,1 , (18)

where ψso9+8n,1
≡ 24+4n is the MW spinor of so9+8n,1.

3. Level conf:

e
(n)
7(−25) :=
�

so10+8n,2 ⊕ sl2,R
�

⊕
�

ψso10+8n,2
,2
�

(19)

= 1−2 ⊕ψso10+8n,2,−1 ⊕
�

so10+8n,2 ⊕R
�

0 ⊕ψso10+8n,2,1 ⊕ 12 ,

where ψso10+8n,2
≡ 25+4n is the MW spinor of so10+8n,2.

4. Level qconf:

e
(n)
8(−24) := so12+8n,4 ⊕ψso12+8n,4

(20)

= (14+ 8n)−2 ⊕ψ′so11+8n,3,−1 ⊕
�

so11+8n,3 ⊕R
�

0 ⊕ψso11+8n,3,1 ⊕ (14+ 8n)2 ,

where ψso12+8n,4
≡ 27+4n and ψso11+8n,3

≡ 26+4n respectively denote the MW spinors of
so12+8n,4 and of so11+8n,3.

A rigorous algebraic definition of the above EP algebras has been given in [18] (see
also [1]) by introducing the notion of generalized roots, and by defining the structure con-
stants in terms of (a suitably generalized) Kac’s asymmetry function [19, 20]. In this report,
we confine ourselves to remark that EP algebras are not simply non-reductive nor semisim-
ple, spinor-affine extensions of (pseudo-)orthogonal Lie algebras, but their spinor generators
are non-translational (i.e., non-Abelian), as are the spinor generators of6 f4(−52) ≡ f

(n=0)
4(−52),

e6(−26) ≡ e
(n=0)
6(−26), e7(−25) ≡ e

(n=0)
7(−25), and e8(−24) ≡ e

(n=0)
8(−24). This yields to the violation of the

Jacobi identity when considering three spinor generators as input in the Jacobiator [18]. As of
today, a rigorous, axiomatic treatment of EP algebras is missing: can EP algebras be defined in
terms of some characterizing identities, going beyond Jacobi? This remains an open problem.

5Note that there has been a shift of unity with respect to the notation of [1] and [18]: the index n used here is
actually n− 1 of such Refs.

6The treatment on R given here is based on the EP generalization of the various symmetry Lie algebras of the
Albert algebra JO3 , and it yielded to some specific real forms of f(n)4 , e(n)6 , e(n)7 and e

(n)
8 . Starting from C, a rigorous

definition of all real forms of EP algebras, by means of the introduction of suitable involutive morphisms within
the corresponding EP generalized root lattices [18], will be the object of forthcoming works.

035.6

https://scipost.org
https://scipost.org/SciPostPhysProc.14.035


SciPost Phys. Proc. 14, 035 (2023)

Figure 2: The Magic Star structure of the a2-projection of the generalized root lattices
of EP algebras. finite-dimensional [18]. Tq,n

3 stands for a Vinberg T-algebra of rank-3
and of special type [22], parametrized by q = 1,2, 4,8 and n ∈ N∪{0}, corresponding
to f

(n)
4 , e(n)6 , e(n)7 , e(n)8 , respectively.

The crucial result, which motivates and renders all the above construction and the correspond-
ing construction in the EP lattices non-trivial, is the following [18]: for n > 0, all EP algebras
admit a a2 subalgebra, such that the projection of their generalized root lattices onto the 2-
dimensional plane defined by the Cartans of such a2 has a Magic Star structure, with those
generalized roots corresponding to the degeneracies on the tips of such EP-generalized Magic
Star which can be endowed with an algebraic structure, denoted by Tq,n

3 , generalizing the rank-
3 simple Jordan algebras Jq

3 ≡ JA3 ≡ H3 (A) mentioned above. The resulting, EP-generalized
Magic Star is depicted in Fig. 2. Remarkably, such a generalization is7 the unique possible
one, and it is provided by the Hermitian part of (a class of) rank-3 T-algebras of special type.
Such algebras were introduced some time ago by Vinberg [22], and they recently appeared
in [23–25], in which they have been named Vinberg special T-algebras.

4 Vinberg special T-algebras and Bekenstein-Hawking entropy

The real forms of EP algebras resulting from the treatment given above, i.e. f
(n)
4(−52), e

(n)
6(−26),

e
(n)
7(−25), and e

(n)
8(−24) (corresponding to der, str0, conf and qconf levels, or, equivalently - by the

symmetry of the Freudenthal-Tits Magic Square [11, 12] - to q = 1, 2,4 and 8, respectively),
the 3×3 generalized matrix algebras Tq,n

3 corresponding to the set of generalized roots degen-
erating to a point on each of the tips of the EP-generalized Magic Star (depicted in Fig. 2) can
be realized as follows:

Tq,n
3 :=







r1 Vsoq+8n
ψsoq+8n

Vsoq+8n
r2 ψ′soq+8n

ψsoq+8n
ψ′soq+8n

r3






, (21)

7Within a set of reasonable and intuitive assumptions [22].
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where8

Vsoq+8n
:= (q + 8n, 1) , (22)

ψsoq+8n
:=
�

2[(q+1)/2]+4n−1+δq,1 ,Fund
�

Sq

��

, (23)

are irreducible representation spaces of the Lie algebra

soq+8n ⊕Sq , (24)

with

Sq := triA ⊖ soA = 0, so2, su2, 0 , for q = 1,2, 4,8 (i.e., for R,C,H,O, resp.) , (25)

denoting the coset algebra of the triality symmetry triA of A [26]:

triA := {(A, B, C) |A(x y) = B(x)y + xC(y), A, B, C ∈ soA, x , y ∈ A} (26)

= 0, so⊕2
2 , so3

⊕3, so8 , for A= R,C,H,O , (27)

modded by the norm-preserving symmetry soAof A:

soA := soq = 0, so2, so4, so8 , for A= R,C,H,O . (28)

Actually, Sq is related to the reality properties of the spinors of soq+8n, and in Physics it is
named R-symmetry. Furthermore, Fund

�

Sq

�

denotes the smallest non-trivial representation
of the simple Lie algebra Sq (if any):

Fund
�

Sq

�

= −,2,2,− , for q = 1, 2,4, 8 , (29)

with real dimension

fundq := dimR Fund
�

Sq

�

= 1,2, 2,1 , for q = 1,2, 4,8 . (30)

Thus, the total real dimension of Tq,n
3 is

dimR(T
q,n
3 ) = q+ 3+ 8n+ fundq · 2[(q+1)/2]+4n+δq,1 . (31)

As mentioned above, Tq,n
3 (21) is the Hermitian part of a certain class of generalized matrix

algebras going under the name of rank-3 T-algebras, introduced sometime ago by Vinberg as
a unique,consistent generalization of rank-3, simple Jordan algebras, within its theory of ho-
mogeneous convex cones [22]: more precisely, Tq,n

3 has been dubbed exceptional T-algebra in
Sec. 4.3 of [1]. Upon a slight generalization (i.e., by including P + Ṗ copies of spinor irreprs.,
and correspondingly extending Sq to the “full-fledged” R-symmetry Sq

�

P, Ṗ
�

), Tq,n
3 gets gen-

eralized to Tq,n,P,Ṗ
3 (with P, Ṗ ∈ N ∪ {0}), which occur in the study of so-called homogeneous

real special manifolds.9 These are non-compact Riemannian spaces occurring as (vector multi-
plets’) scalar manifolds of N = 2-extended Maxwell-Einstein supergravity theories in D = 4+1

space-time dimensions, firstly discussed to some extent by Cecotti [28]. More recently, Tq,n,P,Ṗ
3

have appeared under the name of Vinberg special T- algebras in works on Vinberg’s theory of
homogeneous cones (and generalizations thereof) and on its relation to the entropy of ex-
tremal black holes in N = 2-extended Maxwell-Einstein supergravity theories in D = 3 + 1
space-time dimensions [23–25].

8[·] denotes the integer part throughout.
9And, of course, in their images under R-map and c-map (cfr. e.g. [27], and Refs. therein).

035.8

https://scipost.org
https://scipost.org/SciPostPhysProc.14.035


SciPost Phys. Proc. 14, 035 (2023)

The unique invariant structure of the algebra10 Tq,n
3 ≡ Tq,n,P,Ṗ

3

�

�

�

P=1,Ṗ=0
given by (21) is pro-

vided by its (formal) “determinant”. In order to define it, let us introduce (µ= 0,1, ..., q+ 1+ 8n)

Vµ :=
�

r1, r2,Vsoq+8n

�

, (32)

which, by recalling (6), is recognized to be a vector module of Spin (q+ 1+ 8n, 1); we also
denote the corresponding spinor of soq+1+8n,1 (which is chiral for q = 2,4, 8), of real dimension
fundq · 2[(q+1)/2]+4n+δq,1 , by ΨαA (where α = 1, ..., 2[(q+1)/2]+4n+δq,1 and A= 1, ..,fundq). Then,
the “determinant” of the generalized Hermitian matrix algebra Tq,n

3 , which defines the cubic
norm N of Tq,n

3 itself, is defined as

N
�

Tq,n
3

�

:=
1
2
ηµν

�

r3VµV ν + γµ
αβ
ΨαAΨ

β
A V ν
�

, (33)

where ηµν is the symmetric bilinear invariant of the vector module V (32) of Spin (q+ 1+ 8n, 1),
and γµ

αβ
are the gamma matrices of soq+1+8n,1.

Remarkably, Ferrar’s classification [29] of elements of a rank-3 Jordan algebras in terms
of invariant rank= 0,1, 2,3 can be generalized to the classification of the elements of Tq,n

3
depending on their invariant rank as well, defined as follows [18]:

rank-3 : N ̸= 0 ,
rank-2 : N= 0 ,
rank-1 : ∂N= 0 .

(34)

In those (ungauged) N = 2-extended Maxwell-Einstein supergravity theories in D = 4 + 1
space-time dimensions based on Tq,n

3 [28], the magnetic charges of extremal black strings (with
near-horizon geometry AdS3 ⊗ S2) fit into Tq,n

3 itself, and its Bekenstein-Hawking entropy SBS
enjoys the interestingly simple expression

SBS = π
Æ

|N| . (35)

We conclude this report by pointing out that the entropy of the extremal dyonic black holes in
the corresponding (ungauged) (3+ 1)-dimensional supergravity theory (obtained by compact-
ifying the fourth spacial dimension on S1 and keeping the massless sector) has been recently

discussed in [24]. Analogue formulæ hold when considering the most general case Tq,n,P,Ṗ
3

(with P, Ṗ ∈ N∪ {0}).
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//www.math.nagoya-u.ac.jp/~mukai/paper/warwick15.pdf.

[3] P. Truini, Exceptional Lie algebras, SU(3), and Jordan pairs, Pacific J. Math. 260, 227
(2012), doi:10.2140/pjm.2012.260.227.

10Correspondingly, Sq ≡ Sq(P, Ṗ)
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