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Abstract

We give an overview on the evaluation of the axial and pseudoscalar form factors of the
nucleon within the lattice QCD formulation. We discuss recent results obtained from the
analysis of N f = 2+ 1+ 1 twisted mass fermion gauge ensembles generated at physical
values of the pion mass. Besides evaluating the isovector form factors, and the PCAC and
Goldberger-Treiman relations, we also discuss results for the strange and charm axial
form factors. We provide a comparison with other recent lattice QCD results obtained
with different discretization schemes of the fermion action.
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1 Introduction

The electromagnetic form factors of the nucleon have been extensively studied experimentally
for many years leading to their precise determination, for recent results see e.g. [1, 2]. Thus,
they are being used to benchmark theoretical approaches. However, the nucleon axial form fac-
tors are less well known. The axial form factors are important quantities needed for studying
weak interaction processes both theoretically and experimentally. The nucleon matrix element
of the isovector axial-vector current Aµ can be expressed in terms of two form factors, the axial,
GA(Q2), and the induced pseudoscalar GP(Q2). The axial form factor, GA(Q2), is experimen-
tally determined from elastic scattering of neutrinos with protons, νµ+p→ µ++n [3,4], while
GP(Q2) from the longitudinal cross section in pion electro-production [5]. The axial charge
gA ≡ GA(0) can be measured in high precision from β-decay experiments [6,7]. The induced
pseudoscalar coupling g∗P can be determined via the muon capture process µ−+ p→ n+νµ at
momentum transfer squared of Q2 = 0.88m2

µ [8,9], where mµ is the muon mass. If one com-

putes also the pseudoscalar form factor GP(Q2) one can check important phenomenological
relations, such as the partially conserved axial-vector current (PCAC) relation. Furthermore, at
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low momentum transfer square Q2 and assuming pion pole dominance (PPD), one can relate
GA(Q2) to GP(Q2) and derive the Goldberger-Treiman (GT) relation.

Beyond isovector axial form factors mentioned above, it is also interesting to study the
isoscalar, strange and charm quark axial form factors. There is a rich experimental program
studying parity-violating processes asymmetries. Results in forward elastic electron-proton
scattering by HAPPEX [10] combined with data from neutrino and antineutrino-proton elastic
scattering cross sections from Brookhaven E734 [11] determined both the strange vector and
axial form factors of the proton at non-zero Q2 [12]. Additional parity-violating data from the
G0 experiments [13,14] improved the determination of the strange axial form factors and the
MicroBooNE neutrino detector at FermiLab aims ar extracting it for Q2 ∈ 1− 0.08 GeV2. To
date, the axial form factors are the main source of error in the description of neutrino-nucleon
interactions. Therefore, a calculation of these form factors from first principle is important
and will provide valuable input to phenomenology and to on-going and future experiments,
such as DUNE [15] and Hyper-K [16].

Lattice Quantum Dynamics (QCD) provides the ab initio non-perturbative framework for
computing from factors using directly the QCD Lagrangian. Early studies of the nucleon axial
form factors were done using dynamical fermion simulations at heavier than physical pion
masses, as e.g. in Ref. [17]. Only recently, several groups are computing the axial form factors
using simulations generated directly at the physical value of the pion mass [18–24]. The results
discussed here are mostly based on Refs. [25,26].

2 Isovector axial and pseudoscalar form factors and their relations

On the hadron level, the nucleon matrix element of the isovector axial-vector current,
Aµ = ūγµγ5u− d̄γµγ5d, is decomposed into two Lorenz-invariant isovector form factors, the
axial form factor GA(Q2), and the induced pseudoscalar, GP(Q2):

〈N(p′, s′)|Aµ|N(p, s)〉= ūN (p
′, s′)

�

γµGA(Q
2)−

Qµ
2mN

GP(Q
2)
�

γ5uN (p, s), (1)

where uN is the nucleon spinor with initial (final) momentum p(p′) and spin s(s′), q = p′−p the
momentum transfer and q2 = −Q2. The nucleon pseudoscalar matrix element is parameterized
in terms of a single form factor G5(Q2) as

〈N(p′, s′)|P5|N(p, s)〉= G5(Q
2)ūN (p

′, s′)γ5uN (p, s), (2)

where P5 = ūγ5u− d̄γ5d. We omit the superscripts on isovector quantities, unless otherwise
indicated. Isoscalar, strange and charm quantities have a corresponding superscript.

At the form factors level partial conservation of the axial-vector current (PCAC) relates
GA(Q2) and GP(Q2) to G5(Q2) as follows

GA(Q
2)−

Q2

4m2
N

GP(Q
2) =

mq

mN
G5(Q

2). (3)

Expressing the pion field as ψπ =
2mq P
Fπm2

π
, one can connect GP(Q2) to the pion-nucleon form

factor GπNN (Q2) as

G5(Q
2) =

Fπm2
π

mq

GπNN (Q2)
m2
π +Q2

. (4)

Eq. (4) is written so that it illustrates the pole structure of G5(Q2). Substituting G5(Q2) in
Eq. (3), one obtains the GT relation [17,27]

GA(Q
2)−

Q2

4m2
N

GP(Q
2) =

1
mN

GπNN (Q2)Fπm2
π

m2
π +Q2

. (5)
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The pion-nucleon form factor GπNN (Q2) at the pion pole gives the pion-nucleon coupling
gπNN ≡ GπNN (Q2 = −m2

π). In the limit Q2→−m2
π, the pole on the right hand side of Eq. (5)

must be compensated by a similar one in GP(Q2), since GA(−m2
π) is finite. Therefore, if we

multiply Eq. (5) by (Q2 +m2
π) we have

lim
Q2→−m2

π

(Q2 +m2
π)GP(Q

2) = 4mN FπgπNN (6)

and, thus, one can extract gπNN from GP(Q62). Assuming pion pole dominance and for
limQ2→−m2

π
, GP(Q2) = 4mN FπGπNN (Q2)/(m2

π + Q2). Inserting this expression for GP(Q2) in
Eq. (5) we obtain the GT relation [28]

mN GA(Q
2) = FπGπNN (Q

2), (7)

which means that GP(Q2) can be expressed as [29]

GP(Q
2) =

4m2
N

Q2 +m2
π

GA(Q
2). (8)

From Eq. (7), the pion-nucleon coupling can be expressed as gπNN = mN GA(−m2
π)/Fπ. In the

chiral limit, lim
mπ→0

GA(−m2
π) → gA and we have that gπNN =

mN
Fπ

gA, which at finite pion mass

receives corrections. The deviation from equality is known as the GT discrepancy given by
∆GT ≡ 1− gAmN

gπNN Fπ
and it is estimated to be at the 2% level [30].

3 Determination of nucleon matrix in lattice QCD

In order to extract the nucleon matrix elements one need to calculate the appropriate three-
point functions, as schematically shown in Fig. 1. The three-point function is given by

Cµ(Γk, ~q, ~p ′; ts, tins, t0)=
∑

~xins,~xs

ei(~xins−~x0)·~qe−i(~xs−~x0)·~p ′×Tr
�

Γk〈JN (ts, ~xs)Aµ(tins, ~xins)J̄N (t0, ~x0)〉
�

,

(9)
where Γk = iΓ0γ5γk and J̄N creates states with the quantum numbers of the nucleon. From
now on we will use ~p ′ = ~0.

Figure 1: Diagrammatic representation of three-point functions (left: connected,
right: disconnected) needed for the determination of nucleon matrix elements. Oµ
is the operator whose nucleon matrix element we seek to evaluate e.g. the axial
vector current Aµ.

The Euclidean time dependence of the three-point function and unknown overlaps of the
interpolating field with the nucleon state, are canceled in an appropriately constructed ratio
of three- to a combination of two-point functions [31–34],

Rµ(Γk, ~q; ts, tins) =
Cµ(Γk, ~q; ts, tins )

C(Γ0, ~0; ts)
×

√

√

√ C(Γ0, ~q; ts − tins)C(Γ0, ~0; tins)C(Γ0, ~0; ts)

C (Γ0, ~0; ts − tins)C(Γ0, ~q; tins)C(Γ0, ~q; ts)
, (10)
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where we take ts and tins relative to the source time t0, or equivalently t0 is set to zero. In the
limit of large time separations (ts − tins)� a and tins � a, the ratio in Eq. (10) converges to
the nucleon ground state matrix element, namely

Rµ(Γk; ~q; ts; tins)
ts−tins�a
−−−−−→

tins�a
Πµ(Γk; ~q) . (11)

Three well-established methods are used to identify ground state dominance, namely the
plateau, summation and two-state fit methods [25]. In the two-state fit we consider contri-
butions from both the ground and first excited states. We allow the first excited state in the
three-point function to be in general different from that of the two-point function. The rea-
son is that multi-particle states are volume suppressed and are typically not observed in the
two-point function. However, if they couple strongly to a current they may contribute in the
three-point function. As pointed out in Refs. [35, 36], this may happen for the case of the
axial-vector current considered here. In order investigate the possibility that multi-particle
states contribute to the three-point function, we perform the following two types of fits:

M1: We assume that the first excited state is the same in both the two- and three-point func-
tions and first fit the two-point function to extract the first excited energy E1(~p) and
overlap factor. We then input this information into our fit of the ratio of Eq. (10). We
also fit the zero momentum two-point function to determine the nucleon mass and then
use the continuum dispersion relation E0(~p) =

q

m2
N + ~p 2 to determine the nucleon en-

ergy for a given value of momentum. The continuum dispersion relation is satisfied for
all the momenta considered. We will refer to this as fit M1.

M2: We allow the first excited state to be different in the two- and three- point functions. In
this case, the first excited energy and overlap in the three-point function are fit param-
eters. We will refer to this as M2 fit.

We follow Ref. [19] and use the matrix element of the temporal component of the axial
vector current, A0, which is very precise, in order to determine the first excited energy and
overlap. The temporal component has not been used in past studies, since it has been found
to suffer from large excited state contributions. For more details see Ref. [25].

In Fig. 2 we show the energy of the first excited state extracted from fitting the two-point
and the three-point function of A0. We observe that the first excited energy extracted from the
two-point function is in agreement with the energy of the Roper. We note that this is different
from what is observed in two recent studies [19, 22], where the first excited state extracted
from the two-point function is much higher. Moreover, the energy of the first excited state
extracted from the three-point function, is in general in agreement with the energy of the
non-interacting two-particle states of N(0) +π(−~p) and N(~p) +π(−~p).

4 Renormalization
The lattice QCD matrix elements need to be renormalized in order to extract physical form
factors. A detailed description of our procedure can be found in Ref. [37]. In the twisted
mass formulation and for the quantities of interest here, we need the renormalization func-
tions ZS for the renormalization of pseudoscalar current, ZP for the renormalization of the
bare quark mass and ZA for the renormalization of the axial-vector current. ZP and ZS are
scheme and scale dependent. Therefore, after the extrapolation (amπ)2 → 0, we convert to
the MS-scheme, which is commonly used in experimental and phenomenological studies. The
conversion procedure is applied on the Z-factors at each initial RI′ scale (aµ0), with a simul-
taneous evolution to a MS scale, chosen to be µ=2 GeV. For the conversion and evolution
we employ the intermediate Renormalization Group Invariant (RGI) scheme, which is scale
independent.
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Figure 2: The energy of the first excited state as a function of Q2. The orange
dashed and cyan dashed-dotted lines are the energies of the non-interacting systems
N(~p)+π(−~p) and N(~0)+π(~p), respectively, and the magenta dotted line is the Roper
energy. The red circles are extracted by a two-state fit to the two-point function. The
blue right- and green down-pointing triangles are E3pt

1 (~p) and E3pt
1 (~p

′ = ~0) extracted
from the three-point function of the temporal axial-vector current with a two-state
fit. Figure is taken from Ref. [25].

5 Results on isovector form factors
Our main results are obtained using an ensemble simulated with two mass degenerate u-
and d-quarks, a strange and a charm quark with mass tuned to approximately the physical one
(N f = 2+1+1), lattice spacing a = 0.08 fm and spatial lattice size L = 5.12 fm or mπL = 3.62
with pion mass mπ = 0.139(1) GeV, used as a proxy for finite volume effects. We refer to this
ensemble as cB211.64. For isovector form factors only the connected contributions are needed.
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Figure 3: Results for the GA(Q2) (left), GP(Q2) (middle) and G5(Q2) (right) form
factors as a function of Q2 from the analysis of the cB211.64 ensemble. Filled red
circles are results using M2 approach and purple crosses using M1. Open red circles
are results using Eq.(8) for GP(Q2) and combining Eq.(8) and Eq. (3) for G5(Q2).

In Fig. 3 we show results for the three form factors using the fit procedures M1 and M2 and
compared with the pion-pole dominance relation of Eq. (8) for GP(Q2) and combining Eq.(8)
and the PCAC relation of Eq. (3) for G5(Q2). We find that allowing the first excited state energy
to be different in the two- and three-point functions has a negligible effect on GA and a larger
effect on GP and G5 but not large enough to fulfil the predicted behaviour from pion pole
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Figure 4: GP(Q2) computed using the cB211.64 ensemble and an N f = 2 + 1 + 1
ensemble (cC211.80) with a = 0.07 fm. Both ensembles have similar volume and
mπ = 0.139 GeV. Figure taken from Ref. [25].

dominance (PPD). As a consequence, the PCAC and PPD relations are not satisfied at low Q2.
Other lattice QCD collaborations find a bigger effect when not constraining the first excited
state energy in the three-point function, resulting in satisfying the PPD relation [19, 38]. In
order to understand the origin of the discrepancy in the PPD and PCAC relations, we examine
lattice spacing effects by analysing an additional N f = 2+1+1 ensemble with a = 0.07 f m and
similar volume. Preliminary results, shown in Fig. 4, illustrate that GP increases at low Q2 as a
decreases and so the continuum limit is important in recovering the PPD and PCAC relations.
Since to take the continuum limit we need at least three lattice spacings, for the results that
follow, we will use the PCAC and PPD relations to obtain GP and G5 from the lattice data on GA.
In Fig. 5 we compare our results with those by other lattice QCD collaborations. Overall, there
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Figure 5: Lattice QCD results on the isovector axial GA(Q2) (left), GP(Q2) (middle)
and G5(Q2) using simulations with physical pion masses. Results using the cB211.64
ensemble are shown with red circles, from the PNDME collaboration [19] with green
squares, from the RQCD collaboration [22] with blue upward-pointing triangles and
from the PACS collaboration [23] with brown down-pointing triangles. Figure taken
from Ref. [25].

is a very good agreement among all results for GA(Q2). PACS results [23] are available for very
small Q2 values since their lattice spatial extent is approximately twice as compared to the size
of the other lattices. Furthermore, unlike other lattice QCD results shown, PACS extracted the
results using the plateau method at the largest time separation available. The results from the
PNDME and RQCD collaborations were extracted using the type-M2 fit. Our results for GP(Q2)
are determined from GA(Q2) and Eq. (3) and are in agreement with the results of PNDME and
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RQCD that were extracted directly form the matrix element without using GA(Q2). Results on
GP(Q2) from PACS are lower at small Q2 values, but their GP(Q2) has been determined using
the plateau fits at relatively small value of the source-sink separations. Our data on G5(Q2)
also used GA(Q2) and PPD and agree with those from PACS computed directly form the matrix
element of the pseudoscalar operator.
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Figure 6: Left panel: Results on the isovector axial mass mA (left) and the axial ra-
dius

q

〈r2
A〉 (right). Right panel: Results for the muon capture coupling constant, g∗P

(top) and the pion-nucleon coupling gπNN (bottom). Red circles with the associated
red band are the results using the cB211.64 ensemble. Results re also shown for two
N f = 2 twisted mass fermion ensembles with a = 0.094 fm and L = 4.5 fm (green
up triangle) and 6.0 fm (orange down triangle), for PNDME [19] (blue left-pointing
triangle), for RQCD [22] (purple right-pointing triangle, with † are results obtained
after chiral and continuum extrapolation), and for PACS [23] (brown rhombus). In-
ner error bars are statistical errors while outer errors bars include systematic errors.
The black crosses are results from phenomenology. Figure taken from Ref. [25],
modified by including the phenomenological value of gπNN from Ref. [39].

Results on the axial mass mA and root mean square radius
q

〈r2
A〉, the muon capture cou-

pling constant, g∗P and the pion-nucleon coupling gπNN are compared to those of other recent
lattice QCD studies using physical point ensembles, experimental results and phenomenology
in Fig. 6. Lattice QCD results are in agreement amongst them. Phenomenological results are
in general much more precise for gπNN . On the other hand, experimental results on g∗P from
ordinary muon capture are compatible with lattice QCD results but carry large errors, while
the result from chiral perturbation theory [40], is as precise as our value from the analysis of
the cB211.64 ensemble.

6 Flavor decomposition of axial form factors
In order to compute the isoscalar, strange and charm form factors, we need to include the dis-
connected three-point function, schematically shown in Fig. 1. An order of magnitude more
computational resources are needed to calculate these contributions as compared to the con-
nected ones. We also need to compute the non-singlet renormalization functions, see Ref. [26].

We show results for the isoscalar axial form factors Gu+d
A (Q2) and Gu+d

P (Q2) in Fig. 7. We
observe that the connected contribution is positive, while the disconnected is negative. For
Gu+d

P (Q2), the disconnected part is of the same magnitude as the connected. This has already
been observed in previous studies [18, 41]. This behavior leads to the cancellation of the
sharp rise observed in the connected only isoscalar Gu+d

P (Q2). Consequently, the isoscalar has
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Figure 7: Renormalized results for the isoscalar Gu+d
A (Q2) (left) and Gu+d

P (Q2) (mid-
dle) as a function of Q2. We show separately the connected (blue triangles) and
the disconnected (open red squares) contributions as well as the sum (black circles).
Open symbols are used for the form factors versus Q2 when showing only discon-
nected contributions. Right: With the solid red line we show the dipole fit and the
dashed blue of the z-expansion fit to Gu+d

A (Q2). Figure taken from Ref. [26].
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Figure 8: Left: Results for the strange Gs
A(Q

2) (top) and charm Gc
A(Q

2) (bottom)
and right: result for the strange Gs

P(Q
2) (top) and charm GC

P (Q
2) form factors as a

function of Q2. We show the fits using the dipole from and z-expansion as well as
the dipole form fit taking the upper fit range up to '0.5 GeV2 (green dotted line and
band). Figure taken from Ref. [26].

an almost flat Q2-dependence, unlike the isovector combination discussed in the Sec. 5. We
use the dipole Ansatz and the z-expansion to fit the Q2 dependence of Gu+d

A (Q2) shown in
Fig. 7. We find gu+d

A = 0.436(28) in agreement with our previous study [42]. The results for
the strange and charm axial form factors are shown in Fig. 8 and are clearly non-zero. Gs

A(0)
gives the strange axial charge and we find gs

A = −0.044(8), while for the charm axial charge
we find g c

A = −0.0098(17). In the SU(3) limit disconnected contributions should vanish in the
octet combination u+d-2s. Instead, we observe deviations of up to 10% for Gu+d−2s

A (0) and up
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to 50% for Gu+d−2s
P (0).

7 Conclusions
Axial form factors including contributions from non-valence quarks can be extracted precisely
enabling us to extract a lot of interesting physics and make predictions. The calculation of sea
quark contributions is feasible providing valuable input e.g. for the determination of strange
and charm form factors and for checking SU(3) symmetry. Further study of the PCAC and
Goldberger-Treiman relations is required. In particular, taking the continuum limit will be a
major next step.
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