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Abstract

Electric charge, as defined in the Thomson limit of the electron–photon interaction ver-
tex, is renormalized to all orders both in the Standard Model and in any spontaneously
broken gauge theory with gauge group G×U(1) with a group factor U(1) that mixes with
electromagnetic gauge symmetry. In the framework of the background-field method the
charge renormalization constant Ze is directly obtained from the photon wave-function
renormalization constant, similar to the situation in QED, which proves charge univer-
sality as a byproduct. Exploiting charge universality in arbitrary Rξ gauge by formulating
the charge renormalization condition for a “fake fermion” that couples only via an in-
finitesimal electric charge, Ze can be expressed in terms of renormalization constants
that are obtained solely from gauge-boson self-energies.
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1 Introduction

The definition of electric unit charge is carried over from classical electrodynamics to quan-
tum electrodynamics (QED) and to more comprehensive quantum field theories such as the
Standard Model (SM) upon imposing the Thomson renormalization condition which demands
that the electron–photon interaction vertex for physical (on-shell) electrons does not receive
any radiative corrections in the limit of low-energy photons. The charge renormalization con-
stant Ze, which relates the bare charge e0 = Zee to the renormalized unit charge e, can, thus,
be determined from the eeγ vertex correction in this limit by direct calculation of this correc-
tion in a given perturbative order. Exploiting electromagnetic gauge invariance in the form
of the famous Ward identity for the eeγ vertex, in QED it is possible to calculate Ze from the
wave-function renormalization constant of the photon, i.e. merely from a self-energy. This is
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not only a welcome technical simplification, but also an important field-theoretical result that
is helpful in proving structural theorems such as charge universality or Thirring’s theorem for
low-energy Compton scattering [1, 2]. Charge universality is the non-trivial statement that
the renormalized unit charge does not depend on the fermion species f (actually not even on
the type of charged particle) that is used in the formulation of the Thomson renormalization
condition on the f f γ vertex.

In the SM and most of its extensions, the derivation of Ze from self-energies is very compli-
cated (and not known beyond the one-loop level) if the derivation is directly based on gauge
invariance, which manifests itself via Slavnov–Taylor identities for Green functions and Lee
identities for (one-particle irreducible, 1PI) vertex functions. This is due to the fact that the
unbroken electromagnetic U(1)em gauge symmetry is not a mere factor of the gauge group, but
mixes with a non-abelian subgroup in a non-trivial way. Other U(1) group factors, such as the
weak hypercharge group in the SM, which mix with electromagnetic gauge symmetry cannot
fully play the role of U(1)em of QED, because they are spontaneously broken. Owing to this dif-
ficulty, in the early pioneering proposals for electroweak one-loop renormalization [3–10] the
derivation of Ze was either based on explicit calculations of the vertex correction or on Ward
identities that were verified by explicit calculations. A derivation fully based on Lee identities
at one loop without any explicit loop calculation has only been given quite recently [11];1 ow-
ing to its complexity a generalization of this approach beyond the one-loop level seems rather
complicated, if not infeasible.

The first all-order result for Ze in the SM, again expressed in terms of the photon wave-
function renormalization constant, was given in the framework of the background-field
method (BFM) in Ref. [12]. This result, in particular, proves charge universality in the SM
to all orders. In Ref. [13] it was shown by explicit calculation that the BFM result for Ze in-
deed is in line with the Thomson condition for the electron–photon vertex at the two-loop level
in arbitrary Rξ gauge. Similarly, in Refs. [14–16] it was shown by explicit two-loop calcula-
tion in conventional ’t Hooft–Feynman gauge that the sum of all genuine vertex corrections
and fermionic wave-function corrections to the f f γ vertex vanishes in the Thomson limit;
this is exactly the part in the calculation of Ze that is ruled by gauge invariance but not yet
proven on the basis of Slavnov–Taylor or Lee identities to all orders. In fact a general result
on Ze expressed in terms of other renormalization constants that are related to gauge-boson
self-energies, was suggested in Ref. [17]—although correct, this result was actually more con-
jectured than derived.2 This form of Ze was subsequently used in the few existing explicit
electroweak two-loop calculations, such as for the muon decay [19, 20] or Z-boson decay
widths [21].

After briefly sketching the BFM derivation of Ze within the SM to all orders, in the follow-
ing we review the all-order derivation [18] of Ze within arbitrary Rξ gauge, exploiting charge
universality by imposing the Thomson renormalization condition on the electromagnetic inter-
action vertex of a “fake fermion” η with infinitesimal electric charge Qη but no other charges
or couplings, so that η fully decouples from all other particles for Qη → 0. We first describe
the derivation within the SM, where the result confirms the earlier “conjecture” of Ref. [17],
and then generalize it to a more general gauge group G×U(1), where G is any compact Lie
group and U(1) has an admixture of electromagnetic gauge symmetry. This article is just a
brief summary of Ref. [18], where a much more complete treatment of the subject can be
found.

1An alternative proof based on Slavnov–Taylor identities is sketched in the slides of the corresponding talk given
at the conference.

2Detailed comments on the arguments given in Ref. [17] can be found in the appendix of Ref. [18].
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2 Charge renormalization and charge universality in the back-
ground-field method

Denoting the relative charge and mass of the fermion f by Q f and m f , respectively, the Thom-
son renormalization condition reads

ū(p) Γ̂ Â f̄ f
R,µ (0,−p, p)u(p)

�

�

�

p2=m2
f

= −Q f e ū(p)γµu(p) , (1)

where Â is the background photon field and Γ̂ Â f̄ f
R,µ the renormalized Â f̄ f vertex function in

the BFM. Here ū(p) and u(p) are Dirac spinors of the fermion f with momentum p fulfilling
p2 = m2

f with the renormalized on-shell mass m f . In the notation and conventions for all
field-theoretical quantities we follow Ref. [11] throughout.

The needed low-energy limit of the Â f̄ f for on-shell fermions can be obtained from its BFM
Ward identity, which follows from the background-field gauge invariance of the BFM effective
action (see Refs. [11,12] and references therein). This Ward identity for the unrenormalized
Â f̄ f vertex function reads [12]3

kµΓ̂ Â f̄ f
µ (k, p̄, p) = − e0Q f

�

Γ̂ f̄ f (p̄,−p̄)− Γ̂ f̄ f (−p, p)
�

, (2)

where Γ̂ f̄ f is the unrenormalized two-point vertex function of the fermions. To exploit this
identity in condition (1), we have to replace unrenormalized by renormalized quantities. In-
dicating bare quantities consistently by subscripts 0, the relevant parts of this renormalization
transformation reads

f σ0 =
�

Z f ,σ
�1/2

f σ, f̄ σ0 =
�

Z f ,σ ∗�1/2 f̄ σ,

�

Ẑ0

Â0

�

=

 

Z1/2
Ẑ Ẑ

Z1/2
Ẑ Â

Z1/2
ÂẐ

Z1/2
ÂÂ

!

�

Ẑ
Â

�

, (3)

where σ = R,L refers to the right- and left-handed parts of the fermion field f and Ẑ is the
background Z-boson field. The resulting relation between renormalized and unrenormalized
vertex functions reads

Γ̂
f̄ f

R,µ(−p, p) =
�

Z f ,σ∗�1/2 �Z f ,σ
�1/2

Γ̂ f̄ f
µ (−p, p) , (4)

Γ̂
Â f̄ f
R,µ (k, p̄, p) =

∑

V̂=Â,Ẑ

Z1/2
V̂ Â

�

Z f ,σ∗�1/2 �Z f ,σ
�1/2

Γ̂ V̂ f̄ f
µ (k, p̄, p) . (5)

The introduced field-renormalization constants Z f ,σ for the fermions and ZV̂ V̂ ′ for the photon–
Z-boson system are fixed by on-shell (OS) renormalization conditions, which require canonical
normalization of the residues of particle propagators and eliminates mixing between different
fields for on-shell momenta. Background-field gauge invariance automatically implies ZẐ Â = 0
(see, e.g., Refs. [11,12] for more details). Using additionally e0 = Zee, turns the Ward identity
(2) into an analogous identity for renormalized quantities,

kµΓ̂ Â f̄ f
R,µ (k, p̄, p) = − eQ f Ze Z1/2

ÂÂ

h

Γ̂
f̄ f

R (p̄,−p̄)− Γ̂ f̄ f
R (−p, p)

i

, (6)

which is valid for arbitrary momenta k, p̄, p obeying k+ p̄+ p = 0. Taking k→ 0 for fixed p,
the terms linear in k obey the relation

Γ̂
Â f̄ f
R,µ (0,−p, p) = − eQ f Ze Z1/2

ÂÂ

∂ Γ̂
f̄ f

R (−p, p)

∂ pµ
. (7)

3We ignore fermion generation mixing here; for its restoration see Ref. [18].
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Sandwiching this relation between Dirac spinors, its l.h.s. becomes identical to the one of (7),
and its r.h.s. can be simplified with the OS renormalization condition for the fermion field,
which can be written as

ū(p)
∂ Γ̂

f̄ f
R (−p, p)

∂ pµ
u(p) = ū(p)γµ u(p) . (8)

Thus, combining the charge renormalization condition (1) with (7) and (8) leads to the simple
equation [12]

Ze = Z−1/2
ÂÂ

, (9)

in the BFM, which is formally identical to the well-known relation in QED. Note also that
Eq. (9) shows that e0Â0,µ(x) = eÂµ(x), i.e. that the product of electromagnetic coupling and
background photon field is not renormalized, again in analogy to a QED relation.

3 Charge renormalization in arbitrary Rξ-gauge

We now extend the SM by adding a fermion field η with vanishing weak isospin, Ia
w,η = 0,

and weak hypercharge Yw,η = 2Qη. Taking the limit of vanishing electric charge, Qη→ 0, the
fermion η decouples from all other particles, and we recover the original theory—therefore
the terminology “fake fermion”. The Lagrangian L of the SM is, thus, modified by adding

Lη = η̄
�

i/∂ − 1
2 g1Yw,η/B −mη

�

η= η
�

i/∂ −Qηe
�

/A+
sW

cW

/Z
�

−mη

�

η , (10)

with mη denoting the arbitrary mass of the fermion η. We note that the mass term for η
is gauge invariant, that η is stable, and that no anomalies are introduced owing to the non-
chirality of η. As in the SM, g1 is the U(1)Y gauge coupling, Bµ the U(1)Y gauge field, and
sW = sinθw and cW = cosθw the sine and cosine of the weak mixing angle θw. Employing charge
universality, we can take the Thomson limit of the Aη̄η vertex to define the renormalized
electric unit charge e,

ū(p) Γ Aη̄η
R,µ (0,−p, p)u(p)

�

�

�

p2=m2
η

= −Qηe ū(p)γµu(p) . (11)

The relation between Γ Aη̄η
R,µ and its bare counterpart Γ Aη̄η

µ follows from the field renormalization

transformation η0 = Z1/2
η η and the analog of (3) for the photon–Z-boson system and reads

Γ
Aη̄η
R,µ (k, p̄, p) = ZηZ1/2

AA Γ
Aη̄η
µ (k, p̄, p) + ZηZ1/2

ZA Γ
Zη̄η
µ (k, p̄, p) . (12)

The bare vertex functions Γ V η̄η
µ (V = A, Z) receive lowest-order contributions and bare vertex

corrections ΛV η̄η
µ , which consist of 1PI loop diagrams and tadpole corrections,

Γ Aη̄η
µ (k, p̄, p) = −Qηe0γµ + e0Λ

Aη̄η
µ , Γ Zη̄η

µ (k, p̄, p) = −Qηe0
sw,0

cw,0
γµ + e0Λ

Zη̄η
µ . (13)

The important observation is now that all diagrammatic contributions to ΛV η̄η
µ and Zη involve

at least two couplings of photons or Z bosons to the η line that passes through the whole
diagram. Some sample diagrams are shown in Fig. 1. For 1PI diagrams it is obvious that at
least two couplings to the η line exist, for diagrams with tadpole loops or tadpole counterterms
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(a) η̄

η

A
A/Z

(b) η̄

η

A

A/Z

A/Z

W

W

W

(c) η̄

η

A Z

Z

H
f

(d)

η̄ η

A/Z (e)

η̄ ηZZ

Z

H

(f)

η̄ η

H
Z

Z

Xδt

Figure 1: Some higher-order diagrams contributing to Γ V η̄η
µ (a–c) and Γ η̄η (d–f),

which receive contributions from 1PI diagrams (a, b, d, e), from explicit tadpole
diagrams (c), and from diagrams involving tadpole counterterms δt (f).

the same holds true, because the Higgs field H does not couple to η. Since both the photon and
the Z boson couple toη proportional to Qη, this means thatΛV η̄η

µ =O(Q2
η) and Zη = 1+O(Q2

η).

Inserting, thus, Γ Aη̄η
R,µ from (12) into condition (11) and keeping only terms linear in Qη for

Qη→ 0, we get

−Qηe ū(p)γµu(p) = ū(p) Zη
�

Z1/2
AA Γ

Aη̄η
µ (0,−p, p) + Z1/2

ZA Γ
Zη̄η
µ (0,−p, p)

�

u(p)
�

�

�

p2=m2
η

= −Qηe0

�

Z1/2
AA + Z1/2

ZA

sw,0

cw,0

�

ū(p)γµu(p) + O(Q2
η) . (14)

This relation implies

e = e0

�

Z1/2
AA + Z1/2

ZA

sw,0

cw,0

�

, (15)

which is the desired relation between e and e0. Introducing the renormalization constant δc2
W

according to

c2
w,0 = 1− s2

w,0 = c2
W
+δc2

W
= 1− s2

W
+δc2

W
, (16)

we can determine Ze from (15),

Ze =



Z1/2
AA + Z1/2

ZA

√

√

√
s2

W
−δc2

W

c2
W
+δc2

W





−1

. (17)

This is fully equivalent to the result quoted and used in Refs. [17,19,20]. Since ZZA vanishes
at tree level, the renormalization constant δc2

W
is only required to (` − 1)-loop order in the

`-loop calculation of Ze.

4 Generalization to non-standard gauge groups

The concept of charge universality and charge renormalization outlined above for the SM
can be generalized easily to gauge groups of the type G×U(1), where G is any compact Lie
group of rank r and the U(1) group factor plays the analogous role of weak hypercharge in
the SM. More precisely, we mean by this that the U(1)em subgroup of electromagnetic gauge
symmetry mixes transformations of U(1) and G, so that the photon field Aµ is a non-trivial
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linear combination of the U(1) gauge field Bµ and the gauge fields Cµk (k = 1, . . . , r) of G
corresponding to the diagonal group generators in the Lie algebra of G. For the mechanism
of electroweak symmetry breaking we only assume that electromagnetic gauge invariance is
unbroken.

The original gauge fields Bµ and {Cµk } can be transformed into fields that correspond to
mass eigenstates,









Bµ

Cµ1
...

Cµr









= R









Aµ

Zµ1
...

Zµr









, R=









RBA RBZ1
· · · RBZr

RC1A RC1Z1
· · · RC1Zr

...
...

. . .
...

RCr A RCr Z1
· · · RCr Zr









, (18)

where Zµk (k = 1, . . . , r) describe neutral massive gauge bosons similar to the Z boson of the
SM. The matrix R is a generalization of the SM rotation matrix parametrized by the weak
mixing angle, but is not necessarily orthogonal or unitary. The OS renormalization of the
gauge fields proceeds exactly as in the SM, with an obvious generalization of the 2×2 matrix
of renormalization constants ZV V ′ of (3) to a (r + 1)× (r + 1) matrix. The constants ZV V ′ can
be computed from the V V ′ gauge-boson self-energies order by order.

The BFM derivation of the charge renormalization constant generalizes to the more general
gauge group without any problems. Background-field gauge invariance implies ZẐkÂ = 0 for
all k = 1, . . . , r, i.e. there is no mixing of on-shell photons with any of the Zk bosons. The
Ward identities (2) and (6), thus, carry over without modification. As a result, the charge
renormalization constant Ze is given by Ze = Z−1/2

ÂÂ
as in (9), proving charge universality as in

the SM.
To exploit charge universality in the determination of Ze in arbitrary Rξ-gauge, we again

introduce a fake fermion η with the same properties as above, i.e. η only carries infinitesimal
U(1) charge Yw,η = 2Qη, but no non-trivial quantum number of G, so that the unit charge
is given by e = g1RBA. If the model contains singlet scalars Si , the scalars Si may couple to
η via Yukawa couplings. The corresponding couplings yi are free parameters of the model
and can be taken to be infinitesimally small in analogy to Qη → 0, so that decoupling of η is
guaranteed. The Lagrangian Lη reads

Lη = η̄
�

i/∂ − 1
2 g1Yw,η/B −mη −

∑

i

yiSi

�

η

= η
�

i/∂ −Qηe
�

/A+
∑

k

RBZk

RBA
/Zk

�

−mη −
∑

i

yiSi

�

η . (19)

Following the same reasoning as for the SM above, the renormalized Aη̄η vertex function is
given by

Γ
Aη̄η
R,µ (k, p̄, p) = ZηZ1/2

AA Γ
Aη̄η
µ (k, p̄, p) +

∑

k

ZηZ1/2
ZkA Γ

Zkη̄η
µ (k, p̄, p) , (20)

with the unrenormalized V η̄η vertex functions

Γ Aη̄η
µ (k, p̄, p) = −Qηe0γµ + e0Λ

Aη̄η
µ , Γ Zkη̄η

µ (k, p̄, p) = −Qηe0

R0,BZk

R0,BA
γµ + e0Λ

Zkη̄η
µ . (21)

Again the vertex corrections ΛAη̄η
µ and ΛZkη̄η

µ as well as the field renormalization constant Zη
receive only corrections that are suppressed at least by quadratic factors in the new couplings,
such as Q2

η or Qη yi . Typical diagrams contributing to those corrections at the order O(Q2
η) (or

higher in Qη) can be obtained from the graphs shown in Fig. 1 upon interpreting the field Z
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as any of the Zk and taking the Higgs field H as a any Higgs field of the model. Equation (14)
then generalizes to the considered model in an obvious way, and we obtain the final result for
the charge renormalization constant:

Ze =

�

Z1/2
AA +

∑

k

Z1/2
ZkA

RBZk
+δRBZk

RBA+δRBA

�−1

, (22)

where δRBA and δRBZk
are renormalization constants for the matrix elements of R, i.e.

R0 = R+ δR. Recalling that the constants ZZkA vanish at tree level, we see that the constants
δRBA and δRBZk

are only required to (`− 1)-loop order in the `-loop calculation of Ze.
The case of the SM is trivially recovered from the results of this section upon identifying

G = SU(2)w, r = 1, Zµ1 = Zµ, RBZ1
= sW, and RBA = cW.

5 Conclusion

Employing the property of charge universality, the determination of the charge renormaliza-
tion constant Ze in arbitrary Rξ gauge can be greatly simplified upon applying the Thomson
renormalization condition to a “fake fermion” that has infinitesimal electric charge but no
other charges or couplings. Both in the SM and in the wider class of gauge theories with
gauge group G×U(1), where the U(1) subgroup contains some component of electromagnetic
gauge transformations, Ze can be deduced from gauge-boson wave-function and parameter
renormalization constants which can be calculated from gauge-boson self-energies only. Us-
ing Slavnov–Taylor or Lee identities to derive this result is already very cumbersome at the
one-loop level, and a consistent generalization beyond one loop is not known, if not infeasi-
ble.

The assumed property of charge universality can for instance proven in the framework of
the background-field method from which it is known that Ze can be directly obtained from the
photon wave-function renormalization constant.

For even more general gauge groups without a U(1) factor mixing with electromagnetic
gauge symmetry, the strategy with the decoupling “fake fermion” seems not to be applicable.
In this case the consistent use of the background-field method, however, still bears the possi-
bility to calculate the charge renormalization constant in terms of gauge-boson wave-function
renormalization constants in contrast to conventional Rξ-like gauges.
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