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NLO finite system size corrections to 2→ 2 scattering
in φ4 theory using newly derived sum of sinc functions
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Abstract

Previously an equation of state for the relativistic hydrodynamics encountered in heavy-
ion collisions at the LHC and RHIC has been calculated using lattice gauge theory meth-
ods. This leads to a prediction of very low viscosity, due to the calculated trace anomaly.
Finite system corrections to this trace anomaly could challenge this calculation, since the
lattice calculation was done in an effectively infinite system. In order to verify this trace
anomaly it is sensible to add phenomenologically relevant finite system corrections. We
investigate massive φ4 theory with periodic boundary conditions on n of the 3 spatial
dimensions. 2 → 2 NLO scattering is then computed. Using a newly derived formula
for an arbitrary dimensional sum of sinc functions, we show that the NLO finite size
corrections preserve unitarity.
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1 Introduction

There is an apparent formation of Quark Gluon Plasma (QGP) in heavy ion collisions [1–
3], where the correlations between the outgoing low-momentum particles appear to be well
described by nearly inviscid relativistic hydrodynamics. This calculation uses an Equation of
State (EoS) provided by a lattice QCD calculation that is extrapolated to infinite system size [4].

It is currently unclear what happens in QCD just above the transition temperature T = 180
MeV. There is strong evidence of a second order phase transition, but the nature of the new
phase is largely unknown. It is therefore necessary to understand how reliably the experi-
mental behaviour found in the finite systems (such as heavy ion or parton collisions) can be
extrapolated to effectively infinite systems, such as the QGP found in the ∼ 0.000001 seconds
after Big Bang.
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A possibly significant assumption to be investigated is that heavy ion collisions can be well
approximated as infinite sized systems [5]. Indeed quenched lattice QCD calculations have
shown significant possible corrections dependent on the size of the system [6]. An analytic
derivation of the finite size effects on the equation of state (or equivalently the trace anomaly)
is therefore sought. This work is a step in that direction, with the intention to develop and
understand the mathematical techniques necessary for a full treatment necessary for finite
temperature finite sized QCD.

2 Finite Sized φ4 Theory

Let us consider the φ4 Lagrangian

L= 1
2
∂ µφ∂µφ −

1
2

m2φ2 −
λ

4!
φ4 , (1)

in a system with periodic boundary conditions. If we consider n compact spatial dimensions,
with the ith dimension being parameterized by [−πLi ,πLi]with periodic boundary conditions.
This discretizes the possible spatial momenta to p⃗ =
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then finds [8] in n= 3 spatial dimensions that, up to NLO, one gets the renormalized
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Here we recognize the log term as corresponding to the standard result in infinite φ4 systems
[7]. As one would then expect the second term in the integral vanishes in the limit as all
Li →∞ since limx→∞ K0(x) = 0. We can see that we could reduce the effective number of
finite dimensions by quite simply taking the corresponding Li →∞, since only terms in the
sum with the corresponding mi = 0 will survive the limit. We then find that, as in the infinite
system case,

M= λ
�

1+λ
�

V (s) + V (t) + V (u)
��

, (3)

up to NLO, with s, t and u being the usual Mandelstam variables.

3 Unitarity

In order to verify that unitarity has stayed intact we will show that the optical theorem holds,
no matter how many dimensions m are of finite size. For the optical theorem to hold, we need
that

2 Im[M] = σtot . (4)

It is a straight-forward calculation to find

σtot =
λ2

16π
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m−1 . (5)

002.2

https://scipost.org
https://scipost.org/SciPostPhysProc.15.002


SciPost Phys. Proc. 15, 002 (2024)

By following [8] one gets that
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sinc
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2πR∥k⃗∥
�

, (6)

up to NLO. We can then use A.7 to get

2 Im[M] = λ2

16π
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The equivalence of Equations 5 and 7 shows that the Optical Theorem, and therefore Unitarity,
holds independent of the amount of compact dimensions.

4 Conclusion

By passing all considered self-consistency checks, namely having the correct infinite limit and
preserving unitarity, we have shown the viability of the mathematical tools developed and
employed. Notably it greatly supports the generalization of the number theoretic formula
derived in A, which has potential implications in number theory.
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A Sum of Sinc functions

We will need a generalization of a formula for the multi-dimensional sum of sinc functions,
namely sums of the form

∑

k⃗∈Zm

sinc(2πR∥k⃗∥) , (A.1)

where we define sinc(x) =

¨

sin(x)
x x ̸= 0

1 x = 0
.

Since the sum only depends on the magnitude of k⃗, we can simplify the sum using the Sum of
Squares function rd(n) which gives the amount of k⃗ ∈ Zd with ∥k⃗∥2 = n. Allowing us to use
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from [9]. To employ their analytically continued version of the Poisson summation formula
we can first set f (r) = sinc(2πRr). Then we can calculate f̂

f̂ (p) =
2π

m
2

Γ (m
2 )
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Now we can apply A.2
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Here we should note that if rm(R2) ̸= 0 we will get a term with θ (0) = 1
2 which we note will

give a 1
0 term in the sum for m> 1. Therefore
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where
∑∗

0≤l<R2
means that if R2 ∈ Z, then its term in the sum has weight 1

2 . The m = 2
case corresponds directly to a formula of Ramanujan [10], making this result a generalization
thereof.
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