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Abstract

We compute multi-gluon production in the Color Glass Condensate approach in dilute-
dense collisions, pA. We include the contributions that are leading in the overlap area
of the collision but keep all orders in the expansion in the number of colors. We use a
form of the Lipatov vertices that leads to the Wigner function approach for the projectile
previously employed, that we generalise to take into account quantum correlations in
the projectile wave function. We compute four gluon correlations and we find that the
second order four particle cumulant is negative, so a sensible second Fourier azimuthal
coefficient can be defined.

Copyright P. Agostini et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 03-08-2021
Accepted 28-02-2022
Published 12-07-2022

Check for
updates

doi:10.21468/SciPostPhysProc.8.054

1 Introduction

Small size collision systems, pp and pA, probed at the Large Hadron Collider (LHC) show many
properties that are typical of dense systems generated in heavy ion collisions (HICs) such as
the existence of azimuthal correlations in the two-particle distribution that show a maxima
when the particles move in the same or opposite direction. This phenomenon, known as the
ridge, introduces the question of whether the source of such a collective behavior is the same
in small systems and in HICs.

The standard explanation of collective behavior in HICs, where the partonic density is
large, is the existence of strong final state interactions that lead to a situation where viscous
relativistic hydrodynamics can be applied. On the other hand, the application of hydrody-
namics in pp and pA collisions has lead to a successful description of azimuthal anisotropies.
However, these systems are defined by low particle densities and small collision area where
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non-hydrodynamic modes play an important role. Thus, it makes sense to look for other ex-
planations of collectivity effects in these systems. The Color Glass Condensate (CGC), a weak
coupling but non-perturbative description of partonic systems, offers a framework where az-
imuthal asymmetries can be calculated from first principles [1]. In the CGC picture, correla-
tions in the final state reflect those found in the wave function of the target and projectile,
assuming that final state effects, including hadronization, do not wash them out.

The initial versus final state origin of azimuthal correlations in small systems has been
subject to intense scrutiny in recent years. At present, no CGC-based model is able to fully
describe experimental data. Still, the search for observables that may discriminate initial from
final effect continues such as multi-particle cumulants.

2 Multi-gluon production in dilute-dense scatterings within the
CGC framework

In our approach we consider the projectile as a highly boosted dilute system that is composed,
mostly, by large-x partons that act each as a color source with color charge density ρa(x, x+),
with a denoting color, x the transverse position and x+ the longitudinal position. The target
is defined by a strong field Aµ(x, x+) = Aµa(x, x+)T a, with T a the generators of the SU(Nc)
group in the adjoint representation. Furthermore, the nucleus ensemble is supposed to be
much larger than the projectile in the transverse plane. In this picture, working in the light-
cone gauge A+ = 0 and neglecting the transverse components of the field, the amplitude for
producing a gluon with transverse momentum k, color a, polarization λ and pseudorapidity
η is given by

Ma
λ(η,k) = g

∫

d2q
(2π)2

Mab
λ (η,k,q)ρb(k− q), (1)

where ρa(q) is the Fourier transform of the projectile’s color charge density and Mab
λ (η,k,q)

is the reduced matrix amplitude [2] that, in the eikonal approximation, reads1 [3]

Mab
λ (k,q) = 2iεi∗

λ (k)L
i(k,q)

∫

d2ye−iqyUab(y). (2)

In this equation εi∗
λ
(k) is the gluon polarization vector, q is the transverse momentum trans-

ferred from the target during the interaction, Uab(y) = P+ exp
�

i g
∫

dz+A−(y, z+)
	ab

is the
eikonal Wilson line and

L i(k,q) =
ki

k2 −
(k− q)i

(k− q)2
, (3)

is the Lipatov vertex.
In this setup the spectrum for the production of n gluons, each of them with momentum

ki (i = 1, . . . , n), can be written as

2n(2π)3n dnN
∏n

i=1 d2ki
=g2n

∫

� 2n
∏

i=1

d2qi

(2π)2

�

×
¬

ρb1(k1 − q1)ρ
b2†(k1 − q2) · · ·ρb2n−1(kn − q2n−1)ρ

b2n†(kn − q2n)
¶

p

×
¬

Ma1 b1

λ1
(k1,q1)M

b2a1†
λ1

(k1,q2) · · ·M
an b2n−1

λn
(kn,q2n−1)M

b2nan†
λn

(kn,q2n)
¶

T
. (4)

1We have dropped the η dependence of the gluon amplitude due to the rapidity invariance of the multi-gluon
spectrum in the eikonal approximation.
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3 The area enhancement argument

In order to evaluate Eq. (4) we should compute the average over the target sources of 2n
matrix amplitudes (or equivalently, Wilson lines) and the average over the projectile color
charge density of 2n sources. For the second object we assume a Gaussian distribution for the
projectile sources, i.e. the generalized MV model, in such a way that it can only be written in
terms of the 2-point function through the Wick’s theorem

¬

ρb1(k1 − q1)ρ
b2†(k1 − q2) · · ·ρb2n−1(kn − q2n−1)ρ

b2n†(kn − q2n)
¶

p

=
∑

ω∈Π(χ)

∏

{i, j}∈ω

¬

ρbi (ki − qi)ρ
b j (k j − q j)

¶

p
, (5)

where χ = {1, 2, . . . , 2n} and Π(χ) the set of partitions of χ with disjoint pairs. In the gener-
alized MV model this projectile 2-point function is proportional to a function, µ2(k,q), that is
peaked around k+ q= 0 [3].

The target average can be evaluated by using the so-called area enhancement argument [4].
In this model one uses the fact that the configuration of the coordinates yi that maximizes the
transverse integrals appearing in Eq. (4) through Eq. (2) is such that the coordinates are as
far away as possible between them since, in this case, they cover a higher region of the phase
space. On the other hand, due to the domain model [3], two objects that only depend on the
target field, sitting at two different points yi and y j , will have a negligible correlation when
|yi − y j| � Q−1

s , where Qs is the saturation scale that defines the target. This implies that the
only way of obtaining a non vanishing target correlator is by grouping the legs in, at least,
pairs where the distance between the coordinates is smaller than the correlation length (Q−1

s ).
Moreover, the terms where more than two legs are sitting in the same domain will cover a
lower region of the phase space and will be suppressed by the overlap area of the interaction.
Thus, at leading order in the inverse of the area of the interaction, only these configurations
where the coordinates are grouped in pairs that are far away from each other will contribute
to the target multipole.

This assumption is equivalent to assuming Gaussian statistics for the Wilson lines. There-
fore we can use the Wick’s theorem and write (see [3] for a detailed derivation)

¬

Ma1 b1

λ1
(k1,q1)M

b2a1†
λ1

(k1,q2) · · ·M
an b2n−1

λn
(kn,q2n−1)M

b2nan†
λn

(kn,q2n)
¶

T

=
∑

σ∈Π(χ)

∏

{α,β}∈σ

¬

Maαbα
λα
(kα,qα)M

aβ bβ
λβ
(kβ ,qβ)

¶

T
, (6)

where the target 2-point function can be written as

¬

Maαbα
λα
(kα,qα)M

aβ bβ
λβ
(kβ ,qβ)

¶

T

= 4
δaαaβδbαbβ

N2
c − 1

(2π)2δ(2)[qα + (−1)α+βqβ]L
λα(kα,qα)L

λβ (kβ ,qβ)d(qα), (7)

being d(q) is the Fourier transform of the dipole operator 1
N2

c −1〈Tr [U(x)U(y)]〉T .

4 Numerical results

In order to compute Eq. (4) we need to evaluate Eqs. (7) and (5) which contain two functions
that need to be modeled, µ2(k,q) and d(q). Since µ2(k,q) is a function that is peaked around
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k+ q= 0 it is reasonable to assume a Gaussian shape for this object

µ2(k,q) = e
− (k+q)2

4B−1
p , (8)

where Bp is the gluonic transverse area of the projectile. For the dipole function we use the
Fourier transform of the GBW model

d(q) =
4π
Q2

s
e
− q2

Q2
s . (9)

Moreover, we have to regulate the infrared divergences that appear in the Lipatov vertex.
In order to do so we use the following expression for the product of two Lipatov vertices

L i(k,q1)L
i(k,q2) =

(2π)2

ξ2
exp

�

−
[k− (q1 + q2)/2]

2

ξ2

�

, (10)

where ξ2 is a parameter with dimensions of momentum squared. This choice breaks some of
the properties of the Lipatov vertices2 but, apart from making the numerical implementation
much simpler, it introduces a connection with the Wigner function approach presented in [5]
with the difference that it includes quantum correlations in the projectile wave function.

With the models and approximation presented above we have obtained an analytical ex-
pression for the flow coefficients for double gluon production as a function of BpQ2

s , ξ2/Q2
s

and p⊥. These results can be found in [3]. More interestingly, we have also evaluated the
flow harmonics for quadruple gluon production as a function of Q2

s and p⊥. These results are
summarized in Figs. (1) and (2) and were computed at all orders in 1/(N2

c − 1). The values
obtained for the 4-particle cumulants are negative (implying a real vn{4}) and in the ball-
park of experimental data. Moreover, it has been seen that at low multiplicity the 4-particle
cumulant is positive [6]. The (naive) assumption that the multiplicity is proportional to the
saturation momentum suggests that, at low Qs, the cumulant should be positive. In fact, in
the glasma graph approximation, suitable for pp (dilute-dilute) collisions and therefore for
lower multiplicities, arguments suggested that c2{4}> 0. This property is not seen in Fig. (1)
implying that a more detailed calculation should be done in the regime where the transition
from dense to dilute is expected to occur, that is, at low Q2

s .
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Figure 1: Dependence of the 4-particle cumulant (left) and azimuthal harmonic
(right) of second and fourth order with Q2

s .

2See [3] for a detailed discussion on the validity of this approach.
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Figure 2: Dependence of the differential 4-particle cumulant (left) and azimuthal
harmonic (right) of second and fourth order with p⊥. For the latter we also show the
results obtained from 2-particle correlations.

5 Conclusion

We have shown the results computed in [3] for multi-gluon production in the CGC in pA
collisions. This calculation includes the contributions that are leading in the overlap area of
the collision, while keeping all orders in the expansion in the number of colors. We have
used the generalised MV model for computing projectile averages and the GBW model for the
dipole functions. In order to proceed analytically as far as possible, we use the Wigner function
approach [5] that we extend to include quantum correlations in the projectile wave function.

Our results can be summarized in Figs. 1 and 2. For four gluon correlations we find
that the second order four particle cumulant c2{4} < 0 – thus providing a real second order
Fourier coefficient v2{4}. The numerical results presented here, due to the Gaussian forms
that we employ for the dipole and Wigner functions, should not be considered reliable for p⊥
much larger than Qs. They lie in the ballpark of experimental data, for values of parameters
that look reasonable. However, we should note that further analytic understanding is still
required, and several pieces are still missing in our formalism: the contribution from quarks,
more involved projectile and target averages, fragmentation functions, . . . . All these aspects
should be explored before we can establish a model ready for phenomenology.
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