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Abstract

Three hard problems! In this talk I investigate the long-distance properties of quan-
tum chromodynamics in the presence of a topological θ term. This is done on the lat-
tice, using the gradient flow to isolate the long-distance modes in the functional integral
measure and tracing it over successive length scales. It turns out that the color fields
produced by quarks and gluons are screened, and confinement is lost, for vacuum an-
gles |θ |> 0, thus providing a natural solution of the strong CP problem. This solution is
compatible with recent lattice calculations of the electric dipole moment of the neutron,
while it excludes the axion extension of the Standard Model.

Copyright G. Schierholz.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 28-01-2022
Accepted 06-04-2022
Published 31-05-2022

Check for
updates

doi:10.21468/SciPostPhysProc.6.011

1 Introduction

QCD decribes the strong interactions remarkably well, from the smallest distances probed so
far to hadronic scales, where quarks and gluons confine to hadrons. Yet it faces a problem.
The theory allows for a CP-violating term Sθ in the action. In Euclidean space-time it reads

S = SQCD + Sθ : Sθ = i θ Q , Q =
1

32π2

∫

d4 x F a
µν F̃ a

µν ∈ Z ,

where Q is the toplogical charge, and θ is an arbitrary phase with values −π < θ ≤ π. Thus,
there is the possibility of new sources of CP violation, which might shed light on the baryon
asymmetry of the Universe. A nonvanishing value of θ would result in an electric dipole
moment dn of the neutron. The current experimental upper limit on the dipole moment is
|dn|< 1.8×10−13e fm [1], which suggests that θ is anomalously small. This feature is referred
to as the strong CP problem, which is considered as one of the major unsolved problems in the
elementary particles field.

The prevailing paradigm is that QCD is in a single confinement phase for any value of
|θ | < π. The popular Peccei-Quinn solution [2] of the strong CP problem, for example, is
realized by the shift symmetry θ → θ +δ, trading the CP violating θ term Sθ for the hitherto
undetected axion.
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However, it is known from the case of the massive Schwinger model [3] that a θ term may
change the phase of the system. Callan, Dashen and Gross [4] have claimed that a similar phe-
nomenon will occur in QCD. The claim is that the color fields produced by quarks and gluons
will be screened by instantons for |θ | > 0. ’t Hooft [5] has argued that the relevant degrees
of freedoom responsible for confinement are color-magnetic monopoles, realized by partial
gauge fixing [6], which leaves the maximal abelian subgroup U(1)×U(1) ⊂ SU(3) unbroken.
Quarks and gluons have color-electric charges with respect to the U(1) subgroups. Confine-
ment occurs when the monopoles condense in the vacuum, by analogy to superconductivity.
This has first been verified on the lattice by Kronfeld, Laursen, Schierholz and Wiese [7]. Due
to the joint presence of gluons and monopoles a rich phase structure is expected to emerge as
a function of θ . In Fig. 1 I show the charge lattice of quarks, gluons and monopoles for θ = 0
and θ > 0. For θ > 0 the monopoles acquire a color-electric charge [8] proportional to θ . It
is then expected that the color fields of quarks and gluons will be screened by forming bound
states with the monopoles, and confinement is no longer guaranteed.
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Figure 1: The color-electric – color-magnetic charge lattice for vacuum angle θ = 0
and θ > 0, with regard to the gauge group U(1). Gluons have color-electric charge
±1, quarks have charge ±1/2, and monopoles have color-magnetic charge ±1 in
Dirac units.

In this talk I will present recent lattice results [9,10] on the long-distance properties of the
theory, with and without the θ term. In particular, I will show that the color fields produced
by quarks and gluons are indeed screened for vacuum angles |θ |> 0, thus providing a natural
solution of the strong CP problem. This is compatible with recent lattice results for the electric
dipole moment of the neutron. The axion extension of the Standard Model is not a valid
solution.

2 θ = 0

The core of the problem is to understand the impact of the θ term on the QCD vacuum,
and on the confinement mechanism in particular. A crucial step in solving this problem is
to isolate the relevant degrees of freedom. This is achieved by a renormalization group (RG)
transformation, passing from the short-distance weakly coupled regime, the lattice, to the
long-distance strongly coupled confinement regime. The gradient flow [11, 12] provides a
powerful tool for scale setting, with no need for costly ensemble matching. It is a particular
realization of the coarse-graining step of momentum space RG transformations [13–16], and
as such can be used to study RG transformations directly.

The gradient flow describes the evolution of fields and physical quantities as a function of
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flow time t. The flow of SU(3) gauge fields is defined by the diffusion equation [12]

∂ t Bµ(t, x) = Dν Gµν(t, x) , Gµν = ∂µ Bν − ∂ν Bµ + [Bµ, Bν] , Dµ ·= ∂µ ·+[Bµ, ·] , (1)

where Bµ(t, x) = B a
µ (t, x) T a, and Bµ(t = 0, x) = Aµ(x) is the original gauge field of QCD.

It thus defines a sequence of gauge fields parameterized by t. The renormalization scale µ is
set by the flow time, µ = 1/

p
8t for t � 0. The energy density at flow time t is defined by

E(t, x) = 1/2 Tr Gµν(t, x)Gµν(t, x). The expectation value of E(t, x) defines a renormalized
coupling

g2
GF (µ) =

16π2

3
t2〈E(t)〉

�

�

t=1/8µ2 (2)

at flow time t in the gradient flow scheme. Varying µ, the coupling satisfies standard (although
scheme dependent) RG equations.

We may restrict our investigations to the SU(3) Yang-Mills theory. If the strong CP problem
is resolved in the Yang-Mills theory, then it is expected that it is also resolved in QCD. We use
the plaquette action to generate representative ensembles of fundamental gauge fields. For
any such gauge field the flow equation (1) is integrated to the requested flow time t. The
simulations are done for β = 6/g2 = 6.0 on 164, 244 and 324 lattices. The lattice spacing
at this value of β is a = 0.082(2) fm. Our current ensembles include 4000 configurations on
the 164 lattice and 5000 configurations on the 244 and 324 lattices each. The calculations
follow [9,10].
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Figure 2: The gradient flow coupling αGF (µ)/π on the 324 lattice as a function of
t/a2 = 1/8a2µ2, together with a linear fit.

The long-distance properties of the theory are reflected in the parameters of the action,
such as the running coupling, at infrared scales. In Fig. 2 I show the gradient flow run-
ning coupling αGF (µ) = g2

GF (µ)/4π as a function of flow time. The data continue linearly
far beyond t/a2 = 100, corresponding to µ ≈ 100 MeV, so that we may assume a strictly
linear behavior of αGF (µ) in t = 1/8µ2. This leads to the gradient flow beta function
∂ αGF (µ)/∂ lnµ ≡ βGF (αGF ) = −2αGF (µ), which has the solution αGF (µ) = Λ2

GF/µ
2 for

µ� 1 GeV [10]. To make contact with phenomenology, it is desirable to transform the gradi-
ent flow coupling αGF to a common scheme. A preferred scheme in the Yang-Mills theory is
the V scheme [17]. In this scheme αV (µ) = Λ2

V/µ
2 with ΛV = 0.854ΛGF .
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The linear growth of αV (µ) with 1/µ2, which is commonly dubbed infrared slavery, ef-
fectively describes many low-energy phenomena of the theory. So, for example, the static
quark-antiquark potential, which can be described by the exchange of a single dressed gluon,
V (q) = −4

3 αV (q)/q2. A popular example is the Richardson potential [18], which reproduces
the spectroscopy of heavy quark systems, like charmonium and bottomonium, very well. The
Fourier transformation of V (q) to configuration space gives

V (r) = −
1

(2π)3

∫

d3q ei qr 4
3
αV (q)
q2 + i0

=
r�1/ΛV

σ r , (3)

where σ, the string tension, is given by σ = 2
3 Λ

2
V . From a fit of ΛV to the data in Fig. 2 we

obtain
p
σ = 445(19)MeV, which is exactly what we expect from Regge phenomenology.

It is interesting to compare the nonperturbative beta function with the perturbative one
known up to four [19] and twenty loops [20]. In Fig. 3 the various beta functions are plot-
ted in the qq̄ scheme. It shows that the perturbative beta function gradually approaches the
nonperturbative beta function with increasing order.
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Figure 3: The beta function in the qq̄ scheme with Λqq̄ = 0.655ΛV .

In the following we will speak of confinement if and only if the running coupling extends
linearly to infinity.

3 θ 6= 0

A key point is that with increasing flow time the initial gauge field ensemble splits into ef-
fectively disconnected topological sectors of charge Q. This will be the case for ever smaller
flow times as the lattice spacing is reduced [12]. We distinguish the topological sectors by the
affix Q. In Fig. 4 I show the energy density in the individual topological sectors, 〈E(Q, t)〉,
normalized to one for a single classical instanton.

If the general expectation is correct, and the color fields are screened for |θ |> 0, we should
find, in the first place, that the running coupling constant gets screened at long distances.
The transformation of αV (Q,µ) from the topological sectors of charge Q to the θ vacuum is
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Figure 4: The action V 〈E(Q, t)〉/8π2 according to |Q| as a function of flow time on
the 324 lattice for charges ranging from Q = 0 (bottom) to |Q|= 22 (top). The solid
line represents the ensemble average.

achieved by the discrete Fourier transform

αV (θ ,µ) =
1

Z(θ )

∑

Q

e i θ Q P(Q) αV (Q,µ) , Z(θ ) =
∑

Q

e i θ Q P(Q) , (4)

where P(Q) is the topological charge distribution at θ = 0 with
∑

Q P(Q) = 1. In Fig. 5 I
show αV (θ ,µ) on the 164 and the 324 lattice. The left figure shows some finite size effects
for t/a2 ¦ 50. The ‘smoothing range’

p
8t should not be taken larger than the linear extent

L of the lattice. The effect of screening depends on the scale µ, which specifies the distance
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Figure 5: The running coupling αV (θ ,µ) as a function of θ on the 164 (left) and
the 324 lattice (right) for flow times ranging from t/a2 = 10 (bottom) to 100 (top).
Note that αV ' 0.729αGF .
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at which the charge is probed, and the angle θ . At large distances (t → ∞) the charge is
screened for |θ | > 0, while at short, perturbative distances the θ term has hardly any effect
on the coupling constant. It follows that confinement is limited to θ = 0.
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✶

✁
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❱

Figure 6: Flow of π/αV (θ ,µ) for different initial values of θ for t increasing from
top to bottom.

This is an important issue to understand. Let us stay with t’Hooft’s model. The density of
color-electric charge in the vacuum is proportional to θ . Thus, the screening length will be
the longer the smaller |θ | is. The result is that at asymptotic, confining distances the charge
gets totally screened for |θ | > 0, whereas for smaller distances, that is at larger values of µ,
the charge will only get totally screened once the color-electric charge density has reached a
certain level, which requires increasingly larger values of θ .

In [9] we have derived flow equations (see also [21]) for the running coupling αV (θ ,µ).
For small values of θ and π/αV they read ∂ (π/αV )/∂ ln t ' −π/αV+Dθ2, ∂ θ/∂ ln t = −θ/2.
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Figure 7: Scatter plot of the Polyakow loop P split by topological charge |Q| for
t/a2 = 60 on the 164 lattice.
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Outside this region the equations become increasingly complex. In Fig. 6 the flow equations
are solved. The figure shows that any initial value of θ eventually renormalizes to zero in
the infrared limit. The flow is similar to that of a scaling model of the integral quantum Hall
effect [22], which has served as a model for strong CP conservation.

Let us now consider hadron observables. By nature they are RG invariant and, according
to our understanding of the gradient flow, should be independent of the flow time. Two such
quantities, which are easily accessible numerically and can be computed with precision, are
the renormalized Polyakov loop susceptibility and the mass gap. The Polyakov loop P describes
the propagation of a single static quark around the periodic lattice. In Fig. 7 I show a scatter
plot of P at flow time t/a2 = 60. We see that for small values of |Q| the Polyakov loop P
rapidly populates the entire theoretically allowed region, while it stays small for larger values
of |Q|. The renormalized Polyakov loop susceptibility [23] reads

χP(θ ) =
〈|P|2〉θ − 〈|P|〉2θ

〈|P|〉2
θ

. (5)

It describes the connected part of the Polyakov loop correlator 〈|P|2〉θ . The transformation
to the θ vacuum follows eq. (4). In Fig. 8 I show χP(θ ) on the 164 and the 324 lattice. As
expected, χP(θ ) is independent of the flow time, and the Polyakov loop P is screened for
|θ |¦ 0.
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Figure 8: The Polyakov loop susceptibility as a function of θ on the 164 (left) and
the 324 lattice (right) for flow times ranging from t/a2 = 10 to 100.

The mass gap can be read off from the connected correlator of the energy density E. Above
the vacuum, E projects onto J PC = 0++ glueball states. The lowest energy state, which we
denote by m0++ , is called the mass gap. The inverse of the mass gap defines the correlation
length, ξ = 1/m0++ , which describes the length scale over that fluctuations are correlated. In
the θ vacuum the glueball correlator reads

〈E2〉θ − 〈E〉2θ =
1
N
∑

t

∑

n>0

|〈θ |E|n〉|2
e−mn t + e−mn(L−t)

2mn
'

1
N |〈θ |E|0

++〉|2
1

m2
0++

, (6)

where 〈E2〉θ =
∑

x 〈E(t, x) E(t, 0)〉θ/V and N = L6/16. In eq. (6) we have assumed that the
correlator is dominated by the lowest glueball state. In Fig. 9 I show 〈E2〉θ − 〈E〉2θ on the 244

lattice. Again, the correlator turns out to be independent of the flow time, and it quickly drops
to zero away from θ = 0. It follows that the correlation length vanishes for |θ |¦ 0. This leads
us to conclude that the theory has no finite mass gap for nonvanishing values of θ .
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Figure 9: The connected glueball correlator on the 244 lattice for various flow times.

How does this result and the result for the Polyakov loop fit together with the running cou-
pling and the loss of confinement for |θ |> 0? As I said before, the screening length decreases
gradually with increasing value of |θ |. For the glueball to dissipate and the Polyakov loop to be
totally screened, the screening length must be smaller than the hadronic radius. On the larger
volume, and for lattice spacing a = 0.082 fm, the Polyakov loop and the energy density appear
to be totally screened for θ ¦ 0.2. This number might decrease with increasing volume and
decreasing lattice spacing. The situation here is very similar to the finite temperature phase
transition.
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Figure 10: The electric dipolemoment of the neutron from Refs. [24], [25], [26]
and [27], from left to right.
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4 EDM

The search for an electric dipole moment (EDM) of the neutron directly from QCD constitutes
a crucial test of our results. In Fig. 10 I show recent lattice results for the dipole moment of the
neutron [24–27]. The results of [24–26] are at or extrapolated to the physical quark masses,
while [27] refers to the SU(3) flavor symmetric point [28], where the dipole moment should
be largest, while it vanishes trivially in the chiral limit. The overall result is compatible with
zero. One might ask how one can find a neutron at finite, albeit small values of θ . Again, this
is possible as long as the screening length is larger than the nucleon radius.

In absence of a nonvanishing dipole moment, no upper limit of |θ | can be drawn from the
experimental bound on dn [1].

5 Axion

In the Peccei-Quinn model [2] the CP violating θ term Sθ in the action is augmented by the
axion interaction

Sθ → Sθ + SAxion =

∫

d4 x
�

1
2

�

∂µφa(x)
�2
+ i
�

θ −
φa(x)

fa

�

q(x)
�

,

∫

d4 x q(x) =Q , (7)

raising the vacuum angle θ to a dynamical variable. Under the anomalous chiral U(1) Peccei-
Quinn transformation

UPQ(1): eiδQ5 |θ 〉 −→ |θ +δ〉 . (8)

It is then expected that QCD induces an effective potential Ueff(θ−φa/ fa), having a stationary
point at θ −φa/ fa = 0, which prompts the field redefinition φa → φa + fa θ . This results in
the shift

θ −→
φa(x)

fa
, (9)

CP violating CP conserving

thus effectively eliminating CP violation in the strong interaction. However, the key point is
that the QCD vacuum is unstable under the Peccei-Quinn transformation (8), which thwarts
the axion conjecture.

6 Conclusion

The gradient flow proved a powerful tool for tracing the evolution of the gauge field over
successive length scales. The novel result is that color fields produced by quarks and gluons
are screened for |θ | > 0 by nonperturbative effects, limiting the vacuum angle to θ = 0 at
macroscopic distances, which rules out any strong CP violation at the hadronic level. This
result does not come as a surprise. A surprise though is that the work of [3–5], for example,
has been ignored for so long. Perhaps, because one did not have the right tools to attack the
problem.

Screening is a gradual process, similar to the finite temperature transition. The screening
length is expected to decrease with increasing value of |θ |. While the color charge is screened
totally at large distances, heavy quark bound states and light hadrons of finite extent will
dissipate into quarks and gluons only once the screening length has become smaller than the
hadronic radius.
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Recent lattice results of the electric dipole moment of the neutron are found to be consistent
with zero within the errorbars, in agreement with our results. However, this is not the end.
The errors are rather large still, and I hope that people are not discouraged to further reduce
the errors.

The nontrivial phase structure of quantum chromodynamics has far-reaching consequences
for anomalous chiral transformations. In the first place that is for the axion extension of the
Standard Model. The Peccei-Quinn solution of the strong CP problem is realized by the shift
symmetry, θ → θ+δ, which is incompatible with the nonperturbative properties of the theory.
Also, no light axion was found [29] in a dedicated lattice simulation of the Peccei-Quinn model.
Rather, the axion mass turned out to be of the order of the η′ mass.
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