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Abstract

In covariant gauges, the gluonic mass gap in Yang-Mills theory manifests itself in the ba-
sic observation that the massless pole in the perturbative gluon propagator disappears in
nonperturbative calculations, but the origin of this behavior is not yet fully understood.
We summarize a recent study of the respective dynamics with Dyson-Schwinger equa-
tions in Landau-gauge Yang-Mills theory. We identify the parameter that distinguishes
the massive Yang-Mills regime from the massless decoupling solutions, whose endpoint
is the scaling solution. Similar to the PT-BFM scheme, we find evidence that mass gen-
eration in the transverse sector is triggered by longitudinal massless poles.
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1 Introduction

The origin of mass continues to be one of the outstanding questions in QCD and hadron physics.
While mass generation in the quark sector can be tied to the dynamical breaking of chiral
symmetry, see e.g. [1–4] and references therein, the underlying mechanism in the Yang-Mills
sector of QCD is not yet fully understood. The emergence of a mass gap and the related
question of confinement must be encoded in the n-point correlation functions of pure Yang-
Mills theory, whose basic representative is the gluon propagator

Dµν(Q) =
1

Q2

�

Z(Q2) TµνQ + ξ L(Q2) LµνQ

�

. (1)

Here, TµνQ = δµν −QµQν/Q2 and LµνQ = QµQν/Q2 are the transverse and longitudinal projec-
tion operators with respect to the four-momentum Qµ, ξ is the gauge parameter, and ξ = 0
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Figure 1: DSE solutions for the inverse gluon dressing function 1/Z(Q2) and ghost
dressing function G(Q2), where ‘DC’ denotes decoupling and ‘SC’ scaling [5].

corresponds to Landau gauge. In linear covariant gauges, the longitudinal dressing function
L(Q2) = 1 is trivial due to gauge invariance. The transverse gluon dressing function Z(Q2) is
the quantity of interest in what follows.

The basic feature of gluon mass generation is the disappearance of the massless pole in
the perturbative gluon propagator in nonperturbative calculations, where Z(Q2)/Q2 does not
diverge at the origin. This is a robust outcome of lattice calculations [6–10] and functional
methods such as Dyson-Schwinger equations (DSEs) and the functional renormalization group
(fRG) [11–24]. What happens instead is still an open question, as the propagator could de-
velop poles at timelike momenta, complex conjugate poles, branch cuts, etc. In any case, the
absence of a massless pole implies Z(Q2→ 0) = 0, and therefore 1/Z(Q2) must have a mass-
less singularity at the origin as shown in Fig. 1. But how does this nonperturbative singularity
arise in the first place?

The infrared behavior seen on the lattice corresponds to the massive or decoupling solution
obtained with DSE and fRG calculations in QCD [16–21] and the Curci-Ferrari model [22],
where the gluon propagator freezes out in the infrared and 1/Z(Q2 → 0)∝ 1/Q2. In turn,
the ghost dressing function G(Q2→ 0) becomes constant as shown in Fig. 1. Because 1/Z(Q2)
is the solution of the gluon DSE, which is an exact equation, at least one of the diagrams in the
DSE (cf. Fig. 2) must develop a massless 1/Q2 singularity. In the Pinch-Technique/Background-
Field method (PT-BFM), which allows one to rearrange the diagrams in the DSE according to
gauge invariance, mass generation is triggered by massless longitudinal poles in the three-
gluon vertex [20, 25–27]. Does this also happen in the standard treatment of the DSEs in
Landau gauge?

Moreover, calculations with functional methods also find the scaling solution, where the
n-point correlation functions scale with infrared power laws [11–15]. For the gluon and ghost
dressing functions this entails Z(Q2 → 0) ∝ (Q2)2κ and G(Q2 → 0) ∝ (Q2)−κ with an in-
frared exponent κ ≈ 0.595, which is also plotted in Fig. 1. Here the inverse gluon dressing
diverges slightly faster than a 1/Q2 pole and also the ghost dressing is infrared-divergent. The
scaling solution is consistent with the Kugo-Ojima confinement scenario based on global BRST
symmetry [18, 28], and it leads to a 1/Q4 behavior and thus a linear rise in coordinate space
for the (gauge-dependent) quark-antiquark four-point function [29], whose gauge-invariant
version defines the Wilson loop.

Functional calculations have further revealed a family of decoupling solutions with the
scaling solution as their endpoint [17, 18, 22]. While the scaling solution is not seen on the
lattice, there are indications for different decoupling solutions depending on the gauge-fixing
procedure [30]. It has been speculated that the emergence of a family of solutions may be due
to an additional gauge fixing parameter in Landau gauge [31]. Indeed, there is accumulating
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Figure 2: Coupled Yang-Mills DSEs for the ghost propagator, gluon propagator and
three-gluon vertex.

evidence that all these solutions may be physically equivalent, as physical observables agree
within the systematic error bars: e.g., the Polyakov loop expectation value, which is the order
parameter for center symmetry in Yang-Mills theory, vanishes for scaling and decoupling-type
solutions alike and thus implies confinement for both [32,33]. Moreover, the respective critical
temperature agrees within the error bars for the whole set of scaling and decoupling solutions,
while generally it depends on the mass in massive Yang-Mills theory. This begs the question:
What is the parameter that distinguishes these different types of solutions?

2 Yang-Mills DSEs

To answer these questions, we solve the coupled system of DSEs for the ghost propagator,
gluon propagator and three-gluon vertex in Fig. 2; see Ref. [5] for details of the calculation.
Here, we take all diagrams in the ghost and gluon equations into account, whereas in the three-
gluon vertex DSE we neglect diagrams with two-loop terms and higher n-point functions. In
addition, we restrict ourselves to the leading tensor of the three-gluon vertex in the symmetric
limit, which is a good approximation in Landau gauge [34]. Thus, the quantities we compute
are the gluon dressing Z(Q2), the ghost dressing G(Q2) and the three-gluon vertex dressing
F3g(Q2). The remaining inputs are the ghost-gluon vertex, which is kept at tree level, and
the four-gluon vertex, whose tree-level tensor is multiplied with F4g(Q2) = G(Q2)2/Z(Q2) and
updated dynamically during the iteration. Similar high-quality truncations (also including
higher n-point functions) have been employed in DSE and fRG calculations [21,23].

We emphasize that different truncations do not change the qualitative features we discuss
in the following, which also remain intact when considering only the ghost and gluon DSEs as
in Refs. [12–14]. The Slavnov-Taylor identities (STIs) provide an internal way to quantify the
truncation error, which is about 10% when neglecting the two-loop terms in the gluon DSE
and 3− 4% when solving the full system in Fig. 2.

To study the origin of mass generation, we decompose the gluon self-energy in the second
row of Fig. 2 in the following overcomplete basis:

Πµν(Q) =∆T (Q
2) (Q2δµν −QµQν) +∆0(Q

2)δµν +∆L(Q
2)QµQν . (2)

This allows us to isolate quadratic divergences, which can only arise in the term ∆0(Q2) due
to the hard momentum cutoff employed in the equations and must be subtracted. The loga-
rithmic divergences in the remaining terms are absorbed in the standard renormalization. The
projection of the gluon DSE onto its Lorentz-invariant components yields

Z(Q2)−1 = ZA+∆T (Q
2) +

∆0(Q2)
Q2

, L(Q2)−1 = 1+ ξ

�

∆L(Q
2) +

∆0(Q2)
Q2

�

(3)
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Figure 3: Gluon self-energy contributions for the decoupling and scaling case [5].

for the transverse and longitudinal dressing functions, where ZA is the gluon renormalization
constant. The STI for the gluon propagator demands that the self-energy must be completely
transverse, which leaves two possible options:

Scenario A: ∆L =∆0 = 0 , Scenario B: ∆L = −
∆0

Q2
. (4)

Thus, ∆L and ∆0 must either vanish identically after removing the quadratic divergences, or
there must be a cancellation between them.

From the resulting self-energy contributions in Fig. 3, one can clearly see that ∆0 is non-
zero. In fact, for the decoupling solutions ∆0 is the term responsible for mass generation as it
enters like 1/Q2. The ghost loop contribution to∆T diverges logarithmically, whereas all other
contributions become constant in the infrared; also∆0 goes to a constant. By contrast, for the
scaling solution both ∆T and ∆0/Q

2 diverge with the same power 1/(Q2)2κ in the infrared
which originates from the ghost loop.

In Scenario A, a nonzero term ∆0 can at best be an artifact, either from the truncation or
from the hard cutoff. One way to proceed is then to replace the dynamically calculated ∆0 by
a constant, which yields a mass term like in massive Yang-Mills theory, and send ∆0 → 0 in
the end. This only leaves the scaling solution (as one can already infer from Fig. 3), however
with an ambiguity in the infrared exponent κ; a similar ambiguity arises when determining κ
analytically [12,13]. Based on these observations, our analysis disfavors Scenario A.

In Scenario B, on the other hand, the longitudinal consistency relation (4) between∆0 and
∆L does not affect the transverse equation and the ∆0/Q

2 term, but it implies that ∆L must
have a massless 1/Q2 pole. From the self-energy in Eq. (2) one infers that this can only happen
if either of the vertices (the ghost-gluon vertex, three-gluon vertex or four-gluon vertex) has
a longitudinal massless pole. How can one find out?

Let us first investigate what distinguishes the scaling and decoupling solutions. Usually
this is implemented by a boundary condition on the ghost: After setting renormalization con-
ditions, the Yang-Mills equations depend on the gluon dressing Z(µ2) at some renormalization
scale µ, the ghost dressing G(ν2), and the coupling g. Without loss of generality one can renor-
malize the ghost at ν2 = 0, so that Z(µ2), G(0) and g enter in the equations. If g and Z(µ2)
are kept fixed and G(0) is varied, this leads to the family of decoupling solutions (G(0) finite)
with the scaling solution as their endpoint (G(0) → ∞). From the viewpoint of renormal-
ization, this is however not completely satisfactory as G(0) should only renormalize the ghost
propagator but not lead to different solutions. This is also seen in fRG computations, e.g. [21],
which are manifestly RG-consistent.
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Figure 4: Solutions for the running coupling and the ghost, gluon and three-gluon
vertex dressing functions at a fixed value of β and varying α. [5].

To this end, one observes that the arbitrariness in the subtraction of the quadratic diver-
gences in ∆0(Q2) may be compensated by a parameter β:

∆0(Q2)
Q2

→
∆0(Q2)−∆0(Q2

0)

Q2
+

g2

4π
G(0)2 β

µ2

Q2
. (5)

This introduces an effective mass term in the equations (the prefactors ensure the correct
renormalization), which therefore depend on an additional parameter β . In Scenario A men-
tioned above, the first term in Eq. (5) is dropped and β is sent to zero in the end, whereas in
Scenario B this term is dynamical and β remains. It also turns out that Z(µ2), G(0) and g are
not actually independent but only appear in the equations through the combination

α=
g2

4π
Z(µ2)G(0)2 ∈ R+ . (6)

This can be seen by redefining Z(Q2) → Z(Q2)/Z(µ2), G(Q2) → G(Q2)/G(0) and perform-
ing the same operations for the three- and four gluon vertex as well as the renormalization
constants. Moreover, when introducing a dimensionless scale x = Q2/(βµ2) and redefining
G(x)→

p
αG(x), the equations for the ghost and gluon dressing functions assume the com-

pact form

G(x)−1 =
1
p
α
+Σ(x)−Σ(0) , Z(x)−1 = 1+Π(x)−Π( 1

β ) . (7)

Here, Σ(x) is the ghost self-energy and Π(x) is the transverse part of the gluon self-energy
in Eq. (3) including the ∆T and ∆0 terms. Only α and β appear explicitly in the equations,
which allows one to study the behavior of the solutions in the (α,β) plane.
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Figure 5: Left: Lines of constant physics in the (α,β) plane [5]. Right: DSE for the
ghost-gluon vertex, which becomes a homogeneous BSE for the longitudinal B term.

Fig. 4 displays the solutions for a fixed value of β and varying 0 < α <∞. The family
of decoupling solutions is characterized by the parameter α, and the scaling solution is the
envelope of the decoupling solutions for α→∞. The running coupling α(x) = Z(x)G(x)2

is renormalization-group invariant; this is the quantity that sets the scale by comparison with
lattice QCD (or, in full QCD, experiment). Note that the running coupling remains finite even
when the parameter α is sent to infinity. The orange bands in Fig. 4 indicate the onset of the
decoupling solutions, which are close to the solutions seen on the lattice: The ghost dressing
is finite in the infrared and the three-gluon vertex has crossed zero but not very far.

Repeating these calculations for general values of (α,β), one can identify lines of constant
physics along which the solutions are identical up to rescaling. This is shown in Fig. 5 and
entails that α and β recombine to two parameters c0 and c1, where c0 only rescales the sys-
tem and c1 is the actual parameter that distinguishes the scaling and decoupling solutions.
Therefore, the family of solutions is due to the presence of the mass term β , or in general ∆0,
which is entirely nonperturbative. The bending of the lines implies that without such a term
(β → 0) only the scaling solution would survive (as in Scenario A); if this term is dynamical,
one obtains the family of decoupling solutions with the scaling solution as its endpoint.

3 Longitudinal singularities

Let us return to the question of longitudinal singularities. The condition ∆L = −∆0/Q
2 re-

quires purely longitudinal poles in either of the vertices appearing in the gluon DSE (Fig. 2).
Such terms do not appear in the equations we solved so far: we employed tree-level tensors for
the ghost-gluon, three-gluon and four-gluon vertices, which should be a good approximation
for the transverse equation for Z(Q2) but cannot provide the full dynamics in the longitudinal
sector. For example, the general ghost-gluon vertex depends on two tensors,

Γ
µ

gh(p,Q) = −i g fabc [(1+ A) pµ + B Qµ] , (8)

where pµ is the outgoing ghost momentum and Qµ the incoming gluon momentum, and the
two dressing functions A and B depend on p2, p ·Q and Q2. The function A is small in Landau
gauge [23], which makes the tree-level tensor (A= B = 0) well-suited for approximations in
the transverse sector. In turn, little is known about B which only enters in the term ∆L .

To determine the longitudinal vertex dressing B, one must solve the DSE for ghost-gluon
vertex shown in Fig. 5. This DSE can be read as an inhomogeneous Bethe-Salpeter equation
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Figure 6: Left: Largest eigenvalue of the homogeneous BSE for the ghost-gluon ver-
tex, which only for the scaling solution α →∞ satisfies λ0 = 1. Right: Sketch of
a possible scenario with massless singularities in the vertices (blue) and the massive
Yang-Mills regime without such singularities (red) [5].

(BSE) for B, and to determine if B has a pole, one can equivalently solve the corresponding
homogeneous BSE: If the lowest-lying eigenvalue λ0(Q2) becomes 1 for some value of Q2, the
vertex must have a longitudinal pole. In particular, if λ0(Q2 = 0) = 1, the ghost-gluon vertex
must have a massless longitudinal pole.

The BSE solution for the eigenvalue λ0(0) is plotted in the left of Fig. 6. One can see that
λ0(0) indeed approaches 1 for α→∞, which means that the ghost-gluon vertex does have a
massless longitudinal pole, however only for the scaling solution. This would imply that only
the scaling solution can satisfy the longitudinal condition (4) needed for gauge consistency.

Obviously this raises the question about the lattice decoupling solutions and the PT-BFM
scheme, where longitudinal massless poles appear in the three-gluon vertex [35,36]. In fact,
it seems quite natural that if the ghost-gluon vertex does have such a pole, it would trigger
longitudinal massless poles in all other correlation functions whose DSEs contain ghost loops,
including the three-gluon vertex DSE in Fig. 2. In principle, the question could be settled by
back-coupling the three-gluon vertex including its full momentum dependence and all its 14
Lorentz tensors, in which case one would arrive at coupled BSEs for the longitudinal sector
of the ghost-gluon, three-gluon, four-gluon vertex etc. This leads to the situation sketched
in the right panel of Fig. 6: The eigenvalue λ0(Q2 = 0) would serve as an order parameter
that distinguishes the massless (QCD-like) solutions from the massive Yang-Mills solutions,
where the region close to the phase transition would be dominated by longitudinal poles in the
three-gluon vertex and the scaling solution corresponds to a ghost dominance. If this picture
were confirmed, it would indeed provide a strong indication that all QCD-like solutions are
physically equivalent and simply generated by different mechanisms.

4 Conclusions

In this work we summarized a recent study of mass generation in Landau-gauge Yang-Mills the-
ory. The corresponding Dyson-Schwinger equations admit a family of solutions characterized
by two parameters. One of them only rescales the solutions, whereas the other distinguishes
the range between a massive Yang-Mills-like regime on one side and the massless decoupling
regime including the scaling solution on the other side. The existence of this family is tied to
the term ∆0, which is nonperturbative and acts as an effective mass term in the equations.

For the Yang-Mills solutions, gauge consistency requires longitudinal massless poles in the
vertices — or phrased differently, the existence of longitudinal massless poles triggers mass

018.7

https://scipost.org
https://scipost.org/SciPostPhysProc.6.018


SciPost Phys. Proc. 6, 018 (2022)

generation in the transverse sector. We find that the ghost-gluon vertex indeed has such a pole,
which establishes the consistency of the scaling solution. The consistency of the decoupling
solutions requires longitudinal massless poles also in the three-gluon vertex (and possibly other
ones), which is the observation in the PT-BFM scheme. In that case, the eigenvalue of the
longitudinal Bethe-Salpeter equation would act as an order parameter that distinguishes the
massless from the massive Yang-Mills regime. This can be tested in the future and if confirmed,
it would provide further evidence for the decoupling solutions, with the scaling solution as
their endpoint, being physically equivalent.

On a more practical note, calculations such as the one presented herein establish a first
step towards ab-initio calculations of hadron properties with functional methods, which do not
rely on any parameters except those in the QCD Lagrangian and whose only approximations
amount to neglecting higher n-point functions, which makes them systematically improvable.
A recent example is the calculation of the glueball spectrum in Yang-Mills theory, which is in
agreement with lattice QCD calculations [37,38]. An important goal for future studies will be
the extension of such calculations towards full QCD.
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