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Proving the dimension-shift conjecture
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Abstract

We prove the conjecture made by Bern, Dixon, Dunbar, and Kosower that describes a
simple dimension shifting relationship between the one-loop structure of N = 4 MHV
amplitudes and all-plus helicity amplitudes in pure Yang-Mills theory. The proof cap-
tures all orders in dimensional regularisation using unitarity cuts, by combining mas-
sive spinor-helicity with Coulomb-branch supersymmetry. The form of these amplitudes
can be given in terms of pentagon and box integrals using a generalised D-dimensional
unitarity technique which captures the full amplitude to all multiplicities.
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1 Introduction

On-shell methods have lead to many new perspectives on gauge theories. Not least of these is
the gauge/gravity double copy [1,2]. Here we discuss and prove an (up-until-now) conjectural
relationship between gauge theories which relate a theory known to be physical, QCD, to a
theory of great theoretical and conceptual interest, N = 4 Super-Yang-Mills [3]. This states a
simple dimension-shifting relationship between the n-point one-loop gluon amplitudes of each
theory Atheory

n with differing helicity configurations

AQCD
n

�

1+, 2+, ..., n+
�

= −2ε(1− ε)(4π)2
�

AN=4
n (1+, ..., i−, ..., j−, ..., n+)

〈i j〉4

�

ε→ε−2

, (1)

where ε is the usual dimensional-regulator parameter and the 〈i j〉4 factor is the standard
(Weyl) spinor-helicity contraction which compensates for the spinor-weight (or little-group
scaling) between the two amplitudes.
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Of particular practical interest is the fact that the relation (1) holds to all orders in ε, and
thus relates the general-dimensional structure of the integral functions upon which it depends.
In [3] the conjecture was verified up to n= 6 but it has now been proven to all-multiplicities,
and to all orders in ε [4]. Moreover, the complete all-orders-in-ε all-n amplitudes can be
computed in both theories.

2 Status of the theories

Since the conjecture of the relationship (1) was first made, there has been great progress in
the computation of the relevant scattering amplitudes.

2.1 All-plus QCD

The all-plus QCD amplitude has long been known to vanish at tree-level order, a fact which
can most easily be seen using supersymmetric (SUSY) Ward identities [5]

ASUSY; tree
n (1+, 2+, ..., n+) = 0 , (2)

and the fact that at tree level

ASUSY; tree
n = AQCD; tree

n . (3)

The one-loop order result was an early all-multiplicity result for a gluon amplitude [6,7],
and was computed to leading order in ε

AQCD,1−loop
n (1+, 2+, ..., n+) =

∑

1≤i1<i2<i3<i4≤n

tr−(i1i2i3i4)
〈12...n1〉

+O(ε) . (4)

At two-loop order this particular helicity configuration provided the first high-multiplicity
(n> 5) results for the planar sector [8], where thanks to four-dimensional cut-constructibility
and on-shell recursion a functional form has been successfully computed up to n = 7 up to
O(ε) terms. A specific subleading-in-colour contribution to the two-loop all-plus amplitude
has recently been computed to two loops, the first partial-amplitude result to be computed to
arbitrary multiplicity [9].

2.2 MHV in N = 4 SYM

The tree-level amplitude of the MHV configuration in N = 4 SYM first deduced by Parke and
Taylor [10] has since been expressed in a more general form, which bundles together the states
in the supermultiplet [11] into a "superamplitude"

AMHV; tree
n =

δ(8) (|i〉ηiA)
〈12 . . . n1〉

. (5)

Then the application of functional derivatives gives the tree amplitude with two negative-
helicity gluons

AN=4; tree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

δ4

δη4
i

δ4

δη4
j

AMHV; tree
n . (6)

At loop-level, the MHV amplitude is one of the most resounding successes of four-dimensional
unitarity constructions. The amplitude is easily constrained and fixed by unitarity diagrams
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Figure 1: Unitarity cut constructions build loop amplitudes from tree amplitudes,
and this is particularly effective with the maximal supersymmetry of N = 4 SYM.

like those on the left-hand side of Figure 1. Together with the simple form of the tree am-
plitude, this resulted in another amplitude to have been computed up to O(ε) to arbitrary
multiplicity [12,13]:

AMHV
n =

1
4
δ(8)(|i〉ηiA)
〈12...n1〉

n
∑

i1,i3=1

tr(i1qi1+1,i3 i3qi3+1,i1)I
[i1,i1+1,i3,i3+1]
4 +O(ε) , (7)

where qi j = pi + · · ·+ p j−1 where the counting is defined cyclically in terms of particle labels.
The amplitude (7) can also very easily be computed using generalised unitarity cuts [14]which
builds the entire amplitude from on-shell products of amplitudes like the one depicted on the
right-hand-side of Figure 1.

Astoundingly, multiloop results for (n < 6)-points extend to all orders, thanks to the ex-
ponentiation of the one-loop result given by the Bern-Dixon-Smirnov (BDS) ansatz [15]. For
higher n the problem then turns into fixing the rest of the structure not captured by the BDS
ansatz. Two-loop results have recently reached n= 9 [16] and n= 6 results extending through
to seven loops [17].

3 Proving the conjecture

The verification of the relationship (1) was done in [3] to all orders up to n = 6 multiplicity.
This combined a string-derived formalism for theN = 4 side [18], and D-dimensional unitarity
for the QCD side. We use the D-dimensional unitarity on both sides, matching the cuts which
capture the full amplitude to all orders in ε.

3.1 Statement in terms of D-dimensional cuts

To compute full amplitudes in dimensional regularisation we can use a technique equivalent
to taking massive unitarity cuts. D-dimensional unitarity treats a cut in 4 − 2ε dimensions
by splitting up the loop momentum into a four-dimensional contribution l (which lives in the
same space as the external momenta) and the −2ε difference

`= l + `[-2ε] , (8)

and the unitarity-cut (on-shell) condition becomes

`2 = l2 −µ2 = 0 , (9)
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where we have defined

µ2 ≡
�

`[-2ε]
�2

. (10)

Meanwhile, as was originally observed in [3], the vanishing of all-plus gluon amplitudes in
theories with supersymmetry implies that

AQCD
n (1+, 2+, . . . , n+) = 2A[0]n (1

+, 2+, . . . , n+) , (11)

where A[0]n is the amplitude with real scalar gluons circulating in the loop. This implies that
the unitarity cuts are given by the product of scalar-gluon tree amplitudes, where the scalars
have mass as defined in equation (10).

In particular, the dimension-shifting relationship can be stated at the integrand level in
terms of the parameter µ2. In considering the full integral in dimensional regularisation we
see that the "dimension shift" comes from µ2 terms present in the numerator

I4−2ε
�

µ2r
�

= −
∫

d4ldµ2

(−µ2)1+ε

�

µ2
�r

(l2 −µ2) · · · ((l − q)2 −µ2)

= −ε(1− ε) · · · (r − 1− ε)I4+2r−2ε [1] (12)

which means we can restate (1) in terms of a relationship between unitarity cuts. Thus, as
suggested in [3] we prove the relationship

AQCD
n

�

�

�

�

µ2 6=0

qrs cut
= AN=4

�

2µ4

〈i j〉4

��

�

�

�

µ2 6=0

qrs cut
(13)

for cuts in all momentum channels q2
rs.

3.2 Necessary tree amplitudes

Proving equation (13) requires understanding the D-dimensional cuts on the N = 4 side. The
amplitudes needed are known [19–22], and through Coulomb-branch supersymmetry they can
be bundled together into the "MHV-band" amplitudes [22–24], which admit a delta-function
representation analogous to the one given in equation (5),

AMHV−band
tree =

[λnλ1]2δ
χ
12δ

χ
34

m2q4
n2

A(10, 2+, 3+, ..., (n− 1)+,n0) , (14)

where A(10, 2+, 3+, ..., (n− 1)+,n0) are precisely the massive-scalar-gluon amplitudes needed
for the QCD side of equation (13). Here qn2 = pn+ p1, and [λi| are the spinors obtained from
the projection of pi against a null reference spinor (or q-frame) pχ in the Dittmaier massive-
spinor-helicity formalism [25]. The delta functions δχi j are defined in [23]. They depend on the
reference momentum pχ and encode the remaining supersymmetry after it is partially broken
in the Coulomb branch by the introduction of the mass m [23].

3.3 Proof

The tree amplitudes which can be extracted from equation (14) are most compactly expressed
in the gauge constrained such that pχ · qn2 = 0. We consider the sum of the helicity states in
this gauge which correspond to the configurations of the general types depicted in Figure 2.

Cuts of type (a) vanish as a consequence of the vanishing of the all-plus-helicity tree am-
plitudes on the left-hand side. Cuts of type (b) give a non-vanishing contribution for the
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Figure 2: The three types of cut which reproduce the N = 4 amplitude.

fermionic, gluonic, and scalar loop content in the supermultiplet, but the total cancels so that
these cuts do not contribute to the full amplitude.

So the only type of cuts contributing are (c), which are MHV on both sides and capture the
epsilon-truncated one-loop amplitude in equation (7). In this case they are actually capturing
the structure to all orders in ε through the Coulomb-branch amplitudes.

The proof then proceeds as follows. The cut integral is
∫

d4ηlr
d4ηls A

MHV; tree
L (-l1

r , r, ..., (s− 1), l1
s )× AMHV; tree

R (-l1
r , r, ..., s− 1, l1

s ) =
∫

d4ηlr
d4ηls

δ(8) (L)
µ2〈λlsλlr

〉2
AL(-l

0
r , r, ..., (s− 1), l0

s )×
δ(8) (R)
µ2〈λlsλlr

〉2
AR(-l

0
r , s, ..., r − 1, l0

r ) ,

L ≡ |i〉ηiA, i ∈ {λ-lr
, r, ..., s− 1,λls} ; R≡ |i〉η jA, i ∈ {λls , r, ..., s− 1,λ-lr

} , (15)

and applying the Grassmann integration and delta functions gives

AMHV

�

�

�

�

qrs cut
=
δ(8) (〈λi|ηiA)

µ4
AL(-l

0
r , r+, ..., (s− 1)+, l0

s )AR(-l
1
s , s+, ..., (r − 1)+, l1

r ) . (16)

Applying the functional derivatives then gives δ4

δη4
i

δ4

δη4
j
,

AN=4
n (1+, 2+, ..., i−, ..., j−, ..., n+)

�

�

�

�

qrs cut
=
δ4

δη4
i

δ4

δη4
j

�

AMHV
n

�

�

�

�

qrs cut

�

=
〈i j〉4

2µ4
AQCD

n

�

�

�

�

qrs cut
(17)

which proves the conjecture (1).

4 Closed forms to all multiplicities

Through the conjecture, we need only compute one side to get the general all-orders-in-ε, all-
n form of the amplitude in both theories. This amounts to extracting coefficients of box and

009.5

https://scipost.org
https://scipost.org/SciPostPhysProc.7.009


SciPost Phys. Proc. 7, 009 (2022)

pentagon integrals.

4.1 Box coefficients

These coefficients are remarkably simple to compute on the N = 4 side, as the boxes are
given from four-dimensional cuts and we can read the coefficients directly from equation (7).
Namely a coefficient b4 is given by

bQCD; [i1,i3−1,i3,i1−1]
4 =

1
2

tr(i1qi1 i3 i3qi3+1,i1−1)

〈12...n1〉
, (18)

but we can also see these emerge on the QCD side from imposing ultraviolet constraints on
the box-integral basis and demonstrating that only "two-mass-easy" (i2 = i3 − 1, i4 = i1 − 1)
box coefficients contribute. The coefficients are then given by the formula

bQCD; [i1,i3−1,i3,i1−1]
4 =

1
µ4

�

2×
1
2

∑

α±

Atree × Atree × Atree × Atree

�

�

�

�

O(µ6)

�

. (19)

4.2 Pentagon coefficients

Figure 3: The five-particle cut reproduces pentagon coefficients.

The pentagon coefficients can be easily solved for thanks to the generalised D-dimensional
unitarity penta-cut solution presented in [26], which simply gives an explicit solution for the
loop momentum given five massive (or D-dimensional) cuts depicted in Figure 3

lµi1 = −
tr5

�

qi1 i2qi2 i3qi3 i4qi4 i5qi5 i1γµ
�

2 tr5(qi1 i2qi2 i3qi3 i4qi4 i5)

µ2 =
tr(qi1 i2qi2 i3qi3 i4qi4 i5qi5 i1qi1 i2qi2 i3qi3 i4qi4 i5qi5 i1)− 2

∏5
k=1 q2

ik ik+1

tr2
5(qi1 i2qi2 i3qi3 i4qi4 i5)

(20)

and this need only be plugged into the product of the five on-shell amplitudes to give the
coefficients:

bQCD; [i1,i2,i3,i4,i5]
5 = c3

0Atree(-l0
i1

, i+1 , ..., (i2 − 1)+, l0
i2
)× Atree(-l0

i2
, i+2 , ..., (i3 − 1)+, l0

i3
)×

Atree(-l0
i3

, i+3 , ..., (i4 − 1)+, l0
i3
)× Atree(-l0

i4
, i+4 , ..., (i5 − 1)+, l0

i3
)×

Atree(-l0
i5

, i+5 , ..., (i1 − 1)+, l0
i3
) . (21)
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A non-trivial check is that this reproduces the parity-odd contributions to the finite QCD am-
plitude, namely the tr5 piece of the QCD amplitude in equation (4) where

tr−(i1i2i3i4) =
1
2

�

tr(i1i2i3i4)− tr5(i1i2i3i4)
�

(22)

matches the b5 contributions upon substituting the pentagon integrals for their values in the
ε→ 0 limit

I5[µ
4] →
ε=0
−

1
24

. (23)

We confirm this numerically up to to the n= 17 case.

5 Conclusion

The dimension shift relationship between QCD all-plus-helicity amplitudes and N = 4 SYM
MHV amplitudes has been proven at one-loop to all multiplicities. We have also given all-n all-
orders-in-ε expressions in terms of pentagon and box integrals, through fixing their coefficients
through generalised D-dimensional unitarity cuts. The origin of the box coefficients is partic-
ularly distinct, with the N = 4 computation falling out automatically from four-dimensional
cuts while the QCD requires UV truncation of the integral basis in D dimensions to fully con-
strain.

Further work towards studying the analytic structure of these amplitudes to all orders in
ε could yield deeper insight at higher-loop order. In particular, we observe that the "purity"
(polylogarithmic simplicity) of the amplitude is broken at high orders in ε inN = 4 super Yang-
Mills. Future work will involve getting a stronger analytic control of these all-n all-orders-in-ε
expressions.
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