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Abstract

This paper presents the parastatistics of braided Majorana fermions obtained in the
framework of a graded Hopf algebra endowed with a braided tensor product. The
braiding property is encoded in a t-dependent 4 x 4 braiding matrix B, related to the
Alexander-Conway polynomial. The nonvanishing complex parameter t defines the
braided parastatistics. At t = 1 ordinary fermions are recovered. The values of t at
roots of unity are organized into levels which specify the maximal number of braided
Majorana fermions in a multiparticle sector. Generic values of t and the t = —1 root of
unity mimick the behaviour of ordinary bosons.
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1 Introduction

Braided Majorana fermions have been intensively investigated since the [1] Kitaev’s proposal
that they can be used to encode the logical operations of a topological quantum computer
which offers protection from decoherence (see also [2—4]). In this talk I present consequences
and open questions about the parastatistics of Z,-graded braided Majorana qubits derived from
the results of [5]; this paper applied to Z,-graded qubits the [6] framework of a graded Hopf
algebra endowed with a braided tensor product. A nonvanishing complex braiding parameter
t controls the spectra of multiparticle Majorana fermions. Inequivalent physics is derived for
the set of t roots of unity which are organized into different levels (L,,Ls,...,Lso). The
levels interpolate between ordinary fermions (L, for t = 1) and the spectrum of bosons (“L,”
recovered at t = —1). The intermediate levels L; for k = 3,4,5,... implement a special type
of parafermionic statistics (see [7-9]) which allows at most k — 1 braided Majorana excited
states in any given multiparticle sector.

The paper is structured as follows. In Section 2 the braiding of Z,-graded qubits is il-
lustrated. In Section 3 the truncations of the spectra at roots of unity are discussed. The
consequences for the parastatistics are presented in Section 4.
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2 Braiding Z,-graded qubits

We present the main ingredients of the construction. A single Majorana fermion can be de-
scribed as a Z,-graded qubit which defines a bosonic vacuum state |0) and a fermionic excited

state |1):
|o>=((1)), |1>=(‘1)). M

The operators acting on the Z,-graded qubit close the gl(1]|1) superalgebra. In a convenient
presentation they can be defined as

10 01 00 00
~(oo) e=(00) (1) o=(07) @

Their (anti)commutators are

[aaﬁ]:ﬂn [a’Y]:_Y) [a,5]:O, [5Jﬁ]:_ﬁ: [6)Y]:Y>
{B,B}={r,r}=0, {B,r}=a+d. 3

The diagonal operators a, 8 are even, while 3,y are odd, with y the fermionic creation oper-
ator.

The excited state is a Majorana since it is a fermion which coincides with its own antipar-
ticle. This is a consequence of the fact that the (2) matrices span the Clifford algebra C1(2,1)
which, see [10,11], is of real type (implying that the charge conjugation operator is the iden-
tity).

The construction of multiparticle Z,-graded qubits is obtained via the coproduct A of the
graded Hopf algebra U/(gl(1]1)), the Universal Enveloping Algebra of gl(1]|1).

The braiding of the graded qubits is realized by introducing a braided tensor product ®,
such that, for the operators a, b (I is the identity) one can write

(I®p, a)- (b & 1) = ¥(a,b), )

where the right hand side operator ¥(a, b) satisfies braided compatibility conditions.
For the purpose of braiding Z,-graded qubits it is only necessary to specify the braiding
property of the creation operator v:

I ®p, v)- (1 ®p, I) = ¥(y,7). 5)
A consistent choice for the right hand side is to set
(y,y) =B - (r®7), (6)

where B, is a 4 x 4 constant matrix which depends on the complex parameter t # 0. The dot
in the right hand side denotes the standard matrix multiplication.
The braiding compatibility condition is guaranteed by assuming B, to be given by

1 0 0O O
0O 1—-t ¢t O
0 0 —t
since B, satisfies
(B;®I,) - (I,®B;)-(B;®L,)=(I,®B,) (B, ®1,) (I, ®B,). (8

The matrix B, is the R-matrix of the Alexander-Conway polynomial in the linear crystal rep on
exterior algebra [12] and is related, see [13], to the Burau representation of the braid group.

046.2


https://scipost.org
https://scipost.org/SciPostPhysProc.14.046

Scil SciPost Phys. Proc. 14, 046 (2023)

3 Truncations at roots of unity

The requirement that
B? = ]14 1) (9)

for some n = 2,3, ... finds solution for the n — 1 roots of the polynomial b, (t). This set of
polynomials is defined as

GEDYC
j=0

so that

bi(t)=1,

by(t)=1—t,
by(t)=1—t+t2,
b(t)=1—t+t>—1t3,
bs(t)=1—t+t2—t34+t%,

The set of by(t) polynomials enters the construction of multiparticle states. The n-particle
vacuum |0),, is given by the tensor product of n single-particle vacua:

|0),=10)®|0)®...®|0) (n times). (10)

The fermionic excited states are created by applying powers of tensor products involving the
single-particle creation operator y. For n = 2,3 one has, e.g., that the first excited state is
created by

Y2) =L ®p v +71 8 Iy,
Ye) =L ®y L ®y ¥+ 1 ® ¥ ®pr I + 7 @ [ @, I (11)

By taking into account the braided tensor product one obtains, for the second and third excited
states,

Yoy =1 =0 (r 1),

Yoy = (1 =) (I ®pr ¥ ®pr ¥+ 7 ®pr Iy ®pr ¥ +71 ®pr 1 ®p 1),

Y(Bg) =1-0)A—-t+ tz) : (Y Bpr ¥ ®Bbr Y)

This construction works in general. The by (t) = 0 roots of the polynomials produce truncations
at the higher order excited states and the corresponding spectrum of the theory.

4 The levels and the associated parastatistics
The single-particle Hamiltonian H can be identified with the operator § in (2). It follows that
the single-particle excited state has energy level E = 1.This is also true (due to the property of

the Hopf algebra coproduct) for the first excited state in the multiparticle sector. Each creation
operator produces a quantum of energy.
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In the n-particle sector the energy spectrum of the theory depends on whether t produces
a truncated or untruncated spectrum. The notion of truncation level acquires importance.

A “level-k” root of unity, for k = 2,3,4,..., is a a solution t; of the b;(t;) = 0 equation
such that, for any k’ < k, by/(t;) # O.

The physical significance of a level-k root of unity is that the corresponding braided mul-
tiparticle Hilbert space can accommodate at most k — 1 Majorana spinors.

The special point t = 1, being the solution of the b,(t) = 1 —t = 0 equation, is a level-2
root of unity. It gives the ordinary total antisymmetrization of the fermionic wavefunctions.
The t =1 level-2 root of unity encodes the Pauli exclusion principle of ordinary fermions.

With an abuse of language, the t = —1 root of unity, which does not solve any b;(t) = 0
equation, can be called a root of unity of co level.

The physics does not depend on the specific value of t, but only on the root of unity level. A
generic t which does not coincide with a root of unity produces the same untruncated spectrum
of the t = —1 “L.” level.

The following energy spectra are derived.

Case a, truncated L level: the n-particle energy eigenvalues E are

E=0,1,...,n, for n<k,
E=0,1,...,k—1, for n>k;

a plateau is reached for the maximal energy level k —1; this is the maximal number of braided
Majorana fermions that can be accommodated in a multiparticle Hilbert space;

Case b, untruncated (t = —1) L level: the n-particle energy eigenvalues E are
E=0,1,...,n, forany n;
there is no plateau in this case. The energy eigenvalues grow linearly with N.

We can associate the roots of unity levels to fractions.
Let t = e'® = ¢f ™ with f € [0, 2[. The following fractions correspond to the roots of unity
levels:

Lo =1,
LZZO,
L 15
3_3:3’
L 13
4_2)2:
137
L5=_J_)_52)
5555
2 4
L = 555>
°7 33
135911 13
L7:_7_)_:_)_:_5
7777 77
1357
L8:_J_)_J_)
4444

046.4


https://scipost.org
https://scipost.org/SciPostPhysProc.14.046

Scil SciPost Phys. Proc. 14, 046 (2023)

As an example, the 5 roots of bg(t) = 1—t +t2—t3+t*—t> are classified, for t = exp(if),
into:

level-2 root, 6 =0,
level-3 roots = /3 and 57t/3,
level-6 roots 6 = 27t/3 and 47/3.

Figure 1: Roots of unity up to level 8.

The above figure shows how the roots of unity are accommodated up to level 8.
The level k root accommodates at most k inequivalent energy levels in the multiparticle
states.

5 Conclusion

The [5] braided multiparticle quantization of Majorana fermions produces truncations of the
spectra at certain values of t roots of unity. This feature points towards a relation between the
braided tensor product framework here discussed and the representations of quantum groups
at roots of unity where similar truncations, see [14,15], are observed. The precise connection
of the two approaches is on the other hand not yet known and still an open question. The
representations of the quantum group U, (gl(1]1) at roots of unity have been classified and
presented in [16] (see also [17]). A possibility to investigate the connection seems to be offered
by the scheme of [ 18] which shows how a quasitriangular Hopf algebra can be converted into
a braided group.

On a separate issue it should be mentioned that a forthcoming paper will present, with the
help of intertwining operators, the construction of the braided tensor product ®;, in terms of
an ordinary tensor product ®. This construction relates the observed parastatistics of Majorana
fermions to the “mixed brackets” (which interpolate ordinary commutators and anticommu-
tators) that have been introduced in [19] in defining the Volichenko algebras.
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