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Effect of isospin averaging for ppK− kaonic cluster
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Abstract

The kaonic cluster ppK− is described by isospin-dependent NK̄ potentials with significant
difference between singlet and triplet components. The quasi-bound state energy of the
system is calculated based on the configuration space Faddeev equations within isospin
and averaged potential models. The isospin averaging of NK̄ potentials is used to sim-
plify the isospin model to isospinless one. We show that three-body bound state energy
E3 has a lower bound within the isospin formalism due to relation |E3(VNN = 0)|< 2 |E2|,
where E2 is the binding energy of isospin singlet state of the NK̄ subsystem. The averaged
potential model demonstrates opposite relation between |E2| and |E3(VNN = 0)|.
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1 Introduction

The quasi-bound states in the kaonic cluster NNK̄(sNN = 0) defined by the spin sNN of nucleon
pair are intensively debated during the last years. The theoretical predictions for the binding
energy are in significant disagreement with the values derived from existing experimental
data [1]. The properties of the kaonic cluster are defined by NK̄ interaction, having significant
difference for the isospin singlet and triplet channels. The isospin singlet component of the
NK̄ potential generates a quasi-bound state corresponding to the Λ(1405) resonance below
the pK− threshold. The resonance has the double state nature due to the NK̄ quasi-bound state
andπΣ resonance [2]. There are two potential models for the NK̄ quasi-bound state which are
used for three-body calculations. The first one is the AY model based on the Akaishi-Yamazaki
(AY) NK̄ potential with taking into account the πΣ coupling effectively has been proposed in
Ref. [2]. This effective NK̄ interactions have a strong attraction in the singlet I = 0 channel
and a weak attraction in the triplet I = 1 channel. The binding energy of ppK− obtained within
this isospin model is |ENNK̄ |=48 MeV [2]. The two-body threshold is close to the bound state
energy of Λ(1405) as K−p bound pair (about 30 MeV). Similar results have been obtained
within similar phenomenological models [3, 4] taking into account the πΣ coupling directly.
This value is much smaller than the experimentally motivated value of about 100 MeV for the
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ppK− deeply bound state [5–7]. The second model proposed for the NK̄ interaction (see HW
potential in Ref. [8]) is the chiral model. This model reduces the isospin singlet component
of NK̄ potential due to the strong coupling NK̄ and πΣ channels. The value about 20 MeV
for |ENNK̄ | was obtained with the two-body threshold about 11 MeV. Discussion about the
experimental background and theoretical interpretations can be found in Ref. [1,9].

In the present work, we show, that within isospin model for NNK̄(sNN = 0) based on the
phenomenological potentials, the value of binding energy about 100 MeV cannot be reached
due to a relation between E2 and E3(VNN = 0). Where, E2 is two-body bound state energy
and E3(VNN = 0) is the energy of bound three-body system, when the interaction between the
identical particles is omitted. The relation is a result of isospin splitting of NK̄ potential and
strong binding in the NK̄ singlet I = 0 channel.

The relation between E2 and E3(VAA = 0) has been previously found for bosonic isospinless
AAB systems [11]. For the systems, the contribution of the mass polarization term to the three-
body energy leads to the relation |E3(VAA = 0)|> |2E2|.

The ”isospinless model” for the kaonic clusters based on the isospin averaged NK̄ potential
have been proposed in Refs. [10, 11]. In Ref. [12], such averaging defined as "V-averaging"
is related to isospin averaged NK̄ potential: V av

N K̄
= 3

4 V I=0
NK̄
+ 1

4 V I=1
NK̄

. Another type of the
averaging called in Ref. [12] as "t-averaging" is applied for two-body t-matrix within the im-
pulse representation for treatment of the system. These two types of averaging were proposed
for simplification of isospin models describing three and four -body kaonic clusters. The t-
averaging was previously used in Refs. [13–15] for NNK̄ calculations when sNN = 1 and
sNN = 0. The NK̄ interaction amplitude was presented by isospin decomposition of two-body
isospin singlet and triplet amplitudes: fNK̄ =

3
4 f I=0

NK̄
+ 1

4 f I=1
NK̄

. The decomposition is different
for sNN = 0 and sNN = 1 spin states of NNK̄ system. Based on this difference, the authors of
Refs. [13–15] obtain approximate evaluation for strength of the NK̄ interaction in the ppK−

and dK− systems.
We apply the V-averaging to obtain an isospinless model for NNK̄(sNN = 0) system. The

goal is to compare the isospin and the isospinless model to show the effect of isospin spliting
of the NK̄ interaction. The result of such comparison is the different relations between E2 and
E3(VNN = 0) satisfying for both types of the NK̄ potential (AY and sHW). Our study is based on
the Faddeev equations in configuration space [16]. The Faddeev equations allow to separate
components of the total wave function corresponding to the different particle rearrangements.

2 Formalism

2.1 Faddeev equation for AAB system

The kaonic cluster ppK− are represented by the three-body AAB system with two identical
particles. The total wave function of the AAB system is decomposed into the sum of the Fad-
deev components U and W corresponding to the (AA)B and A(AB) types of rearrangements:
Ψ = U +W ± PW , where P is the permutation operator for two identical particles. In the
expression for Ψ, the sign ”+” corresponds to two identical bosons, while the sign ”−” corre-
sponds to two identical fermions, respectively. Each component is expressed by corresponding
Jacobi coordinates. For a three-body system with two identical particles the set of the Faddeev
equations is presented by two equations for the components U and W [10,11,17]:

(H0 + VAA− E)U = −VAA(W ± PW ),
(H0 + VAB − E)W = −VAB(U ± PW ), (1)

where again the signs ”+” and ”−” correspond to two identical bosons and fermions, respec-
tively and H0 is the kinetic energy operator presented in the Jacobi coordinates for correspond-
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ing rearrangement. The wave function of the system AAB is symmetrized with respect to two
identical bosons, while it is antisymmetrized with respect to two identical fermions.

In the presented work, we consider the s-wave approach for the AAB systems. For bosonic
system, we have the Faddeev equations (1) in the form with the sign ”+”. When VAA = 0, one
obtains a single equation: (H0+VAB−E)W = −VAB PW. Here, we assume that the VAB potential
generates a deep bound state with energy E2. The term of right hand side of the equation is
the exchange term. This term adds negative energy to the two-body energy E2 defined by
left hand side of the equation and the three-body energy becomes less than E2: E = E3 < E2
(the mass polarization effect). The strength and range parameters of the AB potential and
mass ratio mB/mA have importance here. The evaluations for the mass polarization term for
different systems one can find in Ref. [11].

2.2 Isospin formalism for kaonic system

The NNK̄ system is a system with two identical particles described by Eq. (1). The separation
of spin-isospin variables leads to the following form of the Faddeev equations:

(H0 + VNN − E)U = −VNN D(1+ p)W ,
(H0 + VNK̄ − E)W = −VNK̄(D

TU + GpW), (2)

where W is a column matrix with the isospin singlet and triplet coordinate dependent parts
of the Faddeev component W . The component U is presented by isospin triplet part of U
corresponding to the spin singlet state of NN pair. The matrixes have the following form:

D = (−
p

3
2

,−
1
2
), G =

�

1
2

p
3

2p
3

2 −1
2

�

, W =

�

W s

W t

�

, U = U t . (3)

The superscripts s and t in (3) denote the singlet and triplet isospin parts of the components
U and W . In Eq. (2), VNN = v t

NN is isopsin triplet NN potential in the singlet spin state and
VNK̄ = diag{vs

N K̄
, v t

N K̄
}, and the exchange operator p acts on the particles’ coordinates only.

For calculations, we use the s-wave Akaishi-Yamazaki [2] and the simulating Hyodo-Weise
(sHW) effective potentials [18] of NK̄ interactions, which are energy independent and include
the coupled-channel dynamics into a single channel NK̄ interaction. Below, we show that the
relation

|E3(VNN = 0)|< 2|E2| (4)

takes place for the kaonic cluster ppK−. Here, it is assumed that the interaction between two
identical particles is omitted, VNN = 0 and the |E3(VNN = 0)| is binding energy of the three-
body system. The relation (4) can be explained by strong attraction of the isospin singlet NK̄
potential having a deep bound state with the binding energy E2.

2.3 Reduction to isospinless model: averaged potential

In this section, we define the effective potential obtained by averaging of the initial potential
over isospin variables. This averaging produces the "isospinless" (or "bosonic") model for the
kaonic clusters.

The isospin averaged potential V av
K̄N

is defined as:

V av
K̄N
=

3
4

vs
N K̄
+

1
4

v t
N K̄

. (5)

Here, we use the isospin singlet and triplet components vs
N K̄

and v t
N K̄

of the AY NK̄ potential.
This potential has a moderate attraction in comparison with the strong attraction in the I = 0
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channel. The two-body threshold is changed to lower one and is not related to the pK− bound
state as Λ(1405).

Eq. (2) is reduced to the scalar form by an algebraic transformation. Taking into account
that fW = DW , V av

N K̄
= DVNK̄ DT and DDT = 1, DVNK̄ GDT = V av

N K̄
one obtains

(HU
0 + VNN − E)U = −VNN (1+ p)fW ,

(HW
0 + V av

N K̄
− E)fW = −V av

N K̄
(U + pfW). (6)

Thus, the isospin averaging of NK̄ potential is defined as V av
N K̄
= DVNK̄ DT .

One can evaluate the mass polarization in the three-body system described by Eq. (6) using
the definition: ∆= 2Eav

2 − Eav
3 (VNN = 0). Here, Eav

2 is NK̄ two-body binding energy obtained
with the averaged potential and Eav

3 (VNN = 0) is the three-body binding energy calculated by
Eq. (6) when the NN interaction is omitted. The value of ∆ is positive [11].

3 Numerical results

The results of the calculations for the NNK̄ ground state energy are presented in Table 1. For
the both potentials AY and sHW, the relation 2E2 − E3(VNN = 0) < 0 is satisfied. The three-
body binding energy |E3| is larger than the value |E3(VNN = 0)| due to the contribution of
weak attractive VNN potential. Obtained results are comparable with the results of calculations
performed within different approaches. For example, calculated values |E3| reported in Ref. [4]
are 47–54 MeV for the phenomenological K̄N potentials that does not exceed the value of
60 MeV.

Table 1: Ground state energies E3 of the NNK̄ system with the AY and sHW potentials
for the NK̄ interactions and the MT I-III potential [19] for the NN interaction. The
results for the case VNN = 0 are given in parenthesis. The difference δ of the two-
body 2E2 and three-body E3 energies, δ = 2E2 − E3, is presented. The energies are
given in MeV.

Potentials E2 E3 δ

MT I-III, AY -30.30 -46.0 (-42.9) -14.6 (-17.6)
MT I-III, sHW -11.16 -21.0 (-17.1) -1.3 (-5.2)

We calculated the difference δ of the two-body E2 and three-body E3 energies related to
Eq. (4) as δ = 2E2 − E3 to evaluate the relation (4) for different NK̄ potentials. For both
models (AY and sHW), the relation is satisfied.

We illustrate the existence of the lower bounds for the ground state energy of the NNK̄
system in Fig. 1 and 2 using the AY, sHW and averaged (av) potentials for NK̄ interaction.
The energies E2, 2E2 and E3 are shown as functions of the scaling factor α which controls the
strength of interaction between non-identical particles: VNK̄ → αVNK̄ . The case, when the AA
potential acting between identical particles is neglected, VNN = 0, is presented in Fig. 1. One
can see that the relation (4) is well satisfied for both models with the AY and sHW potentials.
The isospinless model with averaged (av) potential demonstrates opposite relation. When
0.9< α <1.1, the mass polarization term depends weakly on strength of the NK̄ potential and
2Eav

2 − Eav
3 (VNN = 0)≈ const.

The situation is slightly altered when the NN interaction is included in the calculations as
is shown in Fig. 2. The attractive NN interaction affects the E3 and the corresponding curves
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Figure 1: NNK̄(VNN = 0) system: the energies E2 (dashed line), 2E2 (dot-dashed
line) and E3 (solid line) are shown as functions of the scaling factor α, VNK̄ → αVNK̄ ,
a) for AY andAY averaged (av) NK̄ potentials, b) for sHW and sHW averaged (av)
NK̄ potentials. The NN potential acting between nucleons is neglected, VNN = 0.

become lower comparing with Fig. 1. The relation (4) is well satisfied for the large values
of the two-body ground state energy, |E2| > 10 MeV. In the sector of weak AB potential, the
opposite relation |E3(VNN = 0)|> 2|E2| is satisfied.

Note here that for the model with the averaged (av) potential, the Eav
3 becomes to closer

to 2Eav
2 in the sector of large strength of NK̄ potential. It can be explained by the core effect of

the NN potential which only appears for the isospinless model. The repulsion of the core plays
a role when three-body system is very compact. It is will seen for the strong AY interaction in
Fig. 2a).

Figure 2: NNK̄ system: the energies E2 (dashed line), 2E2 (dot-dashed line) and E3
(solid line) are shown as functions of the scaling factor α, VNK̄ → αVNK̄ , a) for AY and
AY averaged (av) K̄N potentials, b) for sHW and sHW averaged (av) K̄N potentials.

The energy Eav
3 of the averaged potential model is larger always to calculated in the isospin

model. This could be expected due to higher position of two-body threshold Eav
2 of the aver-

aged potential model.
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4 Conclusions

The kaonic cluster NNK̄(sNN = 0) was described within isospin formalism using the Faddeev
equations in coordinate space. We have obtained upper bound for the binding energy of quasi-
bound state, |E3|, which can be reached by using this phenomenological isospin-dependent po-
tentials. The relation |E3(VNN = 0)| < |2E2| takes a place for the kaonic system. In particular,
the calculation gives |E3(VNN = 0)| ≈43 MeV for AY NK̄ potential. The |E3| has to be slightly
larger (|E3|=46 MeV) than |E3(VNN = 0)|, due to the weak attractive contribution of the NN
potential. The value of E3 is smaller than |2E2| ∼60 MeV (the bound) and is significantly
smaller than the ”experimentally motivated value” about 100 MeV.

We have compared the isospin and averaged models to show the effect of the averaging (or
termination of isospin splitting). The energies calculated for the averaged NK̄ potential model
satisfy the opposite relation:

�

�Eav
3 (VNN = 0)

�

� > 2
�

�Eav
2

�

�. The averaged potential reduces the
two-body threshold |E2| to a smaller value and three-body binding energy |Eav

3 | is significantly
smaller comparing to one calculated within the isospin model.
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