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Clocking mechanism from a minimal spinning particle model
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ul. Podchorażych 1, PL-30084 Kraków, Poland

⋆ tobiasz.pietrzak@ifj.edu.pl

34th International Colloquium on Group Theoretical Methods in Physics
Strasbourg, 18-22 July 2022

doi:10.21468/SciPostPhysProc.14

Abstract

The clock hypothesis plays an important role in the theory of relativity. To test this hy-
pothesis, a mechanical model of an ideal clock is needed. Such a model should have
the phase of its intrinsic periodic motion increasing linearly with the affine parameter
of the clock’s center of mass worldline. A class of relativistic rotators introduced by
Staruszkiewicz in the context of an ideal clock is studied. A singularity in the inverse
Legendre transform leading from the Hamiltonian to the Lagrangian leads to new pos-
sible Lagrangians characterized by fixed values of mass and spin. In free motion the
rotators exhibit intrinsic motion with the speed of light and fixed frequency.
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1 Introduction

By definition an ideal clock always measures its proper time. The equality of time measured
by natural clocks and that of ideal clock has been verified to a high degree of precision [1],
however it is not known whether this equality always holds true. Discrepancies could occur
for extreme accelerations of order c2/L where L is a length scale characterising a given system
(e.g. 1029 m

s2 for electron’s Zitterbewegung frequency). Accelerations that high are not yet
experimentally attainable. Nevertheless, an attempt can be made to theoretically test the
clock hypothesis (which refers to classical concepts) within the same framework one uses to
describe real mechanical systems. In this respect a classical model of the ideal clock must be
devised.1

1A spatially extended quantum field-theoretical model of a clock devised in the clock hypothesis context [2]
goes beyond this conceptual limitation. The authors concluded that no device built according to the rules of quantum
field theory can measure proper time along its path. It is also known that for any timelike worldline in any spacetime,
there is a sufficiently small light clock that accurately measures the proper time [3], however this kind of clock is
not a mechanical system.
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As a purely mathematical construct unrelated to any material mechanism, an ideal clock
would be a simple non-quantum device. The mechanism of such a clock could be designed
in the following way. In the momentum rest frame, the image of the spatial direction of the
Pauli-Lubański four-vector could be identified with the equator on the Riemann sphere of null
directions and used as the clock’s face. On the other hand, the image of a null direction (car-
rying the spinning degrees of freedom) would be a point moving about the equator, counting
the number of times the phase has been increased by 2π, and thus represent the clock’s hand.

Such a model has been proposed by Staruszkiewicz [4]. It is based on the concept of a
relativistic rotator – a dynamical system described by position, single null direction (thus with
5 degrees of freedom) and, additionally, two-dimensional parameters – mass m and length l
used to set the values of Casimir invariants, respectively, to m2 and −1

4 m4l2. It seems that the
model provides the simplest mechanical system whose clocking frequency could be fixed this
way. Among the entirety of Lagrangians possible for the family of relativistic rotators consid-
ered in [4], there are only two which satisfy the last requirement above. As later shown at
the Lagrangian level [5] the unique Lagrangians are defective when interpreted as dynamical
systems with 5 degrees of freedom (the Hessian rank is 4, not 5). This explained the observa-
tion [6] that in free motion of the clock the phase, and hence the clocking frequency, remained
indeterminate as functions of the proper time of the center of momentum frame, contrary to
the original motivation.

A possible way to find the required Lagrangian and stabilise the clocking frequency leads
through the inverse Legendre transformation (from the Hamiltonian to a Lagrangian). As ob-
served for the rotator in [7], a singularity in this transformation distinguishes intrinsic motion
with the speed of light. This changes the analytic form of the required Lagrangian.2

2 Staruszkiewicz class of relativistic rotators.

A class of relativistic rotators is defined by the following Hamiltonian action introduced by
Staruszkiewicz [4]

S = −m

∫

dλ
p

ẋ ẋ f (ξ) , ξ≡ −l2 k̇̇k

(kẋ)2
, f ′(ξ) ̸≡ 0 . (1)

Here,3 the dot denotes differentiation with respect to λ – an arbitrary parameter along the
worldline, and f can be arbitrary non-constant and positive function of a reparametrization
invariant argument ξ depending on the spinning degrees of freedom through a null direction
k (the latter property means that ξ must be a Poincaré scalar, independent of arbitrary scale
of null vector k).

Representations of the Poincaré group are enumerated by the eigenvalues of two Casimir
operators (for the case of massive representations). These operators are the square of the mo-
mentum four-vector C1 = pµpµ and the square of the Pauli-Lubański four-vector C2 =WµWµ,
where:

Wµ =
1
2
ϵµναβ pνMαβ , Mαβ = xαpβ − xβ pα +Σαβ .

The expression Σαβ represents the internal angular momentum (spin). To find suitable La-
grangians in the considered class of rotators one can proceed as follows. The conserved quan-
tities pα and Mαβ are determined from the action (1) (with Σαβ = kαπβ − kβπα), where the

2These results can be considered new as they are based on yet unpublished paper [7].
3Throughout this paper xµ denotes the position vector, kµ is the single null direction carrying the spinning

degrees of freedom. The scalar product is denoted by x y ≡ ηαβ xα yβ = xα yα (Einstein’s summation convention
is used), where (ηαβ ) = diag(1,−1,−1,−1), and ε0123 = 1 for the Levi-Civita completely anti-symmetric pseudo-
tensor. Greek indices run over 0,1, 2,3 and 0 stands for the time component.
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momenta canonically conjugated to xµ and kµ read, respectively,

pµ = m

�

f (ξ)
ẋµ
p

ẋ ẋ
− 2ξ f ′(ξ)

p
ẋ ẋ

kẋ
kµ

�

, and πµ = 2m

p
ẋ ẋ

k̇̇k
ξ f ′(ξ)k̇µ .

The corresponding Casimir invariants can now be calculated

C1 = m2[ f 2(ξ)− 4ξ f (ξ) f ′(ξ)] , C2 = −4m4l2ξ f 2(ξ)[ f ′(ξ)]2 .

By requiring that C1 ≡ m2 and C2 ≡ −
1
4 m4l2 (identically), one gets two first-order differential

equations that, remarkably, have a common solution of the form f (ξ) =
q

1±
p

ξ. The
Hamiltonian action describing these rotators takes on the form

S = −m

∫

dλ
p

ẋ ẋ

√

√

√

√1±

√

√

√

−l2 k̇̇k

(kẋ)2
+

∫

dλΛ kk , (2)

with Λ being a Lagrange multiplier. As will be explained below, the dynamical system defined
by the action (2) is not suitable as a clock. However, it is equivalent to a geometric model of a
spinning particle introduced earlier in a different context by Lyakhovich, Segal, and Sharapov
[8] and as such can be used with success.

3 Hessian rank deficiency for subluminal intrinsic motion

In the Lagrangian form of dynamics, there are s Lagrangian equations

d
dλ
∂ L
∂ q̇i
−
∂ L
∂ qi
= 0 , i = 1, 2, . . . , s ,

for a dynamical system with s (physical) degrees of freedom. In this form the Lagrangian L is
assumed to be a function of s generalised coordinates qi =Qi(λ) and the corresponding veloc-
ities v i = Q̇i(λ) that altogether characterise the physical state of the system. Differentiating
the Lagrange equations with respect to the independent parameterization λ, one gets a system
of second-order equations

Hi ja
j =
∂ L
∂ qi
−
∂ 2 L
∂ v i∂ q j

v j −
∂ 2 L
∂ λ∂ v i

, Hi j ≡
∂ 2 L
∂ v i∂ v j

.

Provided that det[Hi j] ̸≡ 0 for this system, one can express accelerations ai = Q̈i(λ) as in-
dependent functions of positions and velocities. When the Hessian determinant det(Hi j) is
non-vanishing the Lagrangian is called regular, otherwise it is called singular. For a singu-
lar Lagrangian, there is an infinite number of accelerations available from which a dynamical
system can choose at any stage of its motion. The regularity (or singularity) is a qualitative
feature, independent of the particular coordinates in which the Lagrangian has been expressed.

Note, that the discussion just above assumes that the Lagrangian has been expressed in
terms of the physical degrees of freedom only. In a more general situation, the notion of a
Lagrangian regularity or singularity becomes context-dependent. The reason for this is that,
in describing a dynamical system, one can use a Lagrangian involving only s physical degrees
of freedom or a Lagrangian in an extended configuration space involving additional r, non-
dynamical degrees of freedom. The Hessian square matrix has dimension s in the first case
and dimension s + r in the extended case. In both cases, however, the Hessian rank must
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not be lower than s. The use of a Lagrangian description involving spurious or auxiliary de-
grees of freedom often makes the description more transparent or easier to tackle with, for
example, fully covariant. In order not to come into confusion, instead of referring to singu-
larity/regularity of a Lagrangian it would be better to refer to the rank of the Hessian matrix
(denoted with Rk(H)) as it is not changed when additional gauge degrees of freedom are
introduced and, accordingly, the Lagrangian is rewritten in an extended configuration space.

A good example is provided by the ordinary point particle. Its Lagrangian in the covariant
form L = −m

p
ẋ ẋ is singular – it involves a spurious gauge degree of freedom. In the gauge

λ = x0 one gets a regular Lagrangian L = −m
p

1− ẋ ẋ , where ẋ is the spatial velocity vector.
In both cases, the Hessian rank is 3 and equals the number of degrees of freedom considered
physical in the context of a point particle. Similarly, when it comes to a relativistic rotator, the
Lagrangian recast in a form involving only the 5 physical degrees of freedom characteristic of
a genuine rotator should be regular, which means that the determinant of the corresponding
5×5 Hessian matrix must be non-vanishing. This implies that the rank of the full 8×8 Hessian
matrix of the original singular Lagrangian (1) involving also non-dynamical degrees of freedom
should be 5 too.

One can verify the condition Rk(H) = 5 for all members of the considered family of
relativistic rotators (1) regarded as dynamical systems with 5 physical degrees of freedom.
Following the calculation presented in [5], one can start with Cartesian coordinates (x , y, z)
and spherical angles (ϕ,θ ) describing the position and the null direction in a reference sys-
tem of some inertial observer. The arbitrary parameter λ can be set to be proportional to
the time of that observer, λ = l−1 t. Then, in terms of the vector matrices V = [ ẋ , ẏ , ż]T ,
N = [sinθ cosϕ, sinθ sinϕ, cosθ]T and W =

�

θ̇ , ϕ̇ sinθ
�T

, the Lagrangian form (1) gets re-
duced to

L = −m
p

1− V T V f (ξ) , with ξ=
W T W

(1− N T V )2
and f ′(ξ) ̸≡ 0 . (3)

The Hessian determinant can be found by taking components of vectors V and W as inde-
pendent velocity variables (linearly related to the original set of velocities) and using some
identities for determinants of block matrices. As shown in [5], the resulting determinant reads

det[Hi j]∝ f 3 (ξ)
�

f ′ (ξ)
�2
�

1+ 2ξ
�

f ′(ξ)
f (ξ)

+
f ′′(ξ)
f ′(ξ)

��

,

where the proportionality factor (not shown) is independent of f . Hence, only with f satis-
fying the differential equation

�

f (ξ) + 2ξ f ′(ξ)
�

f ′(ξ) + 2ξ f (ξ) f ′′(ξ) = 0 the Lagrangian (3)
will be singular. This equation has only one solution such that f ′(ξ) ̸≡ 0, namely

f (ξ) = a
q

1± b
p

ξ ,

with a and b being positive integration constants to be set by the Casimir parameters.
Now it becomes clear that the only Lagrangian with deficient rank in the investigated

family of relativistic rotators (1) is that defined by the action (2) (its Hessian rank is 4, not
5). In consequence of this the phase of the clocking mechanism has the nature of a gauge
variable [5, 9], which is the reason why the dynamical system (2) cannot be interpreted as a
clock.

4 Singularities in the inverse Legendre transformation. Zitterbe-
wegung with the speed of light.

According to Dirac’s method [10], the Hamiltonian for a (reparametrization invariant) rela-
tivistic system is a linear combination of first-class constraints (whose Poisson bracket with
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all other constraints is vanishing). The coefficients of this combination are arbitrary functions
of the independent parameter. There are four such constraints for the Lagrangian (2): the
first two follow from the requirement imposed on both Casimir invariants: C1≡pp≃m2 and
C2≡−detGram(p, k,π)≃−1

4 m4l2; the other two constraints concern the particular realisation
of the spinning degrees of freedom described by a null direction k (with the corresponding
conjugate momentum π): kk ≃ 0 and kπ ≃ 0 – the latter ensures that the physical state is
independent of the arbitrary scale of k. All of these constraints are first-class. Remembering
that one can use any equivalent combination of constraints, it immediately follows that the
total Hamiltonian, as implied by the original Lagrangian form (2), can be taken as [9]

H =
u1

2m

�

pp−m2
�

+
u2

2m

�

pp+
4

l2m2
(kp)2ππ
�

+ u3kπ+ u4kk , (4)

with ui ’s being independent arbitrary functions.4 Now the Hamiltonian constraints follow from
the equations ∂ui

H = 0 while the velocities are defined through the Hamiltonian equations:

ẋµ =
∂H
∂ pµ

=
u1 + u2

m
pµ + u2

4 (kp)(ππ)
l2m3

kµ , k̇µ =
∂H
∂ πµ

= u2
4 (kp)2

l2m3
πµ + u3kµ . (5)

Now, the Hamiltonian form (4) can be assumed as a starting point. All Lagrangians correspond-
ing to the Hamiltonian (4) can be obtained by applying the inverse Legendre transformation.
The form of the resulting Lagrangian L ≡ pẋ + π̇k−H, when expressed in terms of the veloci-
ties, is subject to the invertibility of the map (5) restricted to the submanifold defined by the
Hamiltonian constraints. On this submanifold induced is a corresponding map between two
sets of scalar variables {u1, u2, u3, kp, pπ} and {k̇̇k, k̇ẋ , ẋẋ , kẋ , k̇k} which is easier to investigate:

ẋ ẋ = u2
1 − u2

2 , kẋ = (u1 + u2)
kp
m

, k̇̇k = −
4(kp)2

l2m2
u2

2 ,

k̇ẋ = (u1 + u2)
�

4(kp)(pπ)
m3l2

u2 + u3

�

kp
m

, k̇k = 0 .
(6)

The number of new constraints for velocities depends on the rank of the Jacobi matrix of the
above mapping. It can be shown that this rank depends only on the variables u1, u2, and
equals 4 for u2

1 ̸= u2
2 ̸= 0, 3 for u1 = u2 ̸= 0, and 2 for u1 = −u2 ̸= 0.

In passing from the Hamiltonian to the Lagrangian, one may first assume that u1 + u2 ̸= 0
and u2 ̸= 0. Then the momenta expressed as functions of velocities and ui ’s read

pµ =
m

u1 + u2
ẋµ −

l2m(u1 + u2)2(k̇̇k− 2u3k̇k)
4(kẋ)2u2

kµ

kẋ
, πµ =

l2m(u1 + u2)2

4(kẋ)2u2
(k̇µ − u3kµ) .

From the constraint equations pp−m2 = 0 and pp+ 4
l2m2 (kp)2(ππ) = 0 two conditions for u1

and u2 follow:
ẋ ẋ

(u1 + u2)2
+

u1 + u2

2u2
ξ= 1 , and

(u1 + u2)2

4u2
2

ξ= 1 . (7)

The resulting u1, u2 can be expressed as independent functions of the velocities, provided that
the Jacobian determinant of the transformation (7) — regarded as one leading from variables

4The Hamiltonian formulation of the whole class of relativistic rotators defined by the general Lagrangian (1)
was presented in [9]. This formulation uses the minimal phase space in terms of four-vectors. There is also
possible a description of dynamical systems in extended phase spaces that upon reduction should recover the
minimal Hamiltonian form. In the case of the particular Lagrangian (2) such an approach was presented by Das
and Ghosh [11] who also obtained the Hamiltonian (4). They started with a counterpart of Lagrangian (2) written
in an extended space exploiting a trick, introduced by Lukierski Stichel and Zakrzewski [12], in which additional
auxiliary variables allow one to make the time derivative structure of the original Lagrangian easier to tackle with.
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( ẋ ẋ ,ξ) to variables (u1, u2) which, up to a constant factor, is equal to ξ ẋ ẋ
u3

2(u1+u2)
— is non-zero.

In this case the resulting Lagrangian overlaps with that in the action integral (2). However,
assuming that the condition ẋ ẋ ̸= 0 is not satisfied, two other Lagrangians are possible.

In the first case u1 = u2, and the corresponding new velocity constraints follow:

ẋ ẋ
kẋ
= 0 , l2 k̇̇k

kẋ
+ kẋ = 0 .

Then, from (6), u1 = χ, u2 = χ, u3 = ν, kp = m
2χ kẋ and pπ= l2m2

2kẋ

�

k̇ẋ
kẋ −ν
�

with χ and ν being

arbitrary functions. After discarding a total derivative involving k̇k and the higher order terms
in the velocity constraints, the resulting Lagrangian can be cast in the following form linear in
these constraints

L =
mκ
2

ẋ ẋ
kẋ
+

m
4κ

�

l2 k̇̇k
kẋ
+ kẋ

�

+Λ kk . (8)

Here, κ(χ)≡ kp
m is a new variable independent of velocities while Λ is a Lagrange multiplier.

In the second case, for u1 = −u2, a restricted Legendre transformation should be con-
sidered with pµ left (for a while) unaltered. Using equations (5) and (6), one can find that

π = ∓ lm2

2
k̇−u3k

kp
p
−k̇̇k

and u2 = ∓
lm
2kp

p

−k̇̇k. Now, integrating away the term linear in k̇k, another

Lagrangian is obtained in the form

L = pẋ ±
lm2

2

p

−k̇̇k
kp

+Λ kk . (9)

Inferred from equations (5) and (6) the result ẋµ = ± lm2

2

p
−k̇̇k
(kp)2 kµ can be re-obtained by per-

forming arbitrary variations of the Lagrangian with respect to pµ, hence eẋ = ± lm2

2

p
−k̇̇k

2(kp)2 ek for
any vector eµ, and this fact can be used to eliminate pµ from (9). Accordingly, the alternative
form of the above Lagrangian can be taken to be

L = m

�

−4l2 k̇̇k
(ek)2(eẋ)2

�1/4

eẋ +Λ kk ,

which involves arbitrary (timelike) eµ (then the condition ek ̸= 0 is satisfied) playing the role
of the initial momentum p.

Unlike the Lagrangian (2), the new Lagrangians (8) and (9) have analytic structure com-
patible with the constraint ẋẋ = 0. They describe intrinsic motion with the speed of light (see
Appendix).

5 Conclusion

In this paper, the present status of Staruszkiewicz’s relativistic rotators in free motion was
discussed. The original motivation behind introducing the rotators was the idea of devising
a model of an ideal clock that could be used to test the clock hypothesis [4]. However, the
constraints imposed on the Casimir invariants for the purpose of realising the quantum irre-
ducibility idea on the classical level, lead to Lagrangians with deficient Hessian rank (which is
4 instead of 5) when subluminal intrinsic motion is assumed from the start. In consequence
of this the clocking rate remains arbitrary function of the proper time in the momentum rest
frame.
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However, at the level of constrained Hamiltonians, one makes no a priori assumptions
about the velocities. Constraints on velocities may appear when passing from the Hamiltonian
to the Lagrangian. With this method one recovers the original Lagrangian with subluminal
motion when the rank of the inverse Legendre transformation is maximal. For a lower rank
(when this transformation becomes singular) one obtains two new Lagrangians (8) and (9)
with intrinsic motion with the speed of light (the motion of the momentum rest frame is still
subluminal). The solutions are presented in Appendix.

The dynamical systems described by the new Lagrangians exhibit behaviour that can
viewed as a counterpart of Zitterbewegung known for two states of Dirac’s free electron (see
the interesting and original discussion by Breit [13]). The existence of the two systems con-
forms with the distinguished role of the constraint ẋẋ = 0. It remains to investigate how these
systems would behave when appropriately coupled with the electromagnetic or gravitational
field.

A Appendix

For both Lagrangians, the momentum P≡∂ ẋ is conserved, hence P=me, where e is a constant
unit future-oriented timelike four-vector and m is a mass parameter. The equation ∂ΛL=0
implies kk=0. The arbitrary parameterization λ and the arbitrary scale of k can be chosen
so that eẋ=1 and ke=1. Furthermore, the spatial vector n defined by k=e+n is unit and
orthogonal to e: nn=− 1 and ne=0.

For the Lagrangian (9), the equation ∂p L=0 implies ẋ=(l/2)Ω(e+n)withΩ≡
p
−ṅṅ, which

in turn givesΩ=2/l from the previous condition ėx=1 which is now seen to identify λwith the
time t in the momentum frame (in which the time axis is directed along e). Finally, ẋ=e+ n.
The momentumΠ≡∂k̇ L reduces toΠ=−(ml2/4)ṅ. Since ∂k L=−me+2Λ(e+n), the respective
Lagrangian equation reduces to the equation for large circles on a unit sphere, n̈+(2/l)2n=0,
where the Lagrange multiplier Λ=m/2 was earlier determined upon taking the scalar product
n(Π̇ − ∂k L)=0 and using the identity ṅṅ+ nn̈=0 satisfied by any vector with constant product
nn. The solution reads n=a cosφ+ b sinφ, where φ=(2/l)t is the phase, a and b are constant
vectors such that aa=− 1=bb, ab=0, ae=0=be. Substituting this in the other equation for x
and integrating, one obtains x=et+(l/2) (a sinφ − b cosφ). The phase φ=(2/l)t is a unique
function of the proper time t in the momentum frame and ẋ ẋ=0.

For the Lagrangian (8), the conserved momentum P≡∂ ẋ L=me implies

κ

kẋ
ẋ=e−

1
4κ

�

1−
l2 k̇̇k+2κ2 ẋ ẋ
(kẋ)2

�

k , hence κ=ek .

Now, taking scalar products of the above equation with e and ẋ , and with itself, one gets three
equations from which one finds that kẋ=2(ke)(eẋ), l2k̇k̇+(kẋ)2=0, and ẋ ẋ=0. This in turn
implies ẋ/(eẋ)=2e − k/(ke). By applying the gauge eẋ=1 and ke=1 as in the previous case,
and then the decomposition k=e+n, one finally obtains ṅṅ= − 4/l2 and ẋ=e − n (note the
sign difference with the previous case). Then one finds in an analogous way as before, that
n̈+(2/l)2n=0, however withΛ=−m/4. This leads to a solution x=et−(l/2) (a sinφ − b cosφ)
with φ=(2/l)t.
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