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Abstract

We present the new release of pySECDEC, a toolbox for the evaluation of dimensionally
regulated parameter integrals. The main new features consist of an automated way to
perform expansions, based on the geometric approach to the method of expansion by
regions, and a new algorithm to efficiently evaluate linear combinations of integrals as
needed for the calculation of scattering amplitudes. The other new features are also
summarised briefly.
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1 Introduction

The importance of precision calculations for the current and future High Energy Physics pro-
gram is undeniable, however their complexity increases rapidly with the numer of loops and
mass scales. This often prohibits analytic calculations of the underlying scattering amplitudes,
such that (semi-)numerical approaches need to be pursued. Furthermore, in certain limits
leading to a hierarchy of scales, approximate results can still be accurate enough for phe-
nomenological purposes. This has been exploited for example in Higgs phenomenology, ex-
ploiting large-mt or small-mb expansions in their respective ranges of validity, see e.g. Ref. [1]
for more details.

A systematic approach to the expansion of Feynman integrals is given by the so-called
expansion by regions, pioneered in Refs. [2–4]. The method, originally developed in the mo-
mentum representation of Feynman integrals, was later reformulated in Feynman parameter
space [5–8], where it allows for a geometric interpretation. An implementation of the method
is available in the code ASY2.M [9], which is also part of the program FIESTA [10–14].
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In these proceedings, we present a new version [15] of pySECDEC [16,17], which contains
an implementation of expansion by regions based on its geometric formulation. Moreover,
we present a new mechanism to efficiently evaluate amplitudes as sums of integrals, in a way
which takes into account the relative importance of the individual integrals. Furthermore we
briefly introduce the other features of the new release, for more details we refer to [15].

2 Geometric formulation of expansion by regions

2.1 Method

In this section, we discuss the expansion of parametric integrals over polynomials around small
values of a so-called smallness parameter (e.g. m2/p2 in a large-momentum expansion). Feyn-
man integrals can be brought into this form using the Lee-Pomeransky representation [18]:

I =

∫ ∞

0

dx
x

xν tνN+1

� m
∑
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cix
pi t pi,N+1

�− D
2

, (1)

where t is the smallness parameter, ci the coefficients of the polynomial, D the space-time
dimension and xa =

∏N
j=1 x

a j

j . The exponents can be organised into (N + 1)-dimensional

vectors p′i ≡
�

pi , pi,N+1

�

, ν′ ≡ (ν,νN+1).
The goal of the method of expansion by regions is to identify all the possible scalings of the

integration variables w.r.t. the smallness parameter in the different parts (called regions) of the
integration domain. Once the integration domain has been divided into regions, the integrand
is expanded in each region according to the given scaling and the corresponding expanded
integrands are integrated over the whole integration domain. The sum of the resulting integrals
adds up to the original integral since overlapping terms in general give rise to scaleless integrals
that are zero in dimensional regularisation [19]. Moreover, the dimensional regulator ε, or
additional analytical regulators, are used to make sure the integrals are well-defined even
outside the region of convergence. Let us now sketch the geometric approach and illustrate it
with a simple example.
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Figure 1: Newton polytope for P(x , t) = t + x + x2, together with the directions of
the region vectors (drawn as normal vectors to the facets in positive t-direction).

In order to find all the relevant regions, we can use the notion of the Newton polytope of
a polynomial. The Newton polytope can be determined as the convex hull of the exponent
vectors or, alternatively, as the intersection of half spaces

∆′ =
⋂

f ∈F

�

m ∈ RN+1 | 〈m,n f 〉+ a f ≥ 0
	

, (2)
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where F is the set of polytope facets with inward-pointing normal vectors n f , 〈m,n f 〉 is the
scalar product of m and n f , and a f ∈ Z. An example of a Newton polytope for the simple
polynomial P(x , t) = t + x + x2 is shown in Fig. 1.

The subset of facets with normal vectors pointing in the positive t-exponent direction is
F+ =

�

f ∈ F | (n f )N+1 > 0
	

. It can be shown that the facets belonging to F+ correspond to all
the regions we need to consider [6]. These can be used as input for the change of variables:

t →
∏

f ∈F+
z
(n f )N+1

f t , x i →
∏

f ∈F+
z
(n f )i
f x i , (3)

where for each facet f , n f is the vector describing the rescaling applied to (x, t) and is called
the region vector.

The transformations (3) lead to the following form of the integral (1):
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The original integral can then be approximated by expanding in z f in each region while setting
the other z f ′ to one, and then setting z f to one after the expansion in region f . The final result
reads:

I =
∑

f ∈F+
I f , (5)

where I f is the expansion of (4) in z f with all z set to one after the expansions. The I f are
integrated over the whole integration domain. The procedure outlined above is equivalent to
expanding directly in the parameter t after appropriate rescaling of the Feynman parameters,
a proof can be found in Ref. [15].

2.2 Usage

In this section we present a comparison between expansion by regions and standard pySECDEC.
To this end, we evaluate as a sample integral the two-loop triangle given in Fig. 2 at order ε0

in the ε-expansion. We consider the limit s � m2 and we expand to leading order in the
smallness parameter.

m
s

Figure 2: Two-loop triangle with one internal massive line

Fig. 3 shows the integration times for both, expansion by regions (solid line) and pySECDEC

(dashed line) plotted against the ratio r = m2/s. One can see how the integration times for
pySECDEC blow up as the ratio of scales increases, while expansion by regions is numerically
stable over the different orders of magnitude.

Fig. 4 shows the behaviour of |Rn/Ra|, the modulus of the ratio of the finite parts obtained
numerically to the analytic result (from Ref. [20]), with increasing ratio r = m2/s of the kine-
matic scales, for both the numerical result obtained with expansion by regions and pySECDEC.
The shaded areas are given by adding and subtracting the numerical uncertainty to the result.
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Figure 3: Scan over different orders of magnitude of r = m2/s for the two-loop
triangle given in Fig 2. Integration times (in minutes) are plotted against r. The
relative accuracy goal is 10−3; the wall clock limit has been set to 5 hours.

The accuracy goal is fixed to 10−3. Notice that the integration stops whenever the accuracy
goal or the maximum number of evaluations are reached, meaning that the actual final uncer-
tainty can be smaller than the required accuracy. Fig. 4 shows that the uncertainty due to the
expansion is no longer dominant compared to the integration error if m2/s ¦ 40, and that the
results from pySECDEC and expansion by regions are compatible with each other in this case.

Combining the information of the two plots, it is clear that whenever the approximation
due to the expansion is negligible compared to the numerical uncertainty of the result, using
the expansion by regions option instead of standard pySECDEC is the better choice to evaluate
the integral in the given kinematic limit.

As a final remark, it is worth to point out that for some integrals, the above considerations
might hold only much deeper in the kinematic limit.

3 Amplitude evaluation and other new features

3.1 Amplitude evaluation

With the new release of pySECDEC, a new function called sum_package has been introduced.
The function implements the algorithm described in [21] and generates a library that allows
for the fast and efficient evaluation of amplitudes, i.e. linear combinations of integrals with
coefficients depending on kinematic invariants and the space-time dimension. The efficient
evaluation is achieved by an algorithm that takes into account how much the individual in-
tegrals contribute to the total, such that the accuracy goal for less dominant integrals can be
lower than the accuracy demanded for the total amplitude. In this section we present a simple
usage example, for more details we refer to Ref. [15].

The example discussed here is contained in examples/yyyy1L of the public code and
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Figure 4: Scan over different orders of magnitude of r = m2/s for the two-loop
triangle given in Fig 2. The modulus of the ratio between the numerical result and
the analytic result, |Rn/Ra|, is plotted against r. The bands indicate the numerical
uncertainties on the result.

calculates the one-loop 4-photon amplitude M++−−. The amplitude can be expressed in terms
of one-loop 4-point and 2-point integrals as

M++−− = −8

�

3(4− D)I D+4
4 (t, u) +

t2 + u2

s
I D+2
4 (t, u) +

t − u
s

�

I D
2 (u)− I D

2 (t)
�

�

, (6)

where D = 4 − 2ε and s, t, u are the usual Mandelstam invariants. Note that I D+4
4 is UV

divergent, I D+4
4 = 1/(6ε)+finite, and therefore provides the rational part.

The example folder contains four files:

• coefficients.py: here the coefficient functions of the integrals are
defined as a list. Each coefficient function has the arguments
numerators,denominators,parameters, where the field parameters contains the
names of the kinematic invariants. The polynomials in the numerator and denominator
can also depend on the regulator ε.

• integrals.py: here the integrals are given as a list containing the “master” integrals
I D
2 (u), I D

2 (t), I D+2
4 (t, u), I D+4

4 (t, u). Note that the ordering of the integrals and the
corresponding coefficients should be the same.

• generate_yyyy1L.py: imports the integral definitions and the coefficients and runs
sum_package.

• integrate_yyyy1L.py: performs the numerical integration, here the user can choose
the integrator settings.
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With the values of the kinematics invariants set to t = −1.3, u = −0.8, s = −t − u, the result
reads

M++−− = (+0.± 2.1 · 10−16)ε−1+

+ (−28.431595834± 5.4 · 10−10 + (−1.3 · 10−10 ± 6.4 · 10−10) i)+

+O(ε) , (7)

in agreement with the analytic result. For more complicated amplitudes, the coefficients and
the integral list will be much more complicated, however the structure is the same. Therefore
pySECDEC can be used like an integral library for master integrals whose analytic expressions
are unknown.

3.2 Other new features

In this section, we briefly introduce the other new features of pySECDEC. The following
changes have been made compared to pySECDEC version 1.4.5:

• The contour deformation parameters λi are now reduced automatically if the original
values lead to an invalid contour. This removes the “sign check error” that was one of
the most frequent issues in previous versions of the code.

• The WorkSpace parameter of FORM [22,23] is now automatically increased if FORM fails
due to insufficient WorkSpace. Users are no longer required to adjust the
form_work_space parameter.

• pySECDEC can now be easily installed from the Python Package Index1 using

python3 -m pip install --user pySecDec

• The functions series_to_ginac, series_to_sympy, series_to_maple and
series_to_mathematica have been added. They convert the output of pySECDEC to
a syntax more suitable for use in combination with various computer algebra systems.

• The support for Python version 2.7 was dropped in favour of version 3.6 or newer.
Python is now always invoked as python3.

The following new functions have been introduced:

• make_regions provides a package generator to perform expansion by regions of gen-
eral parameter integrals.

• loop_regions is a wrapper around make_regions which simplifies the application of
expansion by regions to loop integrals.

• sum_package has been discussed in the previous section.

These functions are documented in detail in the online documentation2 distributed with the
code.

1https://pypi.org/project/pySecDec/
2https://secdec.readthedocs.io
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4 Conclusions

In these proceedings, we have presented a new implementation of the method of regions in
the program pySECDEC. We have shown that for integrals with a sufficiently large hierarchy
among the kinematic invariants, the timings and accuracy of expansion by regions remain ap-
proximately constant as the ratio of scales increases, while the standard numerical evaluation
by pySECDEC faces convergence issues. This gives the user a powerful tool to get faster and
more accurate results in certain kinematic limits.

In addition, we have introduced a mechanism in pySECDEC that allows for the fast and
efficient evaluation of linear combinations of integrals with coefficients that depend on kine-
matics and regulators, typically occurring in multi-loop scattering amplitudes. Each term in
the sum is evaluated with a number of sampling points determined such that the global accu-
racy goal for the sum is reached most efficiently. Together with the other features of the new
release, this makes pySECDEC a tool suited for the evaluation of multi-loop amplitudes in a
largely automated way.

Acknowledgements

I would like to thank the pySECDEC members for the fruitful collaboration.

Funding information This research was supported in part by the COST Action CA16201
(“Particleface”) of the European Union and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under grant 396021762 - TRR 257.

References

[1] G. Heinrich, Collider physics at the precision frontier, Phys. Rep. 922, 1 (2021),
doi:10.1016/j.physrep.2021.03.006.

[2] V. Smirnov, Renormalization and asymptotic expansions, vol. 14, Birkhäuser (1991).

[3] M. Beneke and V. A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,
Nucl. Phys. B 522, 321 (1998), doi:10.1016/S0550-3213(98)00138-2.

[4] V. A. Smirnov and E. R. Rakhmetov, The regional strategy in the asymptotic ex-
pansion of two-loop vertex feynman diagrams, Theor Math Phys 120, 870 (1999),
doi:10.1007/BF02557396.

[5] V. A. Smirnov, Problems of the strategy of regions, Phys. Lett. B 465, 226 (1999),
doi:10.1016/S0370-2693(99)01061-8.

[6] A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals,
Eur. Phys. J. C 71, 1626 (2011), doi:10.1140/epjc/s10052-011-1626-1.

[7] B. Ananthanarayan, A. Pal, S. Ramanan and R. Sarkar, Unveiling regions in multi-scale
Feynman integrals using singularities and power geometry, Eur. Phys. J. C 79, 57 (2019),
doi:10.1140/epjc/s10052-019-6533-x.

[8] B. Ananthanarayan, A. B. Das and R. Sarkar, Asymptotic analysis of Feynman diagrams
and their maximal cuts, Eur. Phys. J. C 80, 1131 (2020), doi:10.1140/epjc/s10052-020-
08609-0.

014.7

https://scipost.org
https://scipost.org/SciPostPhysProc.7.014
https://doi.org/10.1016/j.physrep.2021.03.006
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1007/BF02557396
https://doi.org/10.1016/S0370-2693(99)01061-8
https://doi.org/10.1140/epjc/s10052-011-1626-1
https://doi.org/10.1140/epjc/s10052-019-6533-x
https://doi.org/10.1140/epjc/s10052-020-08609-0
https://doi.org/10.1140/epjc/s10052-020-08609-0


SciPost Phys. Proc. 7, 014 (2022)

[9] B. Jantzen, A. V. Smirnov and V. A. Smirnov, Expansion by regions: revealing
potential and Glauber regions automatically, Eur. Phys. J. C 72, 2139 (2012),
doi:10.1140/epjc/s10052-012-2139-2.

[10] A. V. Smirnov and M. N. Tentyukov, Feynman Integral Evaluation by a Sec-
tor decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180, 735 (2009),
doi:10.1016/j.cpc.2008.11.006.

[11] A. V. Smirnov, V. A. Smirnov and M. Tentyukov, FIESTA 2: Parallelizeable
multiloop numerical calculations, Comput. Phys. Commun. 182, 790 (2011),
doi:10.1016/j.cpc.2010.11.025.

[12] A. V. Smirnov, FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical
regions, Comput. Phys. Commun. 185, 2090 (2014), doi:10.1016/j.cpc.2014.03.015.

[13] A. V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Com-
put. Phys. Commun. 204, 189 (2016), doi:10.1016/j.cpc.2016.03.013.

[14] A. V. Smirnov, N. D. Shapurov and L. I. Vysotsky, FIESTA5: numerical high-performance
Feynman integral evaluation, arXiv:2110.11660.

[15] G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, F. Langer, V. Magerya, A. Põldaru, J. Schlenk
and E. Villa, Expansion by regions with pySecDec, Comput. Phys. Commun. 273, 108267
(2022), doi:10.1016/j.cpc.2021.108267.

[16] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, pySecDec:
A toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun.
222, 313 (2018), doi:10.1016/j.cpc.2017.09.015.

[17] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner and J. Schlenk, A GPU compatible
quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun. 240, 120
(2019), doi:10.1016/j.cpc.2019.02.015.

[18] R. N. Lee and A. A. Pomeransky, Critical points and number of master integrals, J. High
Energ. Phys. 11, 165 (2013), doi:10.1007/JHEP11(2013)165.

[19] B. Jantzen, Foundation and generalization of the expansion by regions, J. High Energ. Phys.
12, 076 (2011), doi:10.1007/JHEP12(2011)076.

[20] J. Fleischer, A. V. Kotikov and O. L. Veretin, Analytic two-loop results for self-energy-
and vertex-type diagrams with one non-zero mass, Nucl. Phys. B 547, 343 (1999),
doi:10.1016/S0550-3213(99)00078-4.

[21] M. Kerner, NLO corrections to Higgs boson pair production in gluon fusion, Proc. Sci. 260,
023 (2016), doi:10.22323/1.260.0023.

[22] J. Kuipers, T. Ueda and J. A. M. Vermaseren, Code optimization in FORM, Comput. Phys.
Commun. 189, 1 (2015), doi:10.1016/j.cpc.2014.08.008.

[23] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453.

014.8

https://scipost.org
https://scipost.org/SciPostPhysProc.7.014
https://doi.org/10.1140/epjc/s10052-012-2139-2
https://doi.org/10.1016/j.cpc.2008.11.006
https://doi.org/10.1016/j.cpc.2010.11.025
https://doi.org/10.1016/j.cpc.2014.03.015
https://doi.org/10.1016/j.cpc.2016.03.013
https://arxiv.org/abs/2110.11660
https://doi.org/10.1016/j.cpc.2021.108267
https://doi.org/10.1016/j.cpc.2017.09.015
https://doi.org/10.1016/j.cpc.2019.02.015
https://doi.org/10.1007/JHEP11(2013)165
https://doi.org/10.1007/JHEP12(2011)076
https://doi.org/10.1016/S0550-3213(99)00078-4
https://doi.org/10.22323/1.260.0023
https://doi.org/10.1016/j.cpc.2014.08.008
https://arxiv.org/abs/1707.06453

	Introduction
	Geometric formulation of expansion by regions
	Method
	Usage

	Amplitude evaluation and other new features
	Amplitude evaluation
	Other new features

	Conclusions
	References

