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Abstract

We review the progress achieved within the last five years in the simulations of lattice
QCD, as well as in the analysis for selected quantities probing nucleon structure. In
particular, we discuss results on the nucleon electromagnetic form factors, σ-terms, the
momentum fraction carried by quark in the nucleon and the helicity and transversity
moments. All quantities are obtained using simulations generated with quark masses
fixed to their physical values. In addition, we review the on-going effort to extract parton
distribution functions (PDFs) directly from lattice QCD using the quasi-PDF approach.
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1 Introduction

Understanding the structure of the nucleon in terms of its fundamental constituents, the quarks
and gluons, is an overarching objective of current and future experiments at major facilities
world-wide, such as Jefferson lab, PSI, RHIC, LHC, DESY, and the planned Electron Ion Collider
(EIC). A rich experimental program is underway to unravel the valence quark distribution func-
tions at Jefferson lab with the 12-GeV upgrade. The signature of sea quarks is being studied
at Fermilab with a polarized beam and target as well as at RHIC shedding light on the orbital
angular momentum and spin of light sea quarks. Generalized Parton Distributions (GPDs) in-
vestigated through the analysis of hard exclusive processes at HERA, COMPASS and CLAS12,
allow one to construct the three-dimensional spatial map of the nucleon. This program will
be greatly reinforced by the future experiments at Jefferson Lab for valence quarks, and for
the gluons and sea quarks at the Electron-Ion Collider providing a complete three-dimensional
mapping of the nucleon [1].

Lattice QCD, has seen remarkable progress in recent years producing simulations at the
physical values of the quark masses. This allows to obtain nucleon observables and properties
without the need for a chiral extrapolation, thus eliminating a major source of an uncontrolled
systematic error. In addition, theoretical progress has enabled exploratory studies of the parton
distribution functions themselves directly from lattice QCD [2]. This is to be compared to
the traditional approach of calculating their lower moments. In this presentation, we review
results on a number of nucleon quantities that related to the aforementioned experiments.

2 The lattice QCD formalism

Gauge invariant quantities are computed by evaluating the path integral

〈O〉= 1
Z

∫

D[U]O
�

D−1[U], U
�

∏

f=u,d,s,c

Det f (D[U]) e−S[U] , (1)

over gauge configurations U , after integrating over the fermionic degrees of freedom. A Wick
rotation into imaginary time is already performed. S[U] is the exact gauge action of QCD
and D[U] is the exact fermionic determinant that occurs after integrating over the fermions
and generates sea quark loops. D−1 is the quark propagator. In order to evaluate the path
integral of Eq. (1), one defines the theory on a discrete 4-dimensional Euclidean lattice and
considers a finite volume V . The functional integral over the gauge degrees of freedom is then
amenable to a numerical simulation. The input required is the same as for QCD, namely the
quark masses and the coupling constant. The latter is directly related to the lattice spacing a
through the β-function. Therefore, one needs four physical quantities to fix the light, strange
and charm quark masses and an additional one for the lattice spacing.

There are several ways to put the fermions on a discrete lattice that leads to different
ways of representing D, each one having its own advantages and disadvantages. The main
ones are: i) Wilson-type fermions that include the clover and twisted mass formulations, ii)
staggered fermions, iii) domain wall fermions, and iv) overlap fermions, with associated major
collaborations pursuing simulations using one of these formulations. In the continuum limit
these different formulations should all agreed.
A lattice QCD computation is comprised of three main steps [3]:

• Generation of the gauge configurations {U}. This proceeds via a Monte-Carlo sampling
that includes all the effects of gluonic self interactions and the interactions of gluons
and sea quarks. The ensembles are parameterized by the value of the strong coupling or
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lattice spacing and the masses of the sea quarks. Within each ensemble the configura-
tions are generated via a Markov process, sequentially. This first step requires access to
leadership computers and large resources. These gauge ensembles can then be used to
evaluate any gauge invariant quantity connected to an operator O. Several ensembles
with different lattice spacings and volumes at fix quark masses are required in order to
take the continuum and infinite volume limits.

• The second step is the computation of D−1, which is the quark propagator. The quark
propagators are contracted into correlation functions depending on the operator O.
Since the size of the fermionic metric D is large, this step also requires leadership com-
puters and large resources to perform the large number of inversions, which however
can be done independently on each gauge configuration.

• The third step involves the analysis of the resulting correlation functions to extract the
expectation value of O. This analysis can be done on smaller systems.

The work-flow of a typical lattice QCD computation for baryon structure is shown schemati-
cally in Fig. 1. The three-point correlation functions are divided into connected when a probe
couples to a valence quark and to disconnected when it couples to a sea quark or a gluon.

Kyriakos Hadjiyiannakou Nucleon Spin Structure from lattice QCD

Computation of  observables on the Lattice

 1

Lattice QCD

Simulation of  gauge 
configurations (U)

Quark 
Propagators

�O� =
1

Z

�
D[U ]O(D�1[U ], U)e�S[U ]

�

f=u,d,s,c

det (D[U ])f
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Figure 1: A typical work-flow for a lattice QCD hadron structure computation. The
diagrams shown in the lower left box correspond to the connected and disconnected
three-point correlators needed for baryon structure studies.

As already mentioned, lattice QCD simulations are being performed with quark masses
fixed to their physical values. This was achieved by developing multi-grid algorithms that
make inversions at physical light quark mass faster. As can be seen in Fig. 2, the cost for
inversions remains constant with decreasing the value of the quark mass, making simulations
and their analysis possible.
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Figure 2: Left: Time to solution for the computation of D−1 using the conjugate
gradient (red points) and the 3-level Adaptive Aggregation-based Domain Decompo-
sition Multigrid (DD-αAMG) for twisted mass fermion [4, 5]. Right: A summary of
zero-temperature simulations by various collaborations that include Clover, Twisted
Mass, Staggered and Domain Wall fermions.

Although lattice QCD provides an exact formalism for solving QCD, one needs a careful
study of systematic errors. In the past, not having simulations at physical values of the light
quark mass, necessitated a chiral extrapolation. For the pion sector such an extrapolation
using NLO SU(2) chiral perturbation theory works well for pion masses mπ < 250 MeV [6].
In the nucleon sector chiral extrapolation is more problematic and previously introduced an
uncontrolled systematic error [7]. With simulations with physical pion mass this systematic
error has been eliminated. Therefore, in what follows we will focus on results obtained using
simulations near physical pion mass, since we will focus on baryons. Other systematic effects
that need to be investigated are:

• Discretisation effects: Since the computation is done at finite lattice spacing a one needs
to take the continuum limit. This requires simulations for at least three values of a at
fixed quark masses and volume.

• Finite volume effects: A numerical evaluation is necessarily done using a finite volume.
At least three volumes would be required at fixed quark masses and a to take the infinite
volume limit.

• Renormalization: Matrix elements computed on the lattice must be properly renormal-
ized in order to compare with what is measured in the laboratory. In state-of-the-art
computations renormalization is carried out non-perturbatively. However, for gluonic
quantities and where there is mixing non-perturbative renormalization is still difficult
and it is an on-going process.

• Ground state identification: Extracting the ground state from a tower of higher excited
states needs large Euclidean time resulting in large gauge noise and difficult identifica-
tion of ground state properties. Furthermore, for a class of quantities, such as for the
direct computation of PDFs, one needs to boost the hadron to large momentum. This
introduces large statistical errors requiring very large statistics and development of noise
reduction techniques.
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3 Low-lying baryon spectrum

The simplest quantities to calculate in lattice QCD are hadrons masses. For this class of ob-
servables the aforementioned systematics have been taken into account. Hadron masses are
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Figure 3: Left: The effective mass of low-lying baryons. Right: the mass of the
low-lying octet and decuplet baryons from various collaborations extrapolated to the
continuum limit. The horizontal bands are the experimental values. Open symbols
indicate the input used to fix the lattice spacing (nucleon) and strange quark mass
(Ω−).

extracted from two-point correlation functions

C2pt(~q, ts) =
∑

~xs

e−i~xs·~q 〈J(~xs, ts)J̄(0)〉=
∑

n=0,··· ,∞
Ane−En(~q)ts

ts→∞−→ A0e−E0(~q)ts (2)

in the large Euclidean time ts taking ~q = ~0. The effective mass defined as the ratio
meff(~0, ts) = ln

�

G(~0, ts)/G(~0, ts + a)
�

, yields the mass of the lowest lying hadron of the quan-
tum numbers of J . We show in Fig. 3, the effective mass of the low lying baryons extracted by
various collaborations. The lattice QCD results agree with the experimental values providing
a validation of the lattice QCD approach. In Fig. 4, we show the masses of the spin-1/2 and
3/2 charmed baryons. The doubly charmed Ξcc was predicted by lattice QCD to have larger
mass than claimed by SELEX. LHCb at CERN confirmed the lattice QCD prediction illustrating
the predictive power of lattice QCD.

4 Nucleon structure

In order to calculate matrix elements one computes the following three-point function

Cµν3pt(Γ ; ~q = 0, ts, tins)=
∑

~xins,~xs

Tr
�

〈Γ JN (ts, ~xs)Oµν(tins, ~xins)J̄N (t0, ~x0)〉
�

,

where you consider an operator Oµν probing the nucleon. The three-point function has con-
nected and disconnected diagrams shown diagrammatically in Fig. 5.
As in the case of the effective mass and considering for simplicity ~q = 0, we construct a ratio

Rµν(Γ ; ~q = ~0, ts, tins) =
Cµν3pt(Γ , ~q = 0, ts, tins)

C2pt(Γ0, ts)
−→M+O(e−∆E(ts−tins)) +O(e−∆Etins), (3)
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Figure 4: Left: Masses of spin 1/2 baryons. The mass of Ξcc was correctly predicted
by lattice QCD and confirmed by LHCb [8]. It is higher than the value by SELEX [9],
shown by the grey band. Right: Masses of spin-3/2 baryons [10]. The mass of Λc is
used to fix the charm quark mass.

0 0

j

0 0

j

Figure 5: A diagrammatic representation of the connected (left) and disconnected
(right) three-point functions. A state with the quantum numbers of the nucleon is
created at time zero (source), taken here to be the electromagnetic current Jµ, that
propagates in Euclidean time and is annihilated at time ts (sink). The probe couples
to a quark at time tins.

which in the large Euclidean time becomes time independent (plateau), yielding the nucleon
matrix element M. However, the statistical errors grow exponentially with the time separation
making the detection of excited states difficult. We thus include in the fit the first excited state
(two-state fit) or even a second state if the lattice QCD data are accurate enough. Another
approach is to sum the ratio to obtain

ts−a
∑

tins=a

Rµν(Γ ; ~q = ~0, ts, tins) −→ c +Mts +O(e−∆Ets). (4)

By fitting the summed ratio linearly with ts one can extract M. This approach is referred to
as the summation method. We typically use a combination of these three approaches to check
for the suppression of excited states.

4.1 Moments of parton distribution functions

Generalized parton distribution functions are light-cone correlation functions written as

FΓ (x ,ξ, q2) =
1
2

∫

dλ
2π

ei xλ〈p′|ψ̄(−λk/2)Gei g
∫ λ/2
−λ/2dαk·A(kα)

ψ(λk/2)|p〉, (5)

where q = p′−p is the momentum transfer, P̄ = (p′+p)/2, k is a light-cone vector and P̄.k = 1.
Expansion of the light cone operator leads to a tower of local operators Oµµ1...µn and thus
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to the computation of nucleon matrix elements of quark bilinears 〈N(p′, s′)|Oµ1···µn
G |N(p, s)〉.

Depending on the G-structure we have three classes of Mellin moments:

i) Unpolarized: Oµµ1···µn
V = ψ̄(x)γ{µi

↔
D µ1 . . . i

↔
D µn}ψ(x),the lowest two of which are gq

V
for n= 0 and 〈x〉q for n= 1

ii) Helicity: Oµµ1···µn
A = ψ̄(x)γ{µi

↔
D µ1 . . . i

↔
D µn}γ5ψ(x), the lowest two of which are gq

A
for n= 0 and 〈x〉∆q for n= 1

iii) Transversity: Oνµµ1···µn
T = ψ̄(x)σ{ν,µi

↔
D µ1 . . . i

↔
D µn} τ

a

2 ψ(x), the lowest two of which
are gq

T for n= 0 and 〈x〉δq for n= 1.

The first two Mellin moments can readily be computed within lattice QCD and there is a long
history of such computations. However, it is only recently that we have results directly at the
physical point i.e. using simulations with mπ ∼ 135± 10 MeV.

In order to benchmark our lattice QCD formalism and analysis, we examine the case of the
isovector axial charge of the nucleon gu−d

A , which is very accurately measured from neutron
β decay. This is the first Mellin moment of the helicity PDF. For the unpolarized PDF, since the
electromagnetic current is conversed, gu−d

V = 1. In contrast, the transversity isovector charge
gu−d

T is poorly known and it is an example where lattice QCD can provide valuable input. In
Fig. 6, we show the analysis for determining the nucleon matrix element that yields gu−d

A .
As can be seen, the ground state matrix element M, determined by the asymptotic plateau
value (one-state fit), the two- and three- state fits and the summation method, agrees with
the experimental value. This is an example of an analysis carried out using one ensemble of
twisted mass fermions with the light, strange and charm quark masses fixed to their physical
values [11]. This so-called cB211.072.64 ensemble has a = 0.08 fm, mπ = 139 MeV, spatial
length L/a = 64 and Lmπ = 3.6. The action is O(a)-improved so finite lattice spacing effects
are expected to be small. This was indeed shown by previous studies using twisted mass
ensembles simulated with heavier than physical pion mass.

A similar analysis is done to extract the isovector tensor charge gu−d
T . We find a value of

gu−d
T = 0.926(32) in the MS scheme at µ= 2 GeV, providing a more precise value as compared

to 0.53± 0.25 extracted by analyzing experimental data [12].
In Fig. 7 we show results for gu−d

A and gu−d
T using the cB211.072.64 ensemble in com-

parison with two additional ensembles of twisted mass fermions with dynamical light quarks,
lattice spacing a = 0.094 fm and Lmπ = 3 and Lmπ = 4, as well as from other collabora-
tions that analyzed ensembles simulated with approximately physical values of the pion mass.
As can be seen, there is very good agreement among all lattice computations, which points
to small finite a and volume effects, since the continuum and infinite volume limits are not
performed.

GPDs can be decomposed into Lorentz invariant functions known as generalized form fac-
tors (GFFs). For the unpolarized GPD the decomposition is

〈N(p′, s′)|OµνV |N(p, s)〉= ūN (p
′, s′)

�

A20(Q
2)γ{µPν} + B20(Q

2)
iσ{µαqαPν}

2m
+

+ C20(Q
2)

q{µqν}

m

�

uN (p, s), (6)

where OµνV = ψ̄γ{µi
↔
D ν}ψ and A20(Q2), B20(Q2) and C20(Q2) are the three GFFs. Q2 = −q2

is the momentum transfer squared in Euclidean space. The second Mellin moment is given
by A20(0), which gives the momentum fraction carried by a quark 〈x〉q, while the total spin
carried by a quark is given by Jq =

1
2 [A20(0) + B20(0)]. In Fig. 8 we compare lattice QCD
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Figure 6: Left: The ratio of Eq. (3) as a function of the time separation ts and the
time of the inversion tins. Center: the values extracted from fitting the data of the left
panel to a constant assuming ground state dominance. The blue band is the result of
a two-state fit. Right: The values of M extracted from a two-state fit as a function of
the lower value of ts used in the fit, t low

s (filled blue squares) and from three-state fits
(light blue down triangles). The filled green triangles are the values of M extracted
using the summation method of Eq. (4). The open blue square is the selected value
for M with the associated error shown with the grey band across the three panels.
The darker band shows the PDG value of gu−d

A = 1.273(2).
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T (right). The error band is the one associate with the analysis of the

twisted mass ensemble cB211.072.64. Open symbols are from phenomenological
analysis of experimental data.

results for the isovector 〈x〉u−d with results from phenomenological analyses. As can be seen,
although individual results are precise, the spread among them is comparable to the accuracy
achieved within lattice QCD. In the same figure we show results for the helicity and transver-
sity moments. For the helicity lattice QCD results are in agreement with phenomenological
determinations while for the transversity moment lattice QCD provide a valuable prediction.
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Figure 8: A comparison of recent lattice QCD and phenomenological results on the
momentum fraction 〈x〉u−d (left), on the helicity moment 〈x〉∆u−∆d (upper right)
and the transversity 〈x〉δu−δd (lower right). The error band is the one associate with
the analysis of the twisted mass ensemble cB211.072.64.

While for isovector quantities only the connected part of the three-point contributes, for
the isoscalar and thus for the determination of the individual flavor Mellin moments, we need
to evaluate the disconnected part depicted in Fig. 5. The disconnected part is technically more
difficult to compute requiring large computational resources. It is only recently that we are
able to compute these diagrams, which are needed for studying sea quarks effects. This has
become possible using a combination of stochastic techniques, dilution and deflation of lower
modes [13]. The intrinsic spin 1

2∆Σ
q carried by a quark of flavor q is given by

∆Σq(µ
2) =

∫ 1

0

d x
�

∆q(x ,µ2) +∆q̄(x ,µ2)
�

= gq
A. (7)

In Fig. 9 we show lattice QCD results on the intrinsic quark spin for the light and strange
quarks. The former have contributions form both connected and disconnected parts, while
the strange is purely disconnected. As can be seen, the disconnected contributions, although
small, are non-zero and need to be included to reach agreement with the experimental values.
In Table 1 we summarize the nucleon charges for each quark flavor. Beyond the single favor
axial and tensor charges one can extract the scalar charge and the closely related σ-terms
defined as σq = mq〈N |ψ̄qψq|N〉. The combination σπN = 1/2(σu+σd) constitutes one of the
fundamental low-energy parameters playing a significant role for phenomenological studies
of low energy scattering. The σ-terms are important for direct dark matter searches [14].

Because of the phenomenological importance of σ-terms a number of groups have com-
puted them. In Fig. 10 we compare lattice QCD and phenomenological results on σπN and
σs. The smaller value predicted by lattice QCD is in agreement with the original analysis that
yielded σπN ∼ 45 MeV [15] but it is in tension with recent analyses that yield larger values.
These include an analysis based on the Roy-Steiner equations and experimental data on pi-
onic atoms yielding a value of 59.1(3.5) MeV [16]. This larger value was confirmed using a
large-scale fit of pionic-atom level shift and width data across the periodic table [17] as well
as πN scattering lengths from the low-energy data base [18]. Given the significant progress
in the determination of σπN both using experimental data [19–21] and lattice QCD this per-
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Figure 9: We show the intrinsic quark spin 1
2∆Σ

q for the u (upper), the d (center)
and s quarks (lower) as a function of the pion mass. Open symbols do not include
the disconnected contribution.

Table 1: Single flavor charges and σ-terms from the cB211.072.64 ensemble. (†) In
the case of u and d quarks we give σπN of relevance to phenomenology.

u d s c

gA 0.858(17) -0.428(17) -0.0450(71) -0.0098(34)

gS 6.02(55) 4.67(44) 0.395(54) 0.075(17)

gT 0.716(28) -0.210(11) -0.00270(58) -0.00023(16)

σ [MeV] 41.6(3.8)† 39.8(5.5) 107(22)

sisting tension needs to be further examined. Computing the πN scattering lengths within
lattice QCD will provide a crucial cross-check. For the σc-term of the charm quark, lattice
QCD provides a valuable prediction.

4.2 Electromagnetic form factors

The nucleon electromagnetic form factors are fundamental quantities characterizing the struc-
ture of the nucleon that have been extensively studied both theoretically and experimentally. A
recent major experimental development is the measurement of the proton charge radius with
electron scattering experiments at Jefferson lab [22] that confirms the smaller value measured
by the Lamb shift in muonic hydrogen at PSI [23], that points to the resolution of the so-called
proton radius puzzle. Computing such fundamental properties as the proton radius directly
from QCD constitutes a milestone of nuclear physics and of lattice QCD.

The nucleon matrix element of the electromagnetic current is parameterized in terms of
the Dirac (F1) and Pauli (F2) form factors as

〈N(p′, s′)| jµ|N(p, s)〉=

√

√

√ m2
N

EN (~p ′)EN (~p)
ūN (p

′, s′)

�

γµF1(q
2) +

iσµνq
ν

2mN
F2(q

2)

�

uN (p, s) . (8)
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Figure 10: A comparison of recent lattice QCD and phenomenological results on
the nucleon σπN -term fraction (left), on the strange σs-term (upper right) and the
charm σc-term (lower right). The error band is the one associate with the analysis of
the twisted mass ensemble cB211.072.64. Grey circles are phenomenological studies
using as input lattice data.

N(p, s) is the nucleon state with initial (final) momentum p (p′) and spin s (s′), uN is the nu-
cleon spinor, EN (~p) (EN (~p ′)) the initial (final) energy and mN the nucleon mass. The electric
and magnetic Sachs form factors GE(q2) and GM (q2) are alternative Lorentz invariant quanti-
ties that can be expressed in terms of F1(q2) and F2(q2) via the relations,

GE(q
2) = F1(q

2) +
q2

4m2
N

F2(q
2) , GM (q

2) = F1(q
2) + F2(q

2) . (9)

In Fig. 11 we show results on the electric and magnetic form factors for the neutron [13] using
the twisted mass ensemble cB211.072.64. The disconnected contributions are included. As
can be seen, lattice QCD provides more precise results on the neutron electric form factor than
experiment, while for the magnetic we observe a nice agreement for Q2 > 0.2 GeV2. The
reason for the small discrepancies at smaller Q2 is under investigation.
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Figure 11: Neutron electric (left) and magnetic (right) form factors as a function
of Q2. Filled circles show the lattice QCD results obtained using the cB211.072.64
ensemble [13] and black crosses are experimental results (see Ref. [13] for the the
detailed bibliography on the experimental results). The fits to lattice QCD results use
the Galster-like form for the electric form factor and a dipole form for the magnetic.

The role of the strange quarks in the proton can be probed through the strange electro-
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magnetic form factors. Parity violating electron-proton elastic scattering events probing the
interference of photons and Z-bosons exchanges enable the measurement of the strange form
factors and weak charge of the proton. An accurate determination of the neutral-weak vector
form factor in combination with the electromagnetic form factors are needed in order to put
constraints on new physics beyond the standard model (SM). In Fig. 12 we show results on the
strange electromagnetic form factors [24]. As can be seen, the strange magnetic form factor
is negative yielding a magnetic moment of −0.01 to -0.02. This provides the most accurate
determination of these quantities.
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Figure 12: Strange electric (left) and magnetic (right) form factors as a function of
Q2. The different coloured band show systematics due to using different fit range
and the plateau versus the summation determination [24].

4.3 Direct evaluation of PDFs

A calculation of PDFs from first principles is a valuable addition to the global fitting analyses
and of crucial importance for the deeper understanding of the inner structure of hadrons. The
non-perturbative nature of PDFs makes lattice QCD an ideal ab initio formulation to determine
them. A novel method to extract parton distribution functions from lattice QCD was proposed
recently by Ji [2]. It is based on considering matrix elements probing purely spatial correla-
tions, making them accessible within the Euclidean formulation of lattice QCD. It is based on
the Large Momentum Effective Theory (LaMET) that enables the matching of lattice results to
the infinity momentum frame (IFM). Quasi-PDFs and IFM PDFs have the same infrared physics
and thus the matching can be done in perturbation theory i.e. UV regularization is necessarily
taken first, before the infinite momentum limit. Quasi-PDFs are defined as

q̃(x , P3) =

∫ +zmax

−zmax

dz
4π

e−i x P3z 〈N |ψ(0, z)GW (z, 0)ψ(0,0) |N〉 , (10)

where |N〉 represents a nucleon, which is boosted in the z-direction with momentum
P=(P0, 0, 0, P3). On the lattice, quasi-PDFs are thus computed using matrix elements of non-
local operators containing a straight Wilson line of finite length z, that varies from 0 to some
maximum value, zmax.

Quasi-PDFs are matched to the physical PDFs through the factorization

q(x ,µ) =

∫ ∞

−∞

dξ
|ξ|

C
�

ξ,
µ

P3

�

q̃
�

x
ξ

,µ, P3

�

+O

�

m2
N

P2
3

,
Λ2

QC D

P2
3

�

, (11)

where q(x ,µ) is the light-cone PDF at an energy scale µ and C is the matching kernel, which
can be computed perturbatively and has so far been evaluated to one-loop level.
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Figure 13: Unpolarized PDF (upper left), helicity PDF (upper right) and transversity
PDF (lower)(blue curve). The global fits of Refs. [29–31] (unpolarized) , Refs. [32–
34] (helicity) , Refs. [35] (transversity) are shown for qualitative comparison.

A first attempt to compute directly PDFs was done by LP3 [25] and ETMC [26]. In Fig. 13
we show the most recent results computed by ETMC using an ensemble simulated at the phys-
ical pion mass [27, 28]. The errors shown are statistical only, and significant effort is needed
to properly quantify systematic uncertainties present in the various steps of the analysis. Nev-
ertheless, already lattice QCD results can describe the general features and provide a more
accurate determination of the transversity PDF.

5 Conclusion

Precision nucleon structure from lattice QCD is now possible due to two major developments:
i) simulations using dynamical light, strange and charm quarks with their masses fixed to
the physical value are available thanks to algorithmic advances and larger computers, and
ii) computation of both connected and disconnected contributions to sufficient accuracy is
feasible due to advanced techniques and access to GPUs. This progress will continue with the
advent of exascale computers expected in the next couple of years.

A number of collaborations are computing key quantities such as the first and second
Mellin moments reproducing the nucleon axial charge and providing a prediction for the tensor
charge and second transversity moment. This enables cross-checks among the different formu-
lations. We expect more precision results to emerge as systematic errors are investigated and
taken into account. We also expect that more demanding quantities to become amenable to
a lattice QCD computation. A recent example is the direct computation of parton distribution
functions within lattice QCD. The results produced already are very promising and a number
of complementary approaches are being advanced with good prospects for improvements.
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