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Abstract

In order to understand the nature of the XYZ particles, theoretical predictions of the
various XYZ decay modes are essential. In this work, we focus on the semi-inclusive
decays of heavy quarkonium hybrids into traditional quarkonium in the EFT framework.
We begin with weakly coupled potential NRQCD effective theory that describes systems
with two heavy quarks and incorporates multipole expansions and use it to develop
a Born-Oppenheimer effective theory (BOEFT) to describe the hybrids and compute the
semi-inclusive decay rates. We compute both the spin-conserving and spin-flipping decay
rates and find that our numerical results of the decay rates are different from the previous
studies. We also develop a systematic framework in which the theoretical uncertainty
can be systematically improved.
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1 Introduction

The Standard Model (SM) describes hadrons as bound states of quarks and gluons bounded
by the strong interactions. Traditionally, the hadrons were classified as mesons that are bound
state of quark-antiquark pair or baryons that are bound state of 3-quarks using the quark
model. However, the underlying theory of strong interactions, Quantum Chromodynamics
(QCD) also allows for existence of complex hadron structures beyond mesons and baryons
such as tetraquark (4-quark states), pentaquark (5-quark states), hybrids (hadrons with active
gluons) and glueballs (bound state of gluons), which are known as exotic hadrons or exotics.
The so called XYZ states are the exotic hadrons in the heavy-quark sector. The XYZ states
do not fit the usual charmonium (cc̄) or bottomonium

�

bb̄
�

spectrum and in some cases have
exotic quantum numbers which cannot be reproduced by the ordinary hadrons such as charged
Zc and Zb states. In 2003, the Belle experimental collaboration observed the first exotic state
X (3872) [1] and since then, several of the new exotic hadrons in the heavy-quark sector have

008.1

https://scipost.org
https://scipost.org/SciPostPhysProc.6.008
mailto:abhishek.mohapatra@tum.de
https://doi.org/10.21468/SciPostPhysProc.6
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.6.008&amp;domain=pdf&amp;date_stamp=2022-05-31
https://doi.org/10.21468/SciPostPhysProc.6.008


SciPost Phys. Proc. 6, 008 (2022)

been observed by the different experimental groups: B-factories (BaBar, Belle and CLEO),
τ-charm facilities (CLEO-c, BESIII) and also proton-(anti)proton colliders (CDF, D0, LHCb,
ATLAS, CMS) (see the reviews [2,3] for details on experimental observation).

There are several theoretical models and proposals to understand the nature of the XYZ
exotics. One viable and attractive interpretation for at-least some of the XYZ mesons is the
quarkonium hybrids, which is a bound state of heavy quark and a heavy antiquark together
with gluonic excitation. The other proposals are hadroquarkonium, heavy meson molecule,
tetraquark, and diquark-diquark model (see Ref. [2, 3] for review). However, no single pro-
posal can theoretically explain the complete spectrum of the XYZ exotic states. On the other
hand, several new exotic states have been observed in experiments for which the masses and
the decay rates has been measured (see Ref. [4]). Specifically, several of these exotic states
has been discovered from their decays to standard quarkonium. Therefore, a theoretical un-
derstanding of the decays of XYZ exotics might be an another avenue for understanding their
structure. In this work, our objective is to study the inclusive decays of heavy quark hybrids
to traditional quarkonium i.e, Hm→Qn+X , where Hm is a low-lying hybrid, Qn is a low-lying
quarkonium state and X denotes other final state particles.

Within the QCD framework, one can use lattice simulations and effective field theories
(EFTs) to describe the traditional quarkonium and quarkonium hybrids and compute its spec-
tra. Since, the heavy quarks in quarkonium and heavy-quark hybrids are nonrelativistic, the
appropriate framework to use is the nonrelativistic effective theory NRQCD [5,6]. More specif-
ically, if we are only interested in the dynamics of the two heavy quarks, then the appropriate
framework to use is the potential NRQCD effective theory known as pNRQCD [7, 8]. In case
of quarkonium hybrids, there are well-separated energy scales: mQ (mass of heavy quark)
>> mQv (relative momentum scale)>> ΛQCD (energy scale for gluonic excitations)>> mQv2

(dynamics of two heavy quark). The above momentum hierarchy suggests of an energy gap
between the gluonic excitations and the excitations of the heavy quark-antiquark pair that has
also been confirmed by the lattice data [9,10]. This justifies the use of effective theory based
on Born-Oppenheimer approximation (BOEFT) to describe the hybrids [11–15]. On the other
hand, the lattice inputs are essential for determining the static potentials that are used for solv-
ing the Schrödinger equation for computing the spectra. Traditionally, the lattice studies of the
heavy quark hybrids have mainly focused in the charmonium sector and recently in bottomo-
nium sector [16]. In the charm sector, the recent lattice studies have predicted the existence
of a lowest hybrid spin-multiplet J PC = [(0, 1,2)−+, 1−−] at about 4.3 GeV [17–20]. In the
bottom sector, the lattice study in Ref. [16], predicted hybrid states with quantum numbers
J PC = [(0,1, 2)−+, 1−−] approximately 1500 MeV above the ground-state ηb meson.

In this work, we will use the BOEFT for the hybrids and pNRQCD for the low-lying quarko-
nium states. For computing the decay rates, we perform a matching calculation between
BOEFT and pNRQCD to obtain the imaginary terms in the BOEFT potential. In Sec. 2, we
compute the quarkonium and the hybrid spectrum, in Sec. 3, we perform the matching calcu-
lation and compute the decay rates and we conclude in Sec. 4.

2 Spectrum

2.1 Quarkonium

The conventional quarkonium states (QQ̄) are color singlet bound states of a heavy quark and
antiquark in the ground state static potential VΣ+g (r). The shape of the static potential VΣ+g (r) is
well described by the Cornell potential. The Schrödinger equation describing the quarkonium
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spectrum is given by
�

−
∇2

mQ
+ VΣ+g (r)

�

ΦQ
(n)(r ) = EQ

n Φ
Q
(n)(r ) , (1)

where mQ is the heavy quark mass, EQ
n is the quarkonium energy, ΦQ

(n) (r ) denotes the quarko-
nium wave-function, the index (n) = (n, j, l, s) denotes the usual set of quarkonium quantum
numbers. We use the following form of the static potential VΣ+g (r) from Ref. [12]

VΣ+g (r) = −
κg

r
+σg r + EQQ̄

g , (2)

where κg = 0.489 and the string tension parameter σg = 0.187 GeV2 are determined from the

fit to the lattice data. The constant EQQ̄
g is different for both charmonium and bottomonium

and is determined by comparison to the experimental spin-averaged mass from PDG 2020 [4]

Ecc̄
g = −0.254GeV, E bb̄

g = −0.195GeV, (3)

where have used the RS-scheme charm and bottom mass: mc = 1.477GeV and mb = 4.863 GeV
to compute the quarkonium spectrum. The quarkonium mass is given by MQQ̄ = 2mQ+ EQ

n for
Q = (c, b), where EQ

n is the eigenvalue in Eq. (1).

2.2 Hybrids

Hybrids (QQ̄g) are exotic hadrons that are color singlet bound states of a color octet QQ̄
source coupled to gluonic excitations. Therefore, hybrid states are more complicated com-
pared to traditional quarkonium due to presence of active gluons. The energy scale for the
gluonic excitations is the nonperturbative energy scale ΛQCD. In the BOEFT description, the
nonperturbative gluon dynamics generate a background static potential in which the heavy
quark-antiquark pair in the hybrids binds together. In the static limit

�

mQ→∞
�

, the hybrid
spectrum is composed of the static energies, which are characterized by the representation of
the D∞h cylindrical symmetry group just like in diatomic molecules. The hybrid static energies
are nonperturbative quantities that are generally computed on the lattice. In the short-distance
limit r → 0, where r is the relative coordinate of QQ̄, the hybrid static energies are degener-
ate and quantum numbers are characterized by representations of spherical symmetry group
O(3)× C instead of D∞h [7,13,14]. We focus here on the low-lying hybrids coming from Σ−u
and Πu static potentials and we closely follow the notations in Ref. [13].

The BOEFT Lagrangian that describes the hybrid states is given by

LBOEFT =

∫

R

∫

r

∑

κ

∑

λλ′

�

Ψ†
κλ
(r, R, t)

§

i∂t − Vκλλ′(r) + P i†
κλ

∇2
r

mQ
P i
κλ′

ª

Ψκλ′(r, R, t)

+Ψ†
κλ
(r)∆V (r)δλλ′Ψκλ′(r, R, t)

�

+ · · · , (4)

where
∫

R ≡
∫

d3R, r and R are the relative and center-of-mass coordinates of the heavy-quark-
antiquark pair, the quantum number κ is κ ≡ K PC , with K defined as the angular momentum
of the gluonic degrees of freedom, Ψκλ denotes the hybrid field (or the wave-function) and the
ellipses represent higher order terms in the multipole expansion. P i

κλ
(i denotes vector index)

is the projection operator that projects the gluonic degrees of freedom to an eigenstate of K · r̂
with eigenvalue λ. These projection operators correctly reproduce the hybrid quantum num-
bers in D∞h representation. For low-lying hybrids coming from Σ−u and Πu static potentials,
the gluon quantum number κ= 1+−. Therefore, for our purpose, the projectors P i

1λ are given
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by P i
10 = r̂ i

0 (θ ,φ) = r̂ i for projecting onto theΣ−u state and P i
1±1 = r̂ i

±1 (θ ,φ) =
�

θ̂ i ± iφ̂ i
�

/
p

2
for projecting onto the two components of the Π±u state, where θ̂ and ϕ̂ are the usual spherical
unit vectors. In Eq. (4), the BOEFT potential Vκλλ′(r) can be expanded in 1/mQ as

Vκλλ′(r) = E(0)
κλ
(r)δλλ′ +

V (1)
κλλ′
(r)

mQ
+ . . . , (5)

where E(0)
κλ
(r) denotes the static potential, and V (1)

κλλ′
(r) can be written as sum of spin-dependent

and spin-independent pieces [15]. The effective potential ∆V in Eq, (4) (that is treated as a
perturbation) is responsible for producing transitions to standard quarkonium states and the
form will be determined by performing a matching calculation in section 3. From now on, we
ignore the subscript κ (as κ= 1+− for our purpose) and we write the hybrid wave-function as

Ψ
(m)
λ
(r )≡ Ψ(m, j,l,s)

λ
(r ) =ψλm(r)Φ

λ
( jls) (θ ,φ) , (6)

where m is the principal quantum number, the quantum number j is the eigenvalue of the
total angular momentum operator: J= L+S, where S is the QQ̄ spin, L= LQQ̄ +K, where K is
the gluon angular momentum, and LQQ̄ is the angular momentum operator of the two heavy
quarks. We use the notation m

�

LQQ̄

�

L to denote the hybrid state.

At leading order, the equations of motion for the fields Ψ(m)
λ
(r ) that follow from Eq. (4)

are the set of coupled Schrödinger equations which are given by

∑

λ=0,±1

r̂ ∗
λ′
(θ ,ϕ) ·

�

−
∇2

r

mQ
+ E(0)

λ
(r)

�

r̂λ(θ ,ϕ)Ψ(m)
λ
(r ) = EmΨ

(m)
λ′
(r ) , (7)

where Em is the eigenvalue. The hybrid mass is given by MQQ̄g = 2mQ + Em for Q = (c, b).
Since, there are projection operators on both side of ∇2

r in Eq. (7), the contributions from Σ−u
and Πu potentials mix together that results in pairs of solutions with same angular momentum
quantum number but opposite parity [13]. The static potentials that we use for computing the
hybrid spectrum is split into a short-distance part and long-distance part [13]:

E(0)
λ
(r) =

¨

V RS
o (ν f ) +ΛRS

H (ν f ) + bλr2, r < 0.25 fm

V(r), r > 0.25 fm
, (8)

where for the short-distance part (r < 0.25 fm) we have used the RS-scheme octet potential
V RS

o (r) up to orderα3
s in perturbation theory and the RS-scheme gluelump massΛRS

H = 0.87(15)
GeV at the renormalon subtraction scale ν f = 1 GeV [10,21]. The RS-scheme octet potential
is given by [10,21]

V RS
o (r,ν f ,µ) = Vo(r,µ)−δV RS

o (ν f ) , (9)

with

Vo(r,µ) =
�

CA

2
− CF

� αVo
(µ)

r
, (10)

δV RS
o (ν f ) =

∞
∑

n=1

NVo
ν f

�

β0

2π

�n

αn+1
s

�

ν f

�

∞
∑

k=0

ck
Γ (n+ 1+ b− k)
Γ (1+ b− k)

, (11)

where µ denotes the energy scale scale, NVo
= 0.114001, the parameters b and ck are defined

in Ref. [10] . The form of αVo
up to order α3

s in perturbation theory is given in Ref. [22]
The long-distance (r > 0.25 fm) part of the potential V(r) is given by

V(r) =
a1

r
+
Æ

a2 r2 + a3 + a4. (12)

008.4

https://scipost.org
https://scipost.org/SciPostPhysProc.6.008


SciPost Phys. Proc. 6, 008 (2022)

The above form of the long-distance potential V(r) is chosen so as to reproduce the short
and long distance behavior of the Cornell potential. The parameters bλ in Eq. (8) and a1, a2,
a3 and a4 in Eq. (12) are different for both Σ−u and Πu static potentials. The parameters are
determined by performing a fit to the lattice data in Refs. [9,10] and demanding that the short-
range and the long-range pieces in Eq. (8) are continuous upto first derivatives (see Ref. [13]
for details). The result for the spectrum is given in Table III of Ref. [13].

3 Inclusive Decay Rate

We want to compute the inclusive decay rate of low-lying quarkonium hybrids decaying to
traditional quarkonium i.e, Hm → Qn + X , where Hm is a low-lying hybrid, Qn is a low-lying
quarkonium state and X denotes other final state particles. We denote the energy (mass)
difference by∆E = Em−EQ

n ¦ 1GeV, which for low-lying hybrid and quarkonium states satisfy
the following hierarchy of energy scales: mQv >> ∆E >> ΛQCD >> mQv2. This implies that
the relevant theory at the energy scale ∆E is the weakly coupled pNRQCD effective theory
which is obtained from NRQCD by integrating out gluons with momentum and energy of order
∼ mQv and quarks with energy of order∼ mQv. In order to describe the dynamics of two heavy
quarks in the hybrids that happens at energy scale mQv2, we will use the Born-Oppenheimer
effective theory (BOEFT). Hence, starting with pNRQCD effective theory, we integrate out
gluons with 4−momentum of order ∼ ∆E and ∼ ΛQCD in loops and match it to BOEFT that
describes system at energy scale mQv2. This matching condition leads to imaginary terms in
the BOEFT potential which is related to the hybrid decay rate by the optical theorem.

The pNRQCD Lagrangian up to next-to-leading-order (NLO) in multipole expansion or in
1/mQ is given by

LpNRQCD =

∫

R

∫

r

�

Tr
�

S† (i∂0 − hs)S +O† (iD0 − ho)O
�

+ gTr
�

S†r · E O+O†r · E S
�

+
gcF

mQ
Tr
�

S†(S1 − S2) · B O+O†(S1 − S2) · B S
�

+ · · ·
�

, (13)

where
∫

R ≡
∫

d3R, S and O denotes the singlet and the octet fields and ellipsis represents
higher order terms as well as terms including light quarks and gluons. The singlet and octet
Hamiltonian densities are given by

hs = −∇2
r/mQ + Vs(r), ho = −∇2

r/mQ + Vo(r), (14)

where Vs(r) and Vo(r) are the perturbative singlet and octet potentials. For our purpose, we
use the following form for Vs(r) and Vo(r)

Vs(r) = −
κg

r
+ Es

Q, Vo(r) = V RS
o (r), (15)

where V RS
o (r) is given by Eq. (9), κg = 0.489, and the constant Es

Q for Q = (c, b) is chosen so
as to reproduce the spin-averaged 1s charmonium and 1s bottomonium mass.

The r ·E vertex in Eq. (13) is responsible for the spin-conserving decays of hybrid whereas
the S·B/mQ vertex is responsible for the spin-flipping decays of hybrid (spin-0 hybrid decaying
to spin-1 quarkonium and vice versa). Therefore, the spin-flipping decays are suppressed by
powers of the heavy quark mass due to heavy quark spin symmetry.

Beginning with pNRQCD, we integrate out gluons with 4−momentum ∼∆E and ∼ ΛQCD
in two steps , and obtain the BOEFT theory that describes system at energy scale mQv2. We per-
form this by implementing the matching condition wherein we compute the two-point Green’s
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function in both the theories and equate them. For spin-preserving decays of hybrid to quarko-
nium, the two-point function in pNRQCD is expanded up to O

�

r2
�

in the multipole expansion
using the NLO pNRQCD Lagrangian in Eq. (13) which is equated to the corresponding two-
point function in BOEFT computed using the Lagrangian in Eq. (4). For the spin-flipping decay
of hybrids, the two-point function is expnaded up to O

�

1/m2
Q

�

using the pNRQCD Lagrangian
in Eq. (13). After implementing this matching condition, we obtain the the following form of
the effective potential ∆V in Eq. (4) for the spin-preserving decays

∆V = −
i g2

3
TF

Nc

∫ ∞

0

d t eiΛt eiho t/2rke−ihs t rkeiho t/2

∫

d3k
(2π)3

|k|e−i|k|t . (16)

In case of spin-flipping decays, the r ·E vertex is replaced by the S ·B/m vertex. Thus, using the
optical theorem, the (spin-conserving) decay rate of the hybrids for the process Hm→Qn+ X
is given by ΓHm→Qn

= −2〈Hm|Im∆V |Hm〉 (see details of the calculation in Ref. [23])

Γ (m→ n) =
∑

n′

�

�

�

�

∫

d3r Φs†
(n′)(r )Φ

Q
(n)(r )

�

�

�

�

2

Γmn′ , (17)

where in the above expression we have included the overlap between the quarkonium
�

ΦQ
(n)

�

and the Coulomb singlet
�

Φs
(n′)

�

wave-functions (we use compact notation (n) and (n′) to
denote the set of quantum numbers for quarkonium and singlet state) and Γmn′ is given by

Γmn′ = Re
8παsTF

3Nc

∫

r

∫ ∞

0

d t Ψ i†
(m)(r )e

iΛt eiho t/2rke−ihs t rkeiho t/2Ψ i
(m)(r )

∫

d3k
(2π)3

|k|e−i|k|t ,

=
4αsTF

3Nc

∫

d3l
(2π)3

∫

d3l ′

(2π)3

∫

r

∫

r ′

∫

r ′′

∫

r ′′′

�

Ψ i†
(m)(r )Φ

o
l (r )

��

Φo†
l (r

′)r ′iΦs
(n′)(r

′)
�

×
�

Φs †
(n′)(r

′′)r ′′iΦo
l ′(r

′′)
��

Φo†
l ′ (r

′′′)Ψ i
(m)(r

′′′)
�

(Λglue + Eo
l /2+ Eo

l ′/2− Es
n)

3 , (18)

where
∫

r ≡
∫

d3r , αs is evaluated at the scale∆E = Em−EQ
n ,Ψ i†

(m) is the hybrid wave-function
given in Eq. (6) (i is the vector index, (m) denotes the set of quantum numbers), Φo

l is the
octet wave-function, Eo

l is the octet energy, Es
n is the singlet energy, and Λglue = 0.87(15)GeV

in RS-scheme. In order to obtain the second line from the first line in Eq. (18), we expand the
singlet (hs) and octet (ho) Hamiltonians in terms of their eigenfunctions Φs

(n′) and Φo
l , which

satisfy

hs(r , p)Φs
(n′)(r ) = Es

n′ Φ
s
(n′)(r ), ho(r , p)Φo

l (r ) = Eo
l Φ

o
l (r ) . (19)

For computing the decay rates using Eq. (17), we need the octet and the singlet wave-functions.
We use the singlet and octet potentials in Eq. (15) to compute Φo

l and Φs
(n′).

Suppose, we assume: the singlet and quarkonium energies satisfy EQ
n ≈ Es

n, overlap be-
tween hybrid and octet wave-functions

∫

d3r Ψ i†
(m)(r )Φ

o
l (r ) is nonzero only for hybrid energy

Em: Em = Eo
l + Λglue (where ignoring the bλr2 term in Eq. (8)) such that the cubic factor

within the integrand in Eq, (18) is replaced by a constant ∆E, and the overlap function of
quarkonium and singlet wave-function satisfy

∫

d3r Φs†
(n′)(r )Φ

Q
(n)(r ) ≈ 1 for

�

n′
�

= (n), then
Eq. (17) is simplified to

Γ sim(m→ n)≈
4αs (∆E) TF

3Nc

�∫

r
Ψ i†
(m)(r )r

jΦQ
(n)(r )

��∫

r
Ψ i†
(m)(r )r

jΦQ
(n)(r )

�†

∆E3 . (20)
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Table 1: Preliminary results for the spin-conserving inclusive decay rate for hybrids
decays to quarkonium states: Hm→Qn+X due to r ·E vertex in Eq. (13). The hybrid
states are denoted by m

�

LQQ̄

�

L whereas the quarkonium states are denoted by nL′.
The decay rate in fourth column is computed using Eq. (20) and in last column using
Eq. (17). The values of αs (∆E) are obtained using the RUNDEC code [25]. The
upper error bar is from changing the scale to ∆E/2 in αs while the lower error bar
is from changing the scale to 2∆E in αs.

m
�

LQQ̄

�

L → nL′ ∆E (GeV) αs (∆E) Γ sim (MeV) Γ (MeV)

charmonium hybrid decay

1p0→ 1s 1.522 0.298 327 +137
−71 117 +49

−25

1p0→ 2s 0.912 0.381 194 +118
−53 71 +43

−19

2p0→ 1s 1.986 0.269 45 +16
−9 15 +5

−3

1p1→ 1s 1.218 0.329 156 +76
−37 146 +71

−35

2p1→ 1s 1.599 0.292 65 +27
−14 9 +4

−2

2(s/d)1→ 1p 1.013 0.361 113 +63
−29 7 +4

−2

4(s/d)1→ 1p 1.381 0.311 99 +44
−22 8 +4

−2

bottomonium hybrid decay

1p0→ 1s 1.622 0.290 69 +28
−14 102 +41

−22

1p0→ 2s 1.055 0.353 159 +86
−40 20 +11

−5

2p0→ 1s 1.909 0.273 34 +12
−7 15 +5

−3

2p0→ 2s 1.342 0.315 42 +19
−10 63 +29

−14

3p0→ 1s 2.174 0.261 19 +6
−4 12 +4

−2

3p0→ 2s 1.607 0.291 20 +4
−8 25 +10

−5

4p0→ 1s 2.421 0.251 12 +4
−2 7 +2

−1

4p0→ 2s 1.854 0.276 11 +4
−2 30 +11

−6

1p1→ 1s 1.404 0.309 29 +13
−7 80 +35

−18

2p1→ 1s 1.617 0.291 28 +11
−6 26 +11

−6

3p1→ 1s 1.828 0.277 22 +8
−4 16 +6

−3

2(s/d)1→ 1p 1.068 0.351 15 +8
−4 163 +87

−41

3(s/d)1→ 1p 1.264 0.324 73 +35
−17 90 +43

−21

3(s/d)1→ 2p 0.907 0.383 22 +14
−6 83 +51

−23

4(s/d)1→ 1p 1.300 0.320 155 +72
−36 103 +48

−24

The simplified decay rate in Eq. (20) is identical to Eq. (17) in Ref. [12] and Eq. (62) in
Ref. [24]. However, in Ref. [12], the authors only consider the diagonal elements (where they
contract the index i and j in Eq. (20)) instead of the full tensor structure. This led to a selection
rule that hybrids with L = LQQ̄ does not decay. This is incorrect as such decays are allowed
by considering the tensor structure of the matrix element in Eq. (20). The results for the spin-
conserving and spin-flipping decay rates are shown in tables 1 and 2. The spin-flipping decay
rates in table 2 are suppressed by the two-powers of the heavy quark mass m.

In both tables 1 and 2, we see that for most of the cases, the values of the hybrid decay rate
from the general expression involving overlap functions of octet and singlet state in Eq. (17)
differs from that obtained from the simplified expression in Eq. (20) even after considering
the error bars. We find that this difference is mainly due to contributions from the cubic
factor within the integrand and the Coulomb singlet wave-functions in Eq, (18). Therefore,
this raises the questions on the validity of the approximations that were used to obtain the
simplified expression in Eq. (20). Specifically, We find that the approximation about the singlet
and quarkonium energy EQ

n ≈ Es
n is only valid for 1s charmonium and bottomonium states and

the overlap between hybrid and octet wave-function
∫

d3r Ψ i†
(m)(r )Φ

o
l (r ) is nonzero over wide
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Table 2: Preliminary results for the spin-flipping inclusive decay rate for hybrids
decays to traditional quarkonium states: Hm→Qn+X due to due to S ·B/mQ vertex
in Eq. (13). The decay rate in fourth and fifth column is computed using Eq. (20)
and in last two column using Eq. (17). The notation (1→ 0) denotes spin-1 hybrid
decaying into spin-0 quarkonium while (0→ 1) denotes spin-0 hybrid decaying into
spin-1 quarkonium.

m
�

LQQ̄

�

L → N L′ ∆E (GeV) αS (∆E)
Γ sim(MeV)

(1→ 0)

Γ sim(MeV)

(0→ 1)

Γ (MeV)

(1→ 0)

Γ (MeV)

(0→ 1)

Charmonium hybrid decay

1p0→ 1p 1.096 0.347 45.54 +23.90
−11.37 136.62 +71.69

−34.10 0.07 +0.04
−0.02 0.22 +0.11

−0.05

2p0→ 1p 1.560 0.295 1.66 +0.69
−0.35 4.98 +2.06

−1.06 0.06 +0.02
−0.01 0.18 +0.07

−0.04

2p0→ 2p 1.087 0.348 44.17 +23.33
−11.07 132.51 +69.98

−33.20 0.14 +0.07
−0.04 0.43 +0.22

−0.11

3p0→ 1p 1.979 0.270 0.73 +0.26
−0.14 2.18 +0.77

−0.43 0.07 +0.02
−0.01 0.21 +0.07

−0.04

2p1→ 1p 1.173 0.335 5.09 +2.54
−1.23 15.26 +7.61

−3.69 0.07 +0.04
−0.02 0.21 +0.11

−0.05

3p1→ 1p 1.542 0.296 2.05 +0.86
−0.44 6.16 +2.57

−1.32 0.07 +0.03
−0.02 0.22 +0.09

−0.05

3p1→ 2p 1.068 0.351 3.71 +1.99
−0.94 11.13 +2.81

−5.96 0.18 +0.09
−0.04 0.53 +0.29

−0.13

1(s/d)1→ 1s 1.087 0.348 34.53 +18.23
−8.65 103.60 +54.70

−25.95 11.37 +6.00
−2.85 34.11 +18.00

−8.54

2(s/d)1→ 1s 1.439 0.305 15.45 +6.72
−3.42 46.35 +20.16

−10.26 0.18 +0.09
−0.04 0.53 +0.29

−0.13

3(s/d)1→ 1s 1.744 0.282 0.20 +0.08
−0.04 0.59 +0.23

−0.12 0.51 +0.20
−0.11 1.53 +0.59

−0.32

Bottomonium hybrid decay

1p0→ 1p 1.157 0.338 4.25 +2.14
−1.03 12.74 +6.42

−3.10 0.95 +0.48
−0.23 2.84 +1.43

−0.69

2p0→ 1p 1.444 0.305 0.82 +0.36
−0.18 2.46 +1.07

−0.54 0.11 +0.05
−0.02 0.34 +0.15

−0.07

2p0→ 2p 1.086 0.348 3.11 +1.64
−0.78 9.33 +4.93

−2.34 0.11 +0.06
−0.03 0.32 +0.17

−0.08

3p0→ 1p 1.708 0.285 0.32 +0.12
−0.07 0.95 +0.37

−0.20 0.14 +0.05
−0.03 0.41 +0.16

−0.09

3p0→ 2p 1.351 0.314 0.60 +0.27
−0.14 1.81 +0.82

−0.41 0.13 +0.06
−0.03 0.38 +0.17

−0.09

4p0→ 1p 1.955 0.271 0.16 +0.06
−0.03 0.47 +0.17

−0.09 0.03 +0.01
−0.01 0.10 +0.03

−0.02

4p0→ 2p 1.598 0.292 0.28 +0.11
−0.06 0.84 +0.34

−0.18 0.02 +0.01
−0.003 0.05 +0.02

−0.01

1p1→ 1p 0.938 0.376 1.84 +1.09
−0.49 5.51 +3.28

−1.48 1.21 +0.72
−0.32 3.63 +2.16

−0.97

2p1→ 1p 1.152 0.338 1.10 +0.56
−0.27 3.30 +1.67

−0.80 0.05 +0.03
−0.01 0.15 +0.08

−0.04

3p1→ 1p 1.362 0.313 0.60 +0.27
−0.14 1.80 +0.81

−0.41 0.12 +0.06
−0.03 0.37 +0.17

−0.08

3p1→ 2p 1.005 0.362 0.66 +0.37
−0.17 1.98 +1.11

−0.52 0.11 +0.06
−0.03 0.34 +0.19

−0.09

1(s/d)1→ 1s 1.343 0.315 2.89 +1.31
−0.66 8.66 +3.94

−1.97 3.51 +1.59
−0.80 10.52 +4.78

−2.40

2(s/d)1→ 1s 1.534 0.297 2.59 +1.08
−0.56 7.76 +3.25

−1.67 1.73 +0.72
−0.37 5.18 +2.17

−1.12

2(s/d)1→ 2s 0.967 0.369 0.09 +0.05
−0.02 0.28 +0.16

−0.07 0.61 +0.35
−0.16 1.82 +1.05

−0.48

3(s/d)1→ 1s 1.730 0.283 1.05 +0.41
−0.22 3.14 +1.22

−0.65 0.63 +0.24
−0.13 1.89 +0.73

−0.39

3(s/d)1→ 2s 1.163 0.337 0.08 +0.04
−0.02 0.25 +0.12

−0.06 0.08 +0.04
−0.02 0.23 +0.11

−0.06

4(s/d)1→ 1s 1.765 0.281 0.87 +0.33
−0.18 2.60 +0.99

−0.53 0.37 +0.14
−0.08 1.11 +0.42

−0.23

range of octet energies, if we don’t assume Em ≈ Eo
l +Λglue (see Ref. [23]).

4 Conclusions

In this work, we study the inclusive decays of heavy quark hybrids to traditional quarkonium
by using the framework of Born-Oppenheimer effective field theory. We have derived an ex-
pression of the decay rate given in Eq. (17) that depends on the overlap functions of hybrid,
octet, Coulomb singlet and quarkonium wave-functions. The values of the spin-conserving
and the spin-flipping decay rates of hybrids are shown in tables 1 and 2. We also find that us-
ing certain assumptions, our expression for the decay rate in Eq. (17) reduces to a simplified
expression given by Eq. (20) that was earlier derived in Refs. [12,24]. However, the difference
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in the values of the decay rate from Eqs. (17) and (20) shown in tables 1 and 2 raises questions
on the validity of those approximations.
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