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Abstract

We show that the behaviour in phase space of the Wigner function associated to the
electromagnetic modes carries the information of both, the entanglement properties be-
tween matter and field, and the regions in parameter space where quantum phase tran-
sitions take place. A finer classification for the continuous phase transitions is obtained
through the computation of the surface of minimum fidelity.
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1 Introduction

Quantum phase transitions (QPT) are studied in nuclear, molecular, quantum optics, and con-
densed matter physics, and have potential applications in the design of quantum technolo-
gies [1]. The Wigner function gives a complete description of a quantum system in phase
space; it allows for the calculation of all the quantities that the usual wave function gives,
and negative values in the function appear as a consequence of interference between distant
points in phase space. In a generalized Dicke model of 3-level atoms interacting with 2 electro-
magnetic modes, it may be used to analyse the behaviour in phase space of the two radiation
modes of light across the finite phase diagram of the quantum ground state, and supply further
evidence of the quantum phase transitions revealed by the fidelity criterion.

When the linear entropy for all the subsystems is calculated and compared with the be-
haviour of the Wigner function, we see that the entanglement between the substates responds
to how the bulk of the ground state changes from a subset of the basis with a major contribution
from one kind of photons, to a subset with a major contribution of the other one.
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2 The generalised Dicke model

The multipolar Hamiltonian for the dipole interaction between a 2-mode radiation field and a
3-level atomic system in the long wave approximation (ħh= 1) is

H= HD +Hint ,

with

HD =
3
∑

j<k

Ω jk a†
jk a jk +

3
∑

j=1

ω j A j j ,

and

Hint = −
1
p

Na

3
∑

j<k

µ jk

�

A jk +Ak j

�

�

a jk + a†
jk

�

.

Here, Na denotes the number of particles, a†
jk, a jk are creation and annihilation photon oper-

ators, Ω jk is the frequency of the mode which promotes transitions between the atomic levels

ω j andωk, Ai j are the matter operators obeying the U(3) algebra, with
∑3

k=1 Akk = Na Imatter,
and µ jk is the coupling parameter between atomic levels ω j and ωk.
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Figure 1: Atomic configurations for 3-level systems, showing the possible transitions
and coupling strengths µi j .

We have the atomic configurations shown in Figure 1, customarily labelled by Ξ, Λ, and
V , due to their shape resembling these letters, and where we label the atomic energy levels
following ω1 ≤ω2 ≤ω3 and for simplicity fix ω1 = 0 and ω3 = 1; therefore, all energies are
measured in terms of ħhω3. Note that particular atomic configurations are obtained by making
an appropriate dipolar strength µi j vanish.

2.1 Variational study

A variational study involving coherent states for both matter and field provides a good ap-
proximation of the ground state energy surface per particle [2, 3]. Figure 2 shows the phase
diagrams from a variational study using coherent test states, for the different atomic configu-
rations Ξ, Λ, and V (from left to right), as well as the order of the transitions according to the
Ehrenfest classification. We distinguish a normal region (N , in medium grey) where the atoms
decay individually, and collective regions Si j where the decay is proportional to Na(Na + 1)
and in which only one kind of photon contributes to the ground state. Continuous black lines
denote the separatrices dividing these regions.

It is important to note that the signature of the phase diagram remains when the symme-
tries of the Hamiltonian are restored in the variational solution and the thermodynamic limit
Na→∞ is taken.
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Figure 2: Phase diagrams from a variational study using coherent test states, for the
different atomic configurations Ξ, Λ, and V (from left to right). The order of the tran-
sitions according to the Ehrenfest classification is shown. The parameters used are:
Ξ-configuration: ω2/ω3 = 1/3; Λ- configuration: ω2/ω3 = 1/10; V -configuration:
ω2/ω3 = 8/10. Here, x i j = µi j/µc is the dimensionless dipolar coupling strength,
where µc stands for its critical value in the two-level system {i j} in the limit Na→∞.

2.2 Numerical quantum solution

The exact calculation of the ground state involves a numerical diagonalisation of the Hamil-
tonian matrix. The Hamiltonian is invariant under parity transformations of the form

Π1 = eiπK1 , Π2 = eiπK2 ,

where Ks, s = 1, 2, are constants of motion when the rotating wave approximation (RWA) is
taken [7]. Accordingly, the Hilbert space H divides naturally into four subspaces

H =Hee ⊕Heo ⊕Hoe ⊕Hoo ,

where subscripts σ = {ee, eo, oe, oo} denote the even e or odd o parity of Π1 and Π2, respec-
tively.

We use basis states labeled by |ν12,ν13,ν23〉 ⊗ |n1, n2, n3〉, with n1 + n2 + n3 = Na and
ν jk = 0, 1, · · · ,∞, which denote Fock states.

Since the dimension of the Hilbert space is dim(H) =∞, we need to use a truncation
criterion. For the set of eigenvalues of K1, K2, we take this criterion as follows [8]: choose
values kimax to satisfy

1−F(k1max, k2max)≤ 10−10 ,

where F(k1, k2) = | 〈ψ(k1, k2) |ψ(k1+2, k2+2)〉 |2 is the fidelity between the state |ψ(k1, k2)〉
containing all eigenvalues up to k1 and k2, and the state |ψ(k1+2, k2+2)〉. This ensures that
the energy calculated remains without variation to one part in 10−8. Other criteria may be
used, of course, depending on the problem in question.

3 Fidelity as signature of QPT in finite systems

Quantum phase transitions are determined by singularities in the wave function of the ground
state, and these may be studied by the method of Ginzburg-Landau, or using catastrophe
theory, in the thermodynamic limit [4]. Another criterion is by the loci where the fidelity
between neighbouring states |Ψg(ξ1)〉, |Ψg(ξ2)〉 along parametric lines ξ(t) in parameter space

F(ρξ(t),ρξ(t+δ)) = |〈Ψg(ξ(t)) |Ψg(ξ(t +δ))〉|2 ,
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presents a minimum (see e.g. [5, 6] and references therein). We have followed this method
for finite systems to find the separatrices in parameter space. We call these quantum phase
transitions, in contrast to other terminology that appears in the literature, since the consti-
tution of the ground state changes significantly as one crosses a separatrix. The surface of
minimum fidelity is calculated by considering neighbouring points in directions parallel to the
axes (x jk = 0), along identity lines, and along their orthogonal directions, thereby finding the
local minima. Here, x jk = µ jk/µc , where

µc =
1
2

q

Ω jk(ωk −ω j) ,

stands for the critical coupling value in a two-level { jk} system, in the limit Na →∞. Thus,
x jk is the dimensionless dipolar coupling.

In the case of the generalised quantum Rabi model, the quantum separatrices for a single 3-
level atom interacting dipolarly with two modes of electromagnetic field are given in Figure 3,
for the three atomic configurations, Ξ, Λ, and V (from left to right), when in resonance with
the field modes [7]. The parity of the Hilbert subspace in which the ground state lives is
marked by colours and by the letters {ee, eo, oe, oo}, and we see that a much richer structure
appears in contrast with the limit Na→∞ shown in Fig. 2.

Figure 3: Quantum phase diagrams for the three atomic configurations, Ξ, Λ, and
V (from left to right), for one atom when in resonance with the field modes. Differ-
ent types of transitions are shown (see text). For the Ξ-configuration we have used
Ω12 = 1/4, Ω23 = 3/4 andω2 = 1/4; for the Λ-configuration Ω13 = 1, Ω23 = 9/10,
and ω2 = 1/10; and for the V -configuration Ω12 = 4/5, Ω13 = 1 and ω2 = 4/5.

Quantum phase transitions for a finite system appear where the ground state changes
abruptly, and this may be determined by calculating the fidelity or the fidelity susceptibility
between neighbouring states. We can distinguish three types of loci of points where this takes
place (cf. Figure 3):

1. Dashed lines: discontinuous transitions, the fidelity between neighbouring states falls
to zero, and the separatrix in this case borders along orthogonal Hilbert subspaces of
different parity;

2. Continuous lines: stable continuous transitions, F(ξ) ̸= 0 and it remains different from
zero as Na increases;

3. Dotted lines: unstable continuous transitions, F(ξ) ̸= 0 but reaches zero in the large Na
limit.

This classification is further corroborated through the behaviour of the Wigner function for
each field mode, as we shall see in the next section. Note that stable and unstable continuous
transitions can also be distinguished by means of the Bures distance, which measures the dif-
ference of two probability densities of the quantum system; for the stable continuous transition
the value of the Bures distance will be smaller than for the unstable continuous transition.
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4 Wigner function in the Λ-configuration

First order quantum phase transitions, according to the Ehrenfest classification, can be always
associated to zero fidelity values, i.e., discontinuous transitions, and the corresponding eigen-
states are orthogonal.

A finer classification of the continuous transitions is more evident through the study of
the Wigner function, since this classification is based on whether the bulk of the ground state
remains in a sub-basis of the total basis or not. Here we shall focus on the Λ-configuration,
which appears to have a richer structure.

We may use the parity operators for the Λ-configuration

K1 = ν13 + ν23 +A33 ,

K2 = ν23 +A11 +A33 ,

to replace the electromagnetic quanta oscillation numbers

ν13 = k1 − k2 + n1 , ν23 = k2 − n1 − n3 ,

and thus denote the ground state of the system as

|ψgs〉=
∑

k1,k2

Na
∑

n1,n3

Ck1,k2,n1,n3
× |k1 − k2 + n1, k2 − n1 − n3, n1, Na − n1 − n3, n3〉 ,

from which we calculate the reduced density matrices ϱ jk ( j < k) for modes ν jk.
Notice that for the case of a single atom, for maximum values of x jk = 6 and for the desired

precision of 10−10 established in Sec. 2.2, the ground state function lives in a Hilbert space
of dimension dim (H) = 1395, while for a precision of 10−15 the dimension must at least be
dim (H) = 2079 [8].

Thus, the Wigner functions for the reduced density matrices are

W13(q, p) =
∑

k1,k2,k′1

∑

n1,n3

Ck1,k2,n1,n3
C∗k′1,k2,n1,n3

W|k1−k2+n1〉〈k′1−k2+n1|(q, p) ,

W23(q, p) =
∑

k1,k2,k′2

∑

n1,n3

Ck1,k2,n1,n3
C∗k1,k′2,n1,n3

W|k2−n1−n3〉〈k′2−n1−n3|(q, p) ,

where W|n〉〈m|(q, p) is the Weyl symbol for the operator ρnm = |n〉〈m| [9,10].
We may plot these Wigner functions as functions of the field quadratures (q, p) at various

points at either side of a separatrix, to see their behaviour as the system undergoes a phase
transition [7].

Figure 4 shows the behaviour of W13 as the system goes through a stable-continuous tran-
sition (red dot along a continuous grey evaluation trajectory). The elongation presenting a
bimodal distribution is a consequence of photon contribution ν13 becoming significant. Re-
gions where the Wigner function W13 is negative (black) appear as we move away from the
normal region and cross the separatrix, because the number of photons in mode ν13 grows
from zero: we now have a superposition of states with different values of ν13.

Figure 5 shows the behaviour of both, W13 and W23, as the system goes through an
unstable-continuous transition (red dot along a continuous grey evaluation trajectory): close
to the separatrix in dotted lines both photon contributions are significant. We note that both
Wigner functions present elongated (bimodal) distributions. Above the separatrix the contri-
bution of photons ν23 dominates and W23 has major regions with negative values; when the
transition occurs, the field mode contributions to the ground state change their roles.
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Figure 4: Behaviour of the Wigner function W13 and W23, as the system goes through
a stable-continuous transition. Regions where it becomes negative (black) reflect
the existence of a superposition of states with different values of ν13. (In each case,
the continuous dim grey line is the evaluation trajectory, the red dot indicates the
evaluation point in parameter space.) Note that, through this transition, W23 does
not change.

Figure 5: Behaviour of W13 and W23 as the system goes through an unstable-
continuous transition. Across the transition the field mode contributions to the
ground state change their roles S13 ⇋ S23. (In each case, the continuous dim grey
line is the evaluation trajectory, the red dot indicates the evaluation point in param-
eter space.)

We see that the Wigner function characterises completely the phase diagram. In the nor-
mal region the Wigner function describes a classical behaviour of the field (W takes positive
values) and at least one photon mode remains in the vacuum, while the collective region is
characterised by a Wigner function in which the quantumness of the photon modes is clearly
shown; it divides itself into two regions, in each of which a single radiation mode dominates.

Videos showing the behaviour of the Wigner function for each mode, along the full trajec-
tory shown in Figure 5, may be found for all the atomic configurations in the website of IOP
Physica Scripta: Ξ-configuration; Λ-configuration; V -configuration.

4.1 Correlation between Wigner function and entanglement

Bimodality and negativity of Wigner function reflect which field mode dominates in the super-
radiant region, and not the parity of the state. This is evident when we compare it with an
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entanglement measure (e.g., the linear entropy) [7]. We define

Sν1
= 1− Tr
�

ρ2
ν1

�

,

Sν2
= 1− Tr
�

ρ2
ν2

�

,

Sν−m = 1− Tr
�

ρ2
ν1ν2

�

,

to be, respectively, the linear entropy measuring correlation between field mode 1 and the rest
of the system (matter + field mode 2), the linear entropy measuring correlation between field
mode 2 and the rest of the system (matter + field mode 1), and the linear entropy measuring
correlation between matter and field modes 1 and 2.

Figure 6 shows their plots along a trajectory which crosses all detected transitions in pa-
rameter space. When the ground state is dominated by the vacuum state of the field (small
values of the coupling parameters inside the Normal region), the correlation between one
mode of the field, say i, and the rest of the system (matter + field mode j with i ̸= j), is
null SLi

= 0 and the Wigner function is unimodal. This field-mode i vs. matter + field-mode
j entanglement reaches its maximum as soon as we cross into the super-radiant region, the
Wigner function showing negative values at a vicinity of the origin of quadrature q and small
non-zero values of quadrature p. It then falls rapidly to zero as soon as we enter the region
where field mode j dominates, even if a parity change is not had.

Figure 6: Plots of the different linear entropies Sν1, Sν2, and Sν−m, along a trajectory
which crosses all detected transitions in parameter space.

5 Conclusion

We have shown the results of the characteristics of the ground state for a single three-level
atom interacting dipolarly with a two-mode electromagnetic field. The symmetries of the
system allow for the division the quantum state space into subspaces which have a well-defined
parity. We have used a fidelity criterion to determine the quantum phase transitions for the
three three-level configurations.

We calculated the Wigner function for each of the electromagnetic modesΩ13 andΩ23, and
showed the behaviour of these in various regions of the parameter space, which supplies fur-
ther evidence of the quantum phase transitions revealed by the fidelity criterion; the regions
where it takes negative values (the system exhibiting non-classical behaviour) were deter-
mined. Besides providing the phase transitions and a finer classification of them, it is interest-
ing to note that the Wigner function can be and has been measured experimentally [11,12].

The linear entropy for all the subsystems was calculated and compared with the behaviour
of the Wigner function; we see that the entanglement between the substates responds to how
the bulk of the ground state changes from a subset of the basis with a major contribution from
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one kind of photons, to a subset with a major contribution of the other one, and not to the
state parity even for large values of the coupling parameters.
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