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Abstract

We introduce a systematic mathematical language for describing fixed point models and ap-
ply it to the study to topological phases of matter. The framework established is reminiscent
to that of state-sum models and lattice topological quantum field theories, but is formalized
and unified in terms of tensor networks. In contrast to existing tensor network ansatzes for
the study of ground states of topologically ordered phases, the tensor networks in our for-
malism directly represent discrete path integrals in Euclidean space-time. This language is
more immediately related to the Hamiltonian defining the model than other approaches, via
a Trotterization of the respective imaginary time evolution. We illustrate our formalism at
hand of simple examples, and demonstrate its full power by expressing known families of
models in 2+1 dimensions in their most general form, namely string-net models and Kitaev
quantum doubles based on weak Hopf algebras. To elucidate the versatility of our formal-
ism, we also show how fermionic phases of matter can be described and provide a framework
for topological fixed point models in 3+1 dimensions.
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1 Introduction

The phase of a physical model is central to understanding the its qualitative properties. Studying
quantum phases of matter has been a major task in physics ever since quantum many-body theory
was first formulated. This work addresses the question of classifying phases, that is, predicting
which phases exist and providing models for each phase. Intuitively speaking, a phase of matter
corresponds to a parameter range in which key physical properties of a material are essentially
uniform. Over the last more than a quarter of a century, condensed matter physicists have discov-
ered a wealth of new exotic phases of matter: Some of them are of emergent nature, reflecting
collective states of interacting quantum systems that share little resemblance with the solids, liq-
uids and gases of our commonplace experience. The study of quantum phases of matter – and the
quest for classifying and even enumerating them in the first place – has, moreover, gained consid-
erable momentum since the discovery of phases other than symmetry-breaking phases, known as
topologically ordered phases [1].

More concretely, two translationally invariant quantum lattice models can be seen as being in
the same phase if they are equivalent up to locally restructuring their degrees of freedom. The fact
that many properties are uniform within a given phase is not only of conceptual importance. This
uniformity also reflects their usability for, say, the storage and processing of quantum information,
the simulatability by a classical computer, or its behaviour concerning thermalization. That is to
say, the quest for a solid understanding of phases of matter draws also inspiration and motivation
from practical and technological considerations.

Efforts aimed at studying phases of matter can be roughly divided into three areas of re-
search: The first area is concerned with the study of microscopic (commuting-projector) fixed-
point models, which has been most successful for non-chiral phases [2]. Such fixed-point models
are paradigmatic models characteristic for a quantum phase as fixed points of renormalization
group transformations. The second field is aimed at the study of abstract invariant data describ-
ing phases, known as (non-fully extended axiomatic) TQFT, including anyon data for topological
phases in 2 + 1 dimensions, or cobordism data for invertible phases. Those approaches have been
specifically successful in targeting also chiral phases. However, they have the problem that it is
hard to know whether given invariant data extends uniquely to a phase of microscopic models.
The third field concerns the detailed study of specific microscopic models that are solvable by
other means, such as quadratic fermionic Hamiltonians, or models solvable by means of pertur-
bation analysis. This also includes the study of models and their phases diagrams via extensive
numerical analysis.

The present work aims at introducing a new picture of fixed-point models of quantum phases
of matter from a fresh perspective, deviating from the perspective put forth in Ref. [2]. In doing
so, it makes progress concerning the first two approaches. Those approaches usually use very
complex mathematical tools (namely higher order category theory), which are hardly accessible to
a broader physics community. The goal of this work is to introduce a comprehensive systematic,
unified, easily accessible, and generalized language for understanding and exploring fixed-point
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models for quantum phases of matter. Subsequently, we list a number of new features of our
approach, and also stress what it does and what it does not deliver.

To start with, we formalize different kinds of physical models in terms of tensor networks
[3–6]. In this sense, the approach introduced here shares some resemblance with the approach
put forth in Refs. [7–11], in which tensor networks – specifically projected entangled pair states
(PEPS) [3] – for instances of Levin-Wen models [2] have been devised. In one spatial dimension,
the classification of phases with matrix product states (MPS) [12–14] can be considered largely
complete [15–17]. The key difference, however, is that here, we do not construct a tensor network
representation of the ground state of a quantum model, living in the physical space of the model.
Instead, the connection to the Hamiltonian formulation of quantum mechanics is made by means
of a suitable Trotter approximation of imaginary time evolution, yielding a tensor network in
Euclidean space-time. Note that, unlike the common usage of tensor networks for approximating
ground states (via MPS or PEPS), those tensor networks do not distinguish between “virtual” and
“physical” indices, and only have open indices at their space-time boundaries.

No known approach can in practice genuinely “classify” phases straight from their definition.
In our approach, we will rely on an extendibility hypothesis. That is, we will assume that the
models we want to classify can be extended to “fixed point models” with a strong notion of de-
formability. For example consider the toric code on a square lattice. As such it is just particular
instance of a microscopical model and defies a phase-classification. However, it can naturally be
extended to a class of models defined on arbitrary lattices. This kind of deformability carries over
to the discretized imaginary time evolution and is the central property in our formalism. While the
deformability related to topological order is clearly the proto-typical example one should have in
mind here, we emphasize, that the extendibility hypthosis and our formalism that builds upon it can
be applied to various types of deformability. Each one corresponds to a different class of phase.
For example apart from “topological order in 2 + 1 dimensions”, other deformabilities/classes
of phases would be “invertible topological order on spin manifolds”, “topological boundary of
topological order”, “anyons in topological order”, or “conformal order”.

A specific notion of deformability (i.e., class of phases) will be formalized by a so-called liq-
uid (or better, a liquid class), as we explain. A liquid can be seen as a prescription to construct
combinatorial representations of space-times, called networks, together with a combinatorial rep-
resentation of the space-time deformations, called moves. For large parts of this paper, the net-
works can be geometrically interpreted in terms of triangulations or more general cellulations, and
the moves correspond to local topology-preserving changes of the triangulations.

A network can be denoted using the same notation as it is commonly used for tensor networks
and a move is formalized by a cut-and-paste operation, where a specific network is cut out from
a larger network structure and replaced by another network. Invariance under such a deformation
for any surrounding network structure implies that a move can also be interpreted as an equation
between the cut and pasted tensor network. A solution to those equations will be called a model of
the liquid. Note that a model in this sense is not a Hamiltonian, but a list of tensors that constitute
a tensor network formalizing a discrete (Euclidean) path integral in space-time. However, for the
liquids in the scope of this paper (but not always), we can obtain commuting-projector Hamiltonian
models from the liquid models via standard constructions. The resulting models are known as fixed
point models. If we want the models to have a standard quantum mechanical interpretation, we
need to impose an additional Hermiticity constraint, which can also be interpreted as a move.

There are different types of matter formalized as “spin systems”, “systems with fermions”,
“free fermionic systems”, “spin systems with time-reversal symmetry”, and different physical
theories such as classical versus quantum physics. The type of matter and the interpretation as
classical or quantum mechanical system is also part of the class of the phase. In our formalism,
it is incorporated by using different a so-called tensor types. Different tensor types are different
interpretations of the graphical calculus of tensor networks. A tensor type consists of a “data type”
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describing the tensors and two operations on this data, tensor contraction and tensor product. The
standard interpretation of tensor networks, via Kronecker products and Einstein summations over
indices of arrays, is one particular tensor type. It is the tensor type used to describe spin systems.
In this introduction, we mostly focus on this tensor type, but we also encounter tensors with
symmetries, fermionic tensors, and projective tensors. The idea of tensor types is reminiscent of
concepts in category theory: There, string diagrams can be interpreted in terms of an arbitrary
monoidal category. In fact, tensor types are similar to compact closed categories.

We do not show how to find concrete models of a liquid, or how to “classify” (e.g., efficiently
enumerate) them. This is a difficult mathematical problem that also is not addressed in other
approaches either: Let us not forget that there is no “classification of fusion categories” known to
date. However, we would like to stress that most likely only the simplest phases will be realizable
in physical systems and therefore practically relevant. For those it might be possible to find and
explore them via exhaustive numerical search. In the simple case of conventional tensors, one
might use a gradient descent, or a Gauss-Newton method to find solutions to the corresponding
polynomial equations.

If the moves and the resulting equations are restrictive enough, the liquid models fall into
discrete families (of models related by basis changes), and can be classified practically. Often we
will find that that the different families are in different phases, though this is not always the case.
We give a natural definition for when two models are in the same phase. It is a theoretically hard
(and maybe even undecidable) problem to find out whether two models are in the same phase.
However, in the world of fixed point models, it is often possible to “confirm by looking” that this
is the case, and otherwise prove that it is not the case by computing invariants. The following
relational diagram summarizes the approach that we take here. In the course of this work, the
precise meaning of the terms used will become clear.

model

network move

tensor
type

class of
phases

liquid

phase

algebraic
structure

instance of
alg. struct.type of

data

type of
matter/description

represents
deformability

building
blocks

contains
different

associates
data to

strongly constrains
by equationsmodulo local

restructuring

classify
according to

similar to

solution
to axioms

similar
to axioms

often
inspire

deforms
(1)

2 Physical systems as tensor networks

At the heart of our approach are tensor networks. A tensor (in the conventional sense) is simply a
multi-dimensional array Ai,j,l,.... Each of the indices i, j, l, . . . can take a finite number of values,
e.g., i ∈ {0, . . . , ni − 1}, where ni is called the dimension of the index. The values can be real
or complex numbers. There are two operations we apply to tensors: On the one hand, the tensor
product is the entry-wise product of two arrays, yielding an array with indices from both arrays,
acting as

(A⊗B)i,j,...,k,l,... = Ai,j,... ·Bk,l,... . (2)
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On the other hand, the contraction is the Einstein summation over two indices with the same bond
dimension, yielding a tensor with those two indices removed, acting as

Ai,j,l,... 7→ ([A]i,l)j,... =
∑
x

Ax,j,x,... . (3)

Following the familiar Penrose notation, a tensor can be graphically represented by a box with one
line sticking out for each index, e.g.,

A i

j

k
. . .

. (4)

A computation using tensor products and contractions can be represented by a network-like dia-
gram: For every (copy of a) tensor, we draw (a copy of) the corresponding shape at an arbitrary
location (possibly rotated or reflected). For every contraction between two indices, we connect the
corresponding lines. E.g., the computation∑

x,y,z,w

Ax,y,i,zAj,y,x,wBw,z,k (5)

could be represented by

A A

B

i j

k

. (6)

In general, we might also use shapes without labels for tensors. For a more detailed introduction
into tensor networks and the corresponding notation, see, e.g., Section 2.1 in Ref. [18].

The language of tensor networks can be used to formalize local physical models. Readers
familiar with tensor networks might think of MPS or PEPS approximating the ground states of
gapped local quantum Hamiltonians. It is neither proven in full generality nor completely clear
that ground states can be approximated by MPS or PEPS. Also, being gapped is a strong con-
straint. Thus, this is not the way in which tensor networks are used to describe quantum systems
in the approach taken here. Instead we use a simpler and more direct translation by writing the
(imaginary) time evolution of a system as a tensor network in space time.

In order to get a tensor network from a continuous (imaginary) time evolution of a quan-
tum many-body system with a local translation-invariant Hamiltonian we have to discretize it
using a procedure known as Trotterization. As a simplest non-trivial example, let us consider a
1-dimensional quantum spin chain with a translation-invariant nearest-neighbour Hamiltonian

H =
∑
i

hi,i+1, (7)

where hi,i+1 is the 2-spin Hamiltonian acting on the spins i, i + 1. Global properties such as e.g.
the boundary conditions are not relevant for the following considerations, which are applied to
some small patch in the bulk of the translation-invariant model.

We can divide the Hamiltonian terms into the ones acting on even-odd site pairs and those
acting on odd-even site pairs as

H =
∑
i

h2i,2i+1 +
∑
i

h2i+1,2i+2 = H1 +H2. (8)
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All terms withinH1 act non-trivially only on non-overlapping sets of spins and therefore commute.
The same holds for H2. H1 and H2 however do not commute, and therefore

eit(H1+H2) 6= eitH1eitH2 . (9)

We can still use the following Suzuki-Trotter expansion

eit(H1+H2+...) = lim
n→∞

(
ei

t
n
H1ei

t
n
H2 . . .

)n
(10)

to obtain

eitH = lim
n→∞

(∏
i

ei
t
n
h2i,2i+1

∏
i

ei
t
n
h2i+1,2i+2 . . .

)n
. (11)

Consider the expression on the right-hand side for a fixed n. It is a product of operators acting on
different degrees of freedom. eith/n is a linear operator acting on two spins, so it is a tensor with
4 indices, two for both input and output of the operator

ei
t
n
h → . (12)

With this interpretation, the product of operators becomes a tensor network. E.g., for n = 3, we
get the network

. (13)

The tensor network we are looking for should have the same notion of locality structure as the
continuum time evolution. That is, every tensor should correspond to a finite space-time volume
∆x×∆t. So it does not make sense to directly take the above tensor network, as the time interval
corresponding to a tensor scales like 1/n. In addition, this tensor network has a trivial limit for
n→∞

= ei
t
n
h n→∞−−−→ 1 = . (14)

Instead, we have to pick a fixed ∆t, Trotterize ei∆tH for some fixed n and divide the resulting
tensor networks into spatial unit cells. Evaluating the whole tensor-network patch inside the unit
cell yields the tensor Pn of the tensor network we are looking for. E.g., for n = 3 and ∆x
consisting of 4 sites, we can choose

P3

v′w′x′y

vwxy

abcdef a′b′c′d′e′f ′ =

v w x y

w′ x′ y
′

v′

f ′

a
b
c
d
e

a′
b′
c′
d′
e′
f ′

. (15)

This blocked tensor does not have a sensible large n-limit as well. If we let n → ∞, the
number of indices to block on the right and left, and therefore the bond dimension of those in-
dices, grows with n. More precisely, the number of blocked indices grows linearly, and thus the
bond dimension increases exponentially with n. It turns out, though, that the tensor can be well
approximated by a tensor with much lower bond dimension. We conjecture the following. There
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is a sequence of tensors P x of (horizontal) bond dimension x, numbers numbers αx, and integers
Nx. Additionally, for every x, there is a sequence of left-invertible matrices Ixn (i.e., there is a
matrix (Ixn)−1 such that (Ixn)−1Ixn = 1), such that for all x, we have∥∥∥∥∥∥∥∥∥ Pn

v′

v

a a′ −
P x

(Ixn)−1Ixn

v′

v

a a′

∥∥∥∥∥∥∥∥∥ < αx, ∀n > Nx,

∥∥∥∥∥∥∥∥∥ P x

v′

v

a a′ −
P x+1

v′

v

a a′

∥∥∥∥∥∥∥∥∥ < αx,

αx ∼ e−x.

(16)

To be concrete, we fix the norm above to be the 2-norm of the tensors (when reshaped into vectors),
though we do not provide a particularly good reason for this choice, and we would expect other
reasonable norms to work as well. This conjecture is based on observations in MPS algorithms like
iTEBD, where we apply the Trotterized time-evolution to an MPS. In general, the bond dimension
of the MPS might grow exponentially with time. However, the rate of growth does not depend
on the Trotterization step we choose. After time evolution for a fixed time interval we see an
eigenvalue spectrum in the MPS transfer operator that decays exponentially.

After picking a tensor P for a bond dimension which we consider a sufficient approximation,
the (imaginary) time evolution is given by a square lattice tensor network

P P

P P . (17)

It is at this point important to note that we do not apply the Trotterized time evolution to a product
state to obtain a ground state MPS/PEPS representation, as it is done in algorithms such as the so-
called iTEBD method. Instead, we work with the (Trotterized, blocked, truncated) time-evolution
tensors themselves. Those tensors correspond to a block in Euclidean space-time with finite, con-
stant imaginary-time length, whereas the ground state MPS/PEPS tensors correspond to a whole
“column” with infinite imaginary-time length. The claim that we can truncate the finite block to
a small bond dimension is much weaker than the same claim for the infinite column. While the
latter is famously conjectured for gapped Hamiltonians, a formulation has only been proven in
1 + 1D. In higher dimensions, such proofs remain elusive, and there are even doubts concern-
ing chiral phases in 2+1D. In contrast, we believe that our conjecture (or some slight variation)
about truncating a finite-size block in (Euclidean) space-time holds without any conditions on the
Hamiltonian.

It is easy to see how to generalize the Trotterization procedure to other geometric setups, such
as higher dimensions, higher spatial support of the Hamiltonian terms, or presence of boundaries
or defects of any kind. First we divide the terms into a constant (system-size independent) number
of subsets, such that the terms in one subset all commute with each other. Then we proceed using
the Suzuki-Trotter expansion applied to the division into subsets, resulting in a tensor network,
which we block and truncate into finite unit cells.

Also local classical/quantum thermal models can be written as tensor networks. In the classi-
cal case, the partition function is represented by a tensor network made of Boltzmann weights and
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delta tensors, without any approximation. In the quantum thermal case, we Trotterize the imag-
inary time evolution, with imaginary time compactified into a loop of circumference β, where β
is the inverse temperature. In both cases, we get a tensor network living in space instead of space
time.

Quantum phases of matter are phases of ground states. Thus, the relevant tensor network to
consider for the study of quantum phases is the one arising from the imaginary, not the real, time
evolution: The operator e−βH converges to the ground state projector for a gapped system, if we
scale both the inverse temperature/imaginary time β and the system size simultaneously.

The evaluation of a tensor network can be seen as a “computation” in the following way. The
input data to the computation are the tensors. The “network” itself describes the combinatorial
nature of the computation, i.e., in which order and to which components the individual operations
(such as copying tensors, evaluating Kronecker products, or Einstein summations) are applied.
The graphical notation makes sense, because the steps of the computation obey certain “axioms”,
e.g., different contractions commute with each other, or, the Kronecker product is associative.

There are types of data other than arrays, and types of operations other than Kronecker prod-
ucts and Einstein summations, which obey the same axioms. In other words, there are other
structures which yield different interpretations for the same graphical network notation. We will
call such other structures tensor types [19]. We will later see that, e.g., models with fermions can
be formalized by using a different tensor type in Section 8. In fact, we have already encountered
two different tensor types, namely complex tensors and real tensors.

3 Phases of matter and the extendibility hypothesis

Conventionally, quantum phases of matter are equivalence classes of local translation-invariant
gapped Hamiltonians H ∈ H. By gapped, we mean that there is an integer g ≥ 0 called ground
state degeneracy and a real number ε > 0 called the gap, such that for every system size n (greater
than some n0), the g lowest eigenvalues of H are separated from the rest of the spectrum by ε, and
among each other by βn such that βn → 0 for n → ∞. Two gapped Hamiltonians H1, H2 ∈ H
are considered equivalent if there is a continuous path of gapped Hamiltonians connecting H1 and
H2 [1]:

H̃ : [0, 1]→ H ,

H̃(0) = H1, H̃(1) = H2 .
(18)

Recall that H contains only gapped Hamiltonians, so all H̃(s) for s ∈ [0, 1] must be gapped,
otherwise one speaks of a “gap closing” inducing a “phase transition”. If we aim at comparing
two Hamiltonians with different local Hilbert spaces, we can arbitrarily embed both into the same
local Hilbert space and use the same definition.

This definition is mathematically clear and formal but has two disadvantages: First, it is not
very constructive: Checking all possible paths between two Hamiltonians is practically infeasible,
and the fact that a path is something continuous does not make it easier. Moreover, there is
evidence that it might not even be decidable in general, whether a family of Hamiltonians is
uniformly gapped for different system sizes [20]. Second, it does not make very clear why phases
are such a fundamental concept. It is not directly evident just from the fact that two Hamiltonians
are connected by a gapped path that they share a lot of common features.

Those two disadvantages are resolved by an alternative definition: Two states are in the same
phase if they are related via a finite-depth local (generalized) unitary circuit [21]. This definition
immediately makes the physical meaning of phases very clear: Two states in the same phase are
the same up to locally restructuring their degrees of freedom. Also, instead of having to search
for a continuous path, we now need to find a discrete circuit, which seems to make the definition
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a bit more constructive. However, this definition is not mathematically formal, and we have to
put some work in to achieve this. First, it is unclear what a “state” even means in the context
of a thermodynamic limit. The generic way to define a physically reasonable family of states
of different system sizes is by specifying them as ground states of local gapped Hamiltonians,
which brings us back to the original definition. Second, the definitions are only equivalent if we
allow the local unitary equivalence to be approxmiate, with an approximation error decreasing
with the depth or the locality of the circuit. Alternatively, we can directly use a “fuzzy circuit”,
corresponding to the time evolution under a local time-dependent Hamiltonian. In this case, the
equivalence has been shown using the notion of quasi-adiabatic evolution [22].

In the subsequent, we propose a third definition of phases, which is suitable for our formaliza-
tion of models not in terms of Hamiltonians or states, but tensor-network path integrals. Essen-
tially, two such path integrals are in the same phase, if they are equivalent up to locally reshaping
the tensor network. This definition is in spirit more similar to the local unitary definition, however,
it does not suffer from the problem of having to define what a “state” is in the thermodynamic limit.
It still has the problem that such an equivalence can only hold approximately, and we haven’t yet
found the most natural way of defining those approximations.

Quantum phases, once again, describe the ground state properties of Hamiltonians. Such
ground states can be obtained directly from the Hamiltonian by applying the imaginary time evo-
lution to some initial state vector |x〉 as

lim
t→∞

e−tH |x〉 . (19)

However, for any finite system size, the lowest eigenvalue will not generically have a g-fold degen-
eracy, but the “ground states” will have slightly different energies. So, at a particular system size,
e−tH will not converge to a ground state projector with g-dimensional support, but to the projector
on the lowest eigenstate only. We see that in order to talk about ground states, we do not only
have to scale the imaginary time t, but also simultaneously the system size n. Thus, it is natural
to represent the model as something living in euclidean space-time. We consequently choose to
represent models by their imaginary-time evolution tensor network instead of their Hamiltonians.

A very simple case of two models being in the same phase is if they are related by an on-site
unitary. If we conjugate Hamiltonian terms by a unitary operator, the tensors in the imaginary-
time evolution get conjugated in the same way. So, if we apply an on-site unitary U⊗N to a
1 + 1-dimensional model as in Section 2, the tensor P in Eq. (17) gets conjugated by U ,

P̃
=

P U

U †

. (20)

The unitarity of U can be denoted in network notation by

U
U † = . (21)

Imagine starting from the conjugated square lattice tensor network. Now, replace every occurrence
of the conjugated tensor P̃ by its definition in terms of Eq. (20). This will create a pair of U and
U †, that is, an occurrence of the left hand side of Eq. (21), at every bond of the original network.
We can remove those pairs by replacing each occurrence with the right hand side of Eq. (21),
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yielding the non-conjugated network

P̃ P̃

P̃ P̃ →
U U

U U

U † U †

U † U † →

P P

P P (22)

in Eq. (17). As we have seen, applying an on-site unitary in our tensor-network picture corresponds
to “rewriting” the tensor network by replacing subnetworks with other subnetworks which evaluate
to the same tensor. We will call such a replacement operation a circuit move, and define two tensor
networks to be in the same phase if they are related by a circuit move.

The above reasoning also works if U is not an on-site operator, but is only a product of opera-
tors acting on constant-size non-overlapping patches. Furthermore, it suffices if U is an isometry
rather than a unitary, such that it can also change the local Hilbert space dimension. Last, we can
conjugate by more than one layer of unitaries. So for any two Hamiltonians related by a finite-
depth generalized local unitary circuit, the corresponding tensor networks are related by a circuit
move. But circuit moves also go beyond conjugation by unitaries. Consider the following exam-
ple for a different circuit move acting on square lattices. First, we split each tensor into a network
consisting of 4 tensors:

P̃
= . (23)

The dimension of the bonds between the new tensors can be different, which we reflect by using
a different line style. At every bond of the original network, we will get two of the new 3-index
tensors. We replace those two by two other tensors, connected by a bond perpendicular to the old
bond

= . (24)

Now, at every vertex of the square lattice there are 4 tensors on the adjacent edges. We can block
those into a single tensor again according to

=
P

. (25)

Applying this circuit move, we obtain a network whose tensors are now located at the positions
where the vertices of the old square lattice have been previously,

P̃ P̃

P̃ P̃ → → →

P P

P P . (26)

Note that also the definition via circuit moves has the difficulty of having to deal with approxima-
tions, and we have not found the most natural way to do this yet.
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No known approach can classify general phases starting from a fundamental definition. In
our approach, we will instead rely on an observation which we call the extendibility hypothesis:
Models coming from condensed matter physics are typically defined on regular spatial grids, times
a linear time. That is, they are defined in a flat Euclidean space time. Sometimes one can extend
the definition of such a model from only flat space times to arbitrary curved space time. Moreover,
there is a very powerful set of deformations under which the extended model is invariant. The
extendibility hypothesis is the (admittedly vague) assumption that, the more “generic” a model is,
the more “powerful” are the deformations that it is invariant under after extension.

The most relevant example for extendibility are models with topological or symmetry-breaking
order: Such models can be extended from flat space to arbitrary topological manifolds, such that
the extended model is invariant under arbitrary homeomorphisms, i.e. deformations leaving the
topology invariant. Irreducible topological phases are known to be robust under perturbations [23]
and generic in that sense. The “second most generic” type of models are those at transitions
between two topological or symmetry-breaking phases. Such critical models are known to be
described by CFTs. That is, they can be extended to manifolds with a conformal metric, and the
extension is invariant under arbitrary transformations that leave this conformal structure invariant.
On the other hand, there are also models with a more powerful extendibility than topological
phases: E.g., models with invertible topological order can be extended to topological manifolds,
and the extension is not only invariant under homeomorphisms but additionally under arbitrary
surgery moves. Equivalently, those manifolds are not defined up to homoemorphism, but only up
to cobordisms.

Extendibility helps classifying phases of matter in the following way: The invariance of the
extended models under deformations is very restrictive. This makes it possible to “classify” such
extended models by identifying them with instances of some algebraic structure. Those instances
often fall into discrete families, which makes the problem of classifying phases practically feasible.
The extended models have special properties, such as some notion of being “exactly solvable”.
Models of that kind are often called “fixed-point models”.

4 Extendibility and liquids: Toy examples

We can use the language of tensor networks to formalize the extendibility hypothesis. By this,
we do not try to answer the question of which models are extendible in which way, or what it
means for a model to be “generic” in full generality. Instead, the latter will remain the central
guess that we rely on, but that we find to be true in all considered cases. We will at this point
merely formulate what it means for a specific model to be extendible in a specific way and provide
3 simple examples for how models extend in a topological way in the following sections.

4.1 Topological extendibility in 1 + 1 dimensions

As a first example we consider models with topological extendibility in 1 + 1 dimensions, that
is, in one spatial dimension. Despite the fact that non-trivial intrinsic topological order in the
conventional sense only exists in 2 + 1 dimensions, this example is well suited to illustrate the
concept. Moreover, we would like to mention that, even though they are not robust to perturba-
tions, symmetry-breaking phases have a topological deformability as well. Also, if we impose
on-site or time-reversal symmetries, there are non-trivial symmetry protected topological (SPT)
phases. For pedagogical reasons, we neglect the following two important technical details in this
section. In Section 5 we will see that we need to distinguish the indices of a tensor for a bet-
ter representation of topological space-time, and in Section 6 we will see that we need to add
an orientation and Hermiticity move in order to give the models a standard quantum mechanical
interpretation.

12
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4.1.1 Square lattice model and extended model

We start with a 4-index tensor from which we can build tensor networks on arbitrary square lat-
tices. Such a tensor can be obtained from a quantum Hamiltonian by Trotterization or directly
from a classical model, as explained in Section 2, as

. (27)

One of the main points of this work is to keep the combinatorial structure (the “network”) of a
tensor network separate from the data (the “content of the tensors”). On the combinatorial side,
the places to which we assign the tensors will be referred to as atoms, and the places where the
contractions happen will be called bonds. The “graph” formed by atoms and bonds will be referred
to as network. In contrast to an actual graph, a network can have bonds with “loose ends” which
will be referred to as open indices. The different types of atoms (referred to as elements) form the
so-called substrate. In this case the substrate is given by only one single type of atom representing
a 4-index tensor. On the data side, the 4-index tensor itself will be called a model of the substrate.

The “extended model” is a prescription that assigns tensor networks to arbitrary triangulations
of 2-manifolds. One of the simplest ways to arrive at such a prescription is to take a 3-index
tensor, and to associate one copy of this tensor to each triangle, with contractions between tensors
at adjacent triangles as

. (28)

So the extended model is a model with a different substrate, as it is given by a 3-index tensor.
There is a canonical prescription to turn models of the extended substrate into models of the
square-lattice substrate: We can restrict the extended model to regular triangulations of flat space.
Specifically, we can divide each square into two triangles, and use as square tensor the tensor
obtained by contracting two triangle tensors according to

:= . (29)

The pure combinatorics of an equation like this will be referred to as a substrate mapping. In the
above case, the substrate mapping goes from the square lattice substrate to the extended substrate,
which means that, conversely, it will map models of the extended substrate to models of the square
lattice substrate.

In order to define the “invariance under homoemorphisms”, we need a combinatorial analogue
of the latter in terms of triangulations. This is given by the so-called Pachner moves [24] which
act as

←→

←→
. (30)

It is known that any two (combinatorial) triangulations of the same manifold are related by Pachner
moves. Conversely, it is easy to see that Pachner moves preserve the topology of a triangulation.

13
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We can associate tensor networks to the patches on the left- and the right hand side of the
Pachner moves. Topological invariance of the model means that the evaluations of the two corre-
sponding tensor networks are equal as

=
←→

=
←→

. (31)

We will refer to the pure combinatorics of an equation like this as a move. The collection of moves
will be referred to as a liquid. A model of a substrate fulfilling all the equations corresponding to
the moves will be called a model of the liquid. A square lattice modelX is extendible if there exists
a model of a liquid (in our case the liquid Eq. (31)), such that the square lattice model obtained by
applying the corresponding mapping (in our case Eq. (29)) is in the same phase as X .

4.1.2 Relation to algebraic structures

In this section, we relate the above moves to algebraic structures. An algebra is a linear map
· : V ⊗ V → V , where V is a vector space. A finite-dimensional algebra is represented by its
structure coefficients, which form a 3-index tensor,

. (32)

Here, we think of · as a linear map from the top two indices to the bottom index. So, an algebra is
nothing but a model of the substrate depicted above. An algebra is associative, if

(a · b) · c = a · (b · c) . (33)

This can be formulated as an equation between two tensor networks, namely

a b

c

d

=

b

a

c

d

. (34)

So, associativity defines a move, and associative algebras are models of the liquid defined by that
move. There are many other examples of algebraic structures which are models of liquids, such
as Frobenius algebras, unital algebras, commutative algebras, Hopf algebras, representations of
algebras, etc. Every model of the topological liquid can be turned into an algebra by a substrate
mapping from the algebra liquid to the topological liquid

a b

c

:=
ba

c

. (35)

Let us substitute this definition into the associativity axiom above. We obtain

a b

c

d

=

b

a

c

d

. (36)
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This is nothing but the 2-2 Pachner move of the extended liquid. Thus, every model of the extended
liquid yields an algebra which is automatically associative. On the level of combinatorics, we
have a mapping between two substrates which are also liquids. Each move of the algebra liquid
yields a move for the topological liquid by substituting the mapping. We found that each of these
mapped moves is also a move of the topological liquid. We call such a substrate mapping which is
compatible with the moves of two liquids a liquid mapping.

We often observe that topological liquids have liquid mappings from well-known algebraic
structures. However, usually there is no inverse liquid mapping from the topological liquid to the
algebraic liquid. This means that models of topological liquids define some algebraic structure,
but the algebraic structure misses some additional axioms which are needed for a topological fixed
point model. This is mostly due to the fact that the networks in the moves of algebraic structures
always allow for a global “flow of time” (in case of the associativity above from the top to the
bottom), whereas the topological liquid includes moves with “closed time-like loops”.

4.1.3 Models

As we have seen in the paragraph above, models of the extended liquid correspond to associative
algebras, for which a few additional axioms hold 1. Such algebras fall into discrete families, up to
basis changes. One family of algebras which also yield topological models is given by the algebra
of complex functions over an x-element set under point-wise multiplication, for arbitrary x. This
corresponds to the choice

ba

c
=

ba

c
=

{
1 if a = b = c

0 otherwise
, (37)

for 0 ≤ a, b, c < x, which will also be referred to as the delta tensor, and denoted by a small dot.
Delta tensors can be defind for an arbitrary number of indices, with entry 1 if all the index values
are equal and 0 otherwise.

If we evaluate such a model on a network representing a triangulation of a sphere, we get the
number x. So we see that every family yields a different topological invariant and thus all families
correspond to different phases. Physically speaking, these phases are symmetry-breaking phases.
E.g., for x = 2, the liquid is equivalent to the ordered-phase fixed point of the 1 + 1-dimensional
Ising model. This is a chain of qubits with a nearest-neighbour Hamiltonian

H =
∑
i

hi = −
∑
i

ZiZi+1 . (38)

If we apply the Trotterization procedure in Section 2 to any Hamiltonian, we never obtain a topo-
logical tensor liquid. This is because the first excited state always has a finite energy, correspond-
ing to a finite “correlation length in time direction”. In contrast, a topological tensor liquid has
zero correlation length in any direction due to its topological deformability. Luckily, the Hamil-
tonian above has the special property that its terms are commuting, so we do not need to divide
time into small Trotter steps. In this case, we can directly take the limit β →∞ for the individual
terms, which corresponds to taking the local ground state projector

lim
β→∞

e−βh ∼ P =
1

2
(1− Z0Z1) . (39)

The imaginary time evolution is represented by a product of these operators P at different places.
If we write P as a tensor

P →
ba

dc

=

{
1 if a = b = c = d

0 otherwise
, (40)

1We are not yet fully precise here, but in the end the models will be equivalent to something like commutative
special Frobenius algebras.
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the imaginary time evolution is represented by a network of the form

. (41)

In order to compare the above model (given by a 4-index tensor) with our topological model
(given by a 3-index tensor), we have to choose an according substrate mapping which transforms
the network above into the network representing a triangulation of the plane. One such mapping
is, e.g., given by

ba

dc

:=
ba

dc
. (42)

If we evaluate the right hand side, we get indeed the tensor P from Eq. (40).

4.1.4 Commuting-projector Hamiltonians and stacking

We have already introduced the notion of a liquid mapping to formalize the relation between the
“original” and the “extended” model, and between the algebraic liquid and the topological liquid.
Here, we will give two more examples for operations which can be neatly formalized by a liquid
mapping, namely the construction of a commuting-projector Hamiltonian from the section before,
and the operation of embedding two copies of a model into the same space-time. Both will lead to
generalizations of the notion of liquid mapping we introduced so far.

H is a commuting-projector Hamiltonian, meaning that P is a projector, and operators P
acting on different pairs of sites commute. I.e., the following two equations are fulfilled.

• The projector property is
ba

dc

=
ba

dc

, (43)

• the commutativity is
ba

dc

e

f
=

b

a

d

c

e

f

. (44)

So “commuting-projector Hamiltonians” themselves are models of the above liquid. Now, if we
plug the mapping Eq. (42) into the move Eq. (43), we get

c d

a b

=

c d

a b

. (45)

This is not a move of the topological liquid. However, it is equivalent to a sequence of moves

c d

a b

=

c
d

a
b

=

c d

a b

. (46)
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In the first step we applied the 2-2 Pachner move, and in the second step the 1-3 Pachner move.
We will refer to moves equivalent to sequences of moves of a liquid as derived moves, and the
corresponding sequences as derivations. We will generalize our notion of a liquid mapping by
allowing the mapped moves to be derived moves of the target liquid.

For the second example, consider “stacking two copies” of a model, i.e., embedding both
models in the same space(-time) in a non-interacting way. If a model has topological deformability,
then so will the stacked model. Stacking is nothing but a mapping from a liquid (here the 1 + 1
dimensions topological liquid) to itself

bb′aa′

cc′
:=

ba

c

b′a′

c′
. (47)

This example shows a slight generalization of the concept of a liquid mapping introduced so far,
as every open index on the left hand side corresponds to two open indices on the right hand side.
If we apply this mapping to any network, we will obtain two copies of that network. E.g., the
mapped 2-2 Pachner move gets mapped to a move relating two disconnected networks consisting
of two atoms each on each if its sides. Obviously, this mapped move can be derived by applying
the original move to both copies independently.

4.1.5 Phases

In this section, we will illustrate how the definition of a phase in terms of circuit moves of tensor
networks from Section 3 applies to models of liquids. The algebra of functions over a 2-element
set yields a model as we have seen above. Another model of the liquid is given by the Z2 group
algebra

Z2

ba

c
=

{
1√
2

if a+ b+ c = 0 mod 2

0 otherwise
. (48)

The two algebras are isomorphic via a basis change known as the Hadamard transformation

H
ba

=
1√
2

(
1 1
1 −1

)
. (49)

Basis changes are a very specific example of circuit moves, and thus the two liquid models are in
the same phase. Concretely, we have

Z2
HH

H

ba

c

= δ
ba

c
. (50)

H happens to be its own inverse

H H
ba

= aa bb . (51)

The circuit move starts with a network of the δ liquid, e.g.,

δ δ . (52)

We identify all different occurrences of the network on the right hand side of Eq. (50), and replace
them by the network on the left hand side. We obtain

Z2 Z2

H

H

H

H
H H

. (53)
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Now we identify all different occurrences of the network on the left hand side of Eq. (51) and
replace them by the right hand side. For this to be a well-defined procedure, the different occur-
rences must not overlap. This is ensured by how we obtained the network in the previous step. We
obtain

Z2 Z2

H

H

H

H

. (54)

As we have seen, using Eqs. (50), (51), we can transform any closed δ-tensor network into the
according Z2-tensor network. If the network has open indices, we will end up with some residual
Hadamard transformations near this open boundary. We found that the Z2-model and the δ-model
are related by an exact circuit move, and thus in the same phase. Note that generic square lattice
tensor networks are generically only connected by circuit moves up to exponential tails. However,
for liquid models as highly restricted by moves as the present one, we tend to find that there are
exact, and even rather simple circuit moves connecting them.

As another example, consider the model

x
ba

c
= 2(−3/2) (∀a, b, c) . (55)

We will show that this model is in the same phase as the trivial model where each tensor is the
number 1. We notice that the tensor above is the tensor product of three times the same vector

x
ba

c
=

ba

c

, (56)

where
a =

1√
2

(∀a) . (57)

Furthermore, this vector is normalized, i.e. (note that the empty network evaluates to the scalar 1),

= . (58)

From the above two moves, we can again construct a circuit move. We start with a tensor network
of the x-model

x x , (59)

and then apply Eq. (56) by replacing every occurrence of the left hand side by the right hand side

. (60)

Finally, we apply Eq. (58), which yields the empty network everywhere except for at a potential
boundary

. (61)

So we see that this model is in the same phase as the trivial model, again via an exact and very
simple circuit move.

Surely, in more general examples of liquid models being in the same phase, the circuit moves
will not always be quite as simple as basis changes. However, we continue to observe that they
are exact and consist of a small number of steps.
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4.2 Topological extendibility in 2 + 1 dimensions

In the next example, we explore extendibility in 2 + 1 dimensions. Again, we start from a tensor
network on a cubic lattice obtained by Trotterization of a Hamiltonian or by other means. The
extended model is a tensor network that can be defined on arbitrary triangulations of 3-dimensional
manifolds. The most straight-forward construction would be to consider cellulations into simplices
and to associate one tensor to every simplex. For this liquid the topological invariance would then
be formulated analogous to the 1 + 1-dimensional case, i.e., as invariance under 3-dimensional
Pachner moves. In this section we will instead sketch a less standard formulation of topological
invariance, which will be presented in more detail in Section 7.2. The equivalence between the
two formulations will be shown in Section 7.3.

4.2.1 The face-edge liquid

For the liquid we introduce here we allow arbitrary cellulations of a 3-manifold, but we demand
that every face is either a triangle or a 2-gon and that every edge is 3-valent or 2-valent (i.e., it
is adjacent to three or two faces). A moment of thought reveals that every cell complex can be
brought into this form, e.g., a 4-gon can be split into two triangles with a 2-valent edge in between
as

→ . (62)

Dually, a 4-valent edge can be split into two 3-valent edges with a 2-gon face in between,

→ . (63)

There is one 3-index tensor (or, combinatorially, a 3-index atom) associated to every triangle and
another 3-index tensor to every 3-valent edge. At every pair of adjacent triangle and 3-valent
edge, the corresponding tensors share a contracted index pair, i.e., the corresponding atoms are
connected by a bond. The edge tensors are different from the face tensors, thus we use two
different shapes to represent them

. (64)

The combinatorial data of such tensor networks are networks with two kinds of atoms. Different
kinds of atoms will be referred to as elements of the corresponding substrate. Thus, this substrate
has two 3-index elements, whereas the topological substrate from the section above had only one
3-index element. Accordingly, a model of the face-edge substrate consists of two 3-index tensors.

The 2-gons and 2-valent edges are not explicitly represented by atoms. Instead, the two edges
adjacent to a 2-gon, and likewise the two faces adjacent to a 2-valent edge are directly connected
by a bond. E.g., two 3-valent edges separated by a 2-gon are represented as

. (65)

As in 1 + 1 dimensions, two combinatorial triangulations correspond to the same manifold
exactly if they are related by 3-dimensional Pachner moves. For the particular combinatorial
network structure chosen here there is an equivalent set of moves, which can be divided into 3
groups.
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• Moves involving only triangles separated by 2-valent edges, which equal the 2-dimensional
Pachner moves for the face atoms only, namely

=
←→

(66)

and the same for the 1-3 Pachner move.

• Moves involving only 3-valent edges separated by 2-gon faces. In terms of cell complexes,
those moves are Poincaré dual to the moves above. In network notation they look the same
apart from that we have to use filled circles instead of empty circles.

• The most powerful move is the following move relating face and edge elements. It merges
two triangles with two shared 3-valent edges into a single triangle with one adjacent 3-valent
edge, i.e.,

=
←→

. (67)

4.2.2 Bi-algebras

As in the 1+-dimensional case, the present liquid has a great similarity to a well known algebraic
structure. To see this, we first note that there is an obvious liquid mapping from the 1 + 1-
dimensional liquid to the present liquid, in which the triangle (as part of the 2-dimensional cell
complex) is mapped to the triangle (as part of the 2-dimensional cell complex). Dually to that,
there is a liquid mapping in which the triangle is mapped to the 3-valent edge. Thus, by the means
of these two mappings every model of the present liquid contains two associative algebras.

Two associative algebras (more precisely, an algebra and a co-algebra) are called a bi-algebra,
if they fulfil certain additional axioms. The main axiom (which states that the co-algebra is an
algebra homomorphism) is precisely the move Eq. (67). Thus, the present liquid is basically the
bi-algebra liquid, together with a few additional moves which make it “more topological”. This
observation could be formalized as a liquid mapping from bi-algebras to the present liquid.

4.2.3 Models

Specifying the tensor type to array tensors, we look for models of the liquid, i.e., solutions to the
move equations. The similarity to bi-algebras greatly helps assessing the situation: First, we know
that bi-algebras fall into a discrete set of families related by basis changes, and so do the models
of the present liquid. Second, there are many known examples for bi-algebras, many of which
also yield models of the present liquid. Thus, in practice, we can look at the simplest examples of
bi-algebras, see whether they can be turned into models of the present liquid, and check whether
some of the models are in the same phase. Moreover, we will see that it is “rather unusual” for
different models to be in the same phase, and that one can usually show their distinctness by
evaluating closed networks.

As a particular example we recall that every group defines a bi-algebra, which can be turned
into a model of the present liquid. Those models are equivalent to the Kitaev quantum double
models [25], which are models for intrinsic topological order in 2 + 1 diensions. E.g., if we pick
the group Z2, the index configurations are the group elements {0, 1}, and the edge and face tensors
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are
ba

c
=

{
1 if a+ b+ c = 0 mod 2

0 otherwise
,

ba

c
=

{
1 if a = b = c

0 otherwise
.

(68)

It is easy to see that each tensor satisfies the 2-2 and 1-3 Pachner move, and both tensors together
fulfil the move in Eq. (67). Actually, for the sake of simplicity, we are ignoring a global factor of
1/2 missing in the 1-3 Pachner move for face atoms. This will be fixed in Section 7.2.

This model corresponds to a commuting-projector Hamiltonian model known as the toric code
[25] defined for qubits on the edges of a square lattice and Hamiltonian given by

H =
∑
i

Ai +
∑
j

Bj . (69)

Here, i runs over all plaquettes of the lattice and each Ai is defined as (suppressing the site index)

A = −Z0Z1Z2Z3 , (70)

where 0, 1, 2, 3 label the 4 edges adjacent to the corresponding plaquette. Dually, j runs over all
vertices and

B = −X0X1X2X3 , (71)

where 0, 1, 2, 3 label the 4 edges adjacent to the corresponding vertex. The commuting projectors
themselves can be written as 8-index tensors

PA =
1

2
(1− Z0Z1Z2Z3) → PA

a′ b′ c′ d′

a b c d

,

PB =
1

2
(1−X0X1X2X3) → PB

a′ b′ c′ d′

a b c d

.

(72)

They are commuting because adjacent plaquettes and vertices always share two adjacent edges,
and Z0Z1 commutes with X0X1. A tensor network representing the imaginary time evolution of
the model is given by stacking layers of those commuting projectors.

To compare our topological model with the given commuting-projector model, we need a
liquid mapping from the commuting-projector liquid to the topological liquid. A little bit of geo-
metric imagination shows that the replacement

PA

a′ b′ c′ d′

a b c d

:=

a
a′

b

b′

c

c′
d

d′

,

PB

a′ b′ c′ d′

a b c d

:=

a
a′

b

b′

c

c′
d

d′

(73)
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will turn a stack of commuting projectors into a cellulation of the same space-time. Indeed, we
find that via this mapping, the topological model Eq. (68) is mapped to the commuting-projector
model Eq. (72).

4.3 Topological models with boundary in 1 + 1 dimensions

4.3.1 Regular-lattice and extended model

As a third example, let us look at models in 1 + 1 dimensions with physical boundary, where both
the bulk and the boundary have a topological deformability. After Trotterization we obtain a tensor
network like the following

(74)

on a regular square lattice with boundary. So, formally, we have a model of a substrate with two
elements, the 4-index circle-shaped element associated to the bulk plaquettes, and the 3-index
square-shaped element associated to the boundary edges. The degrees of freedom at the boundary
(as well as the Trotterization procedure) can be different from the bulk. Thus, the dimension of the
indices contracted between boundary tensors can be different from those of the indices contracted
between the bulk tensors, which we denoted by using thicker lines. Combinatorially, there are two
different kinds of bonds, which we will refer to as bindings. We are generalizing our notion of
substrate by associating to each index of each element a binding, and allowing only bonds between
indices with the same binding.

The extended model is a model of a substrate representing arbitrary triangulations of 1 + 1
dimensions-manifolds with boundary. Again, there is one tensor associated to each boundary
edge and one tensor associated to each bulk triangle, given by

. (75)

The mapping from the square-lattice substrate to the topological substrate is obvious.
The substrate is turned into a liquid by adding the following moves: First, we have the 2-2 and

1-3 Pachner moves for the triangle element, which makes the liquid from Section 4.1 a sub-liquid
of the current liquid. Second, we add the following additional move

= . (76)

The geometric interpretation of this move is to attach/remove a triangle to/from the boundary,
which allows us to arbitrarily deform the boundary without changing the topology.

4.3.2 Representations and models

As the liquids above, our boundary liquid is again very similar to a very well-known algebraic
structure, namely representations. A representation of an algebra A is a linear map

R : V ⊗A→ V , (77)

satisfying
R(R(x, a), b) = R(x, a · b) . (78)
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This equation can written in tensor-network notation, and looks exactly like Eq. (76).
In order to find models of the present liquid, we start with models of the 1 + 1-dimensional

liquid in Section 4.1, and extend them by a choice of boundary tensor. Let’s start with the model
given in Eq. (37) related to the algebra of functions over some finite set B. For every x ∈ B, there
is the corresponding irreducible representation, which defines a choice of boundary tensor:

a
=

{
1 if a = x

0 otherwise
. (79)

The boundary indices without labels are trivial, that is, they have dimension 1. For a 2-element set
B, this corresponds to a boundary condition of the Ising model, where any spin near the boundary
is fixed to the value x.

4.3.3 Bulk-to-boundary mapping

A 2-manifold with boundary might also be interpreted as a manifold with one puncture for every
boundary circle. Imagine filling each such a puncture with a disk. On the combinatorial level,
we can do this by adding one additional vertex corresponding to the centre of the disk, and one
additional triangle for every boundary edge, spanned by this boundary edge and the central vertex.
Consider the boundary-less network for the filled, and the network-with-boundary for the non-
filled triangulation. They can be mapped onto each other by reinterpreting the triangle atoms for
the additional triangles as the boundary edge atoms for the boundary edges. Such a reinterpretation
can be formalized as the liquid mapping

:= , := . (80)

If we apply this mapping to the move Eq. (76) of the boundary liquid, it turns directly into the 2-2
move in Eq. (31) of the bulk liquid. This example shows two new features of liquid mappings. 1)
For a mapping from a substrate (or liquid) with different elements, we have to give one network
for each element. 2) If the substrate (or liquid) has different bindings, then each binding of the
source liquid is mapped to a binding of the target liquid. In the present example, both the bulk and
boundary binding are mapped to the bulk binding,

:= , := . (81)

In general, each binding of the source substrate can be associated with a collection of bindings of
the target substrate, which can contain the same binding multiple times.

5 Topology and non-commutativity

In this section we will revisit the example of topological order in 1+1 dimensions from Section 4.1
and discuss an important issue that we have not addressed so far. If we want the liquid to represent
topological manifolds, we need to add more structure to the network. In particular we will motivate
that it is necessary to distinguish the different indices of an element and show how this can be
implemented concretely. The additional structure makes the liquid more complicated than the
liquid from the previous example. To handle this complexity in the most efficient way, we seek a
way to simplify the liquid without losing its ability to describe topological phases. In doing so, we
invoke the concept of liquid mappings and introduce the notion of equivalent tensor liquids. We
present what we believe to be the simplest representative of a topological liquid in 1+1 dimensions
and classify its phases.
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5.1 Distinguishing indices

In Section 4.1, we have represented the triangulation of a manifold by a graph that we referred to
as network, with vertices referred to as atoms and edges referred to as bonds. The graph is dual to
the triangulation, that is, for every triangle there is one atom, and between every pair of adjacent
triangles there is a bond

→ . (82)

We would like the combinatorics of networks and moves to reflect continuum manifolds and home-
omorphisms in a faithful way. However, the network combinatorics introduced so far does not
uniquely encode the full combinatorial information of the triangulation. Imagine rebuilding the
triangulation from the network’s graph by replacing each vertex with a triangle and gluing the
triangles associated to connected vertices along common edges. We encounter two problems: 1)
The combinatorial structure of the graph does not distinguish between the three adjacent bonds, so
we cannot tell which edges of the triangles we have to glue together. 2) Two edges can be glued
in two opposite ways. E.g., consider the following graph that corresponds to two triangles with all
edges glued together pairwise as

. (83)

This graph does not determine the topology of the resulting manifold. If we glue one of the three
edge pairs, we obtain a 4-gon. Depending on how we glue the remaining edges of the 4-gon, we
can obtain a sphere, a real projective plane, a torus, or a Klein bottle.

The second problem can be solved by giving each edge an orientation and demanding that
those orientations match when we glue two edges of two triangles. The first problem is solved by
realizing that any manifold can be triangulated using only triangles with non-cyclic edge orienta-
tions 2. This is also known as a triangulation with a branching structure. For a fixed triangle, the
non-cyclic edge orientations induce an ordering of its vertices,

0 2

1

0202

0101 1212 . (84)

This allows us to distinguish the three edges and refer to them by their source and target vertex. In
our network notation, we allow rotating/reflecting the shapes of individual atoms, which makes it
impossible to distinguish the three indices if the shape is a small circle. The shape for the element
representing a branching-structure triangle should have less symmetry, which we implement by
next-to-shape markers as

02

01 12

. (85)

The clockwise or counter-clockwise flags allow to uniquely identify the 3 indices of the element
with the edges 01, 02 or 12 of the branching structure triangle, as indicated by the red labels. Note
that here and in the subsequent, such red labels are not part of the formal graphical notation, but
serve as a help to identify the network notation with its geometric interpretation in terms of cell
complexes. Networks using the new shape representing a branching structure triangle uniquely
specify the triangulation and thus the topology. E.g., the network

(86)

2This can be seen by refining a non-oriented triangulation via a construction known as barycentric subdivision,
which can be equipped with a canonical non-cyclic edge orientation.
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represents a sphere unambiguously.
In our new (and final) notion of networks, the indices of an element are always distinct. How-

ever, we can still interpret the old notion, where (some of) the indices have not been distinguished.
Indistinguishability of indices means that we are allowed to permute them, which is nothing but a
move. Now, whenever we choose a shape for an element which has rotation/reflection symmetries
due to which we cannot distinguish some of the indices, we implicitly assume that all the corre-
sponding index permutation moves (or better, a set of moves generating all the permutation moves)
are part of the liquid. Explicitly, we will denote such permutation moves using cycle notation, e.g.,

c

a b sym
= (ab) ,

c

a b sym
= (bc) . (87)

If we use a shape without any symmetries, such as the one in Eq. (85), the index permutations can
be denoted as ordinary moves

c

a b

=

c

b a

,

c

a b

=

b

a c

. (88)

If we interpret those moves in terms of triangulations, they correspond to cutting out a triangle and
gluing it in a different way. Such an operation generally changes the topology of the triangulation.
So the liquid we introduced in Section 4.1 has moves which are sufficient to have topological
deformability, but also additional moves which go beyond topological deformability. We therefore
expect that models of this liquid are too restricted and do not contain the most general fixed point
models for topological order.

5.2 Non-simplified liquid

The branching structure/flags also need to be incorporated into the moves of the liquid. There
are different ways a branching structure can be added to the Pachner moves. For the 2-2 Pachner
moves (keeping in mind moves are not actually different if they are just rotated/reflected or we
exchanged the left and right side), we count 3 different versions. One of them is

0

3

2

1

↔ 0

3

2

1

. (89)

Another one can obtained by, e.g., inverting the orientation of the 2− 3 edge. Note that if we glue
the two patches above at their boundary, we obtain the surface of a branching-structure tetrahedron.
In general, every Pachner move corresponds to a decomposition of that tetrahedron into two parts,
and the 3 versions of the 2-2 Pachner move correspond to the 3 different decompositions of the
tetrahedron into two faces on each side.

In the new network notation, the move becomes

012

023

01 12

2303

=
013 123

01 12

2303

. (90)

The red labels identify the atoms in the network with the triangles in the geometric interpretation.
E.g., 023 refers to the triangle in Eq. (89) whose 0-vertex is the vertex 0, 1-vertex is 2, and 2-vertex
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is 3. Note again that the red labels are only hints for the reader and not part of the actual notation.
Also, the open index labels were chosen in accordance with the names of the corresponding edges.

Analogously, there are now 4 different versions of the 1-3 Pachner move, corresponding to the
4 decompositions of the branching structure tetrahedron into two patches with 1 and 3 triangles
each. One of them is

↔ . (91)

As some sort of convention, we might also want to introduce the following triangle cancellation
move

0

1

2

↔

0

2

, (92)

implying that a non-cyclic 2-gon can be shrunk to a single edge, which is represented by a free
bond in network notation as

012 012

02l 02r = 02l02l 02r02r . (93)

If we glue one edge of the left hand side of Eq. (92) to one boundary edge of any patch of a
triangulation (including itself), this can be undone with Pachner moves. So the Pachner moves
imply that the corresponding tensor is a projector, and contracting any index of any other tensor of
the model with this projector yields the same tensor again. However, they do clearly not imply the
triangle-cancellation move, and formally, the liquids with and without that move are inequivalent
(in a sense that we will make precise soon).

However, when considering ordinary models of the liquid (with real or complex tensors),
Eq. (93) can be viewed as a convention that does not hurt to impose. The projector in Eq. (93) has
a n-dimensional support, and there exists an isometry which identifies this n-dimensional support
with an n-dimensional vector space. Applying this isometry to every index of every tensor yields a
model which is equivalent, as the tensors are invariant under applying the corresponding projector.
In doing so, the tensor corresponding to the projector itself becomes the identity matrix.

In total, we end up with a liquid with 8 moves that we refer to as the “non-simplified liquid”.
As the moves correspond to equations between tensor networks that we need to solve in order to
find models, it is important that the moves of a liquid are as simple as possible. In the following,
we will find a “simplified liquid” which is equivalent to the non-simplified liquid, but has less and
simpler moves.

5.3 Simplified liquid

The simplified liquid has one additional element whose geometric interpretation is a 2-gon cell
with cyclic edge orientations,

0

1

→ 01 10 . (94)

The new element will be denoted by a circle as well, however, it can be distinguished from the
triangle element due to the different number of indices. Of course, a 2-gon cannot be embedded
non-degenerately into Euclidean space without bending its edges. But this is no cause of a problem
as we are talking about combinatorial/topological cell complexes and not geometric ones. The 2-
gon is rotation symmetric which corresponds to a move

a b
sym
= (ab) (95)
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justifying the choice of shape. This move can be derived from the moves below, however.
The moves of the simplified liquid only contain one single Pachner move, namely the 2-2

Pachner move in Eq. (90). All other 2-2 Pachner moves can be derived via additional moves of
the simplified liquid related to symmetries of the triangle. In contrast to the liquid in Section 4.1,
rotating or reflecting the triangle would change the branching structure. However, the changes of
the edge orientations can be undone by gluing the cyclic 2-gon to the involved edges. This yields,
e.g., the (12)-triangle symmetry move

2

1

0 ↔

2

1

0 , (96)

where the nomenclature refers to effectively interchanging the role of the vertices 1 and 2. In
network notation, this is

012 12

01

02

21 =
021

01

02

21 . (97)

In order to generate the full symmetry group S3 of the triangle, one only needs one further
move, the (01) triangle symmetry move

1

0

2 ↔

1

0

2 . (98)

Again, in network notation, this amounts to

012 01

02

12

10 =
102

02

12

10 . (99)

The 1-3 Pachner moves can be derived from the 2-2 Pachner moves via the triangle cancella-
tion move in Eq. (93), which is also part of the simplified liquid. Analogously, there is the 2-gon
cancellation move

0

1

↔

0

1

. (100)

In network notation, we have
a b = aa bb . (101)

5.4 Equivalence of the simplified and non-simplified liquid

In this section, we will motivate why the simplified and non-simplified liquids are “equivalent”.
For this, we should be able to rewrite networks of the simplified liquid as networks of the non-
simplified liquid, and vice versa. This can be formalized by two liquid mappingsM1 andM2,
going from the non-simplified liquid to the simplified liquid, and back.

Note that the elements of the non-simplified liquid are identified with a subset of the elements
of the simplified liquid. So there is a “trivial” candidate for the mappingM1, mapping the triangle
of the non-simplified liquid to the triangle of the simplified liquid. In order to show that this defines
indeed a liquid mapping, we need to show that the mapped non-simplified moves are derived from
the simplified moves. As the mapping is “trivial”, the mapped non-simplified moves just look like
the non-simplified moves.
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• One of the branching-structure 1-3 Pachner moves is derived from the 2-2 Pachner move in
Eq. (90) and the triangle cancellation move in Eq. (93):

a

b

c

(90)
= a

b

c
(93)
= a

b

c

. (102)

• All other versions of branching structure 2-2 Pachner moves are derived from the 2-2 Pach-
ner move in Eq. (90), together with the two triangle symmetry moves. E.g., the following
2-2 Pachner move

↔ (103)

is derived by

a b

cd

(97)
=

a b

c
d

(90)
=

a b

c
d

(97)
=

a b

cd

.

(104)

The bar over the referenced equation denotes that the move is applied from right to left.

• Similarly, all other 1-3 Pachner moves are derived from the move above in Eq. (102), to-
gether with the 2-gon cancellation move and the triangle symmetry moves.

The mappingM2 is only slightly more complicated.

• The triangle part of both liquids and accordingly mapped onto the itself (as part of the non-
simplified liquid).

• A 2-gon cell can be triangulated using two triangles

0

2

→

0

1

2

. (105)

Accordingly, the mapping for the 2-gon is given by

a b := a b . (106)

Again, we have to find derivations for the mapped simplified moves from the non-simplified
moves. E.g., if we plug the mapping Eq. (106) into the 2-gon cancellation move Eq. (101), we
obtain

a b = aa bb . (107)

This can be derived by 1) a 2-2 Pachner move, 2) a 1-3 Pachner move, and 3) the triangle cancella-
tion move. We will not explicitly give derivations for each mapped move here. Instead, we would
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like to remark that the mapped moves (except for the 2-gon and triangle cancellation moves) corre-
spond to re-triangulations of a disk. It is known that any two triangulations of the same (piece-wise
linear) manifold are related by a sequence of Pachner moves [24]. So, if we rely on this statement
about the geometric interpretation, we know that derivations for all mapped moves must exist.

So, we have found two liquid mappings going from the non-simplified liquid to the simplified
liquid and back. However, this alone does not really mean anything, e.g., between any two liquids
there’s the trivial mapping which maps every binding to the empty collection of bindings, and
every element to the empty network. What we additionally need is that that if we go from the
non-simplified liquid to the simplified liquid and back, we end up with the same network. In other
words,M2 ◦M1 should be the identity, and the same should hold forM1 ◦M2.

We find indeed thatM2 ◦M1 is the identity on the triangle, and alsoM1 ◦M2 is the identity
on the triangle. However, if we applyM1 ◦M2 to the cyclic 2-gon

a b
M2
:= a b

M1
:= a b , (108)

we find that it does not map the 2-gon to itself. This is again fine, as the equation between the very
left and the very right is a derived move of the simplified liquid,

a b
(93)
= a b

(101)
= a b

(97)2
= a b

(99)
= a b .

(109)

If we apply M1 ◦ M2 to any model of the simplified liquid, we will get the same model
again. So the models of the simplified liquid are in one-to-one correspondence with the models
of the non-simplified liquid, which motivates the use of the word “equivalent”. We will call two
mappings such that both M2 ◦ M1 and M1 ◦ M2 are the identity up to moves weak inverses
of another. Two liquids are considered equivalent if there are mappings between them which are
weak inverses, and equivalence classes of liquids will be referred to as liquid classes.

One might think that reducing the number of moves from 8 to 5 is not a significant improve-
ment. Let us justify why it actually is. The key task is finding models for our liquid, which means
solving the tensor-network equations given by the moves. As a measure of “complexity” of a liq-
uid it thus makes sense to consider the computational cost of evaluating the two networks of each
move, and in particular its scaling with the index dimension d. This scaling is always polynomial,
but the exponents depend on the move. Very roughly, the exponent will increase proportionally to
the “linear size” of a network. Thus, we have a strong preference for moves with small networks.
For evaluating a 2-2 Pachner move we need of the order of d5 + and · operations. The same holds
for a 1-3 Pachner move. All other moves in this section have smaller exponents and thus have a
vanishing contribution to the overall complexity when scaling d. So from that perspective we have
reduced the complexity from 7 moves to 1 move rather than from 8 to 5 moves.

5.5 Models

We might look for models of the liquid with complex tensors as tensor type. However, we will
see in Section 6, that such models are unphysical, as they are not Hermitian. In contrast, models
with real tensors as tensor type have a physical interpretation, namely as fixed-point models for
topological order in spin systems protected/enriched by a time-reversal symmetry: For a spin
system, a time-reversal symmetry is an anti-unitary which squares to the identity. We can always
change the basis, such that this anti-unitary is given by complex conjugation in that basis. Then,
obeying the symmetry means that all tensors of the model are only allowed to have real entries.
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5.5.1 Matrix algebra models

The point of this section was to get rid off all index permutation symmetries. For the related al-
gebra liquid, this corresponds to removing the commutativity axiom. Thus, also non-commutative
algebras yield models of the new liquid, such as the algebra of n× n matrices (for any n):

M

a2b2

a1b1a0b0

= (n−1/2)

a1a1

a2a2

b1b1a0a0
b0b0

b2b2

. (110)

However, we observe that this model is not in an interesting phase. If we consider the network
representing some triangulation and use the tensors from Eq. (110), we see that it decomposes into
disconnected loops around vertices and scalars n−1/2 at every triangle. Each loop evaluates to the
scalar n. Physically, a tensor network consisting only of scalars corresponds to a trivial model
without any degrees of freedom.

Another way to motivate that this model is trivial is to see that due to the quantum mechanical
interpretation of the model we can generally neglect scalar pre-factors. This is because the predic-
tions of a quantum model are tensors whose entries are probabilities of measurement outcomes,
which have to sum to 1. Alternatively, we can be fine with any tensor and fix the latter constraint
by hand by normalizing with a prefactor. Then, tensors which differ by a prefactor correspond
to the same physical predictions. The measurement-outcome tensors can be obtained by simply
contracting space-time tensor networks containing the time-evolution tensors of the model as well
as state-preparation and measurement tensors [18]. Instead of neglecting prefactors after contrac-
tion, we can already do this at the level of the single tensors constituting the model. As neglecting
pre-factors is compatible with Kronecker products and Einstein summations, “arrays modulo pre-
factors” defines another tensor type, which we will refer to as projective tensors. If we interpret
the model in terms of projective tensors, it is actually formally in a trivial phase.

Mathematically, the evaluation of such a model can be computed as a sum of local numbers
after taking the logarithm of each scalar, which is known as a classical invariant of a manifold.
Simple combinatorics shows that the evaluation is given by nχ, where χ is a classical invariant
known as the Euler characteristic of the manifold.

5.5.2 Quaternion models

Another model is given by the quaternion algebra, whose indices take values in the set {1, i, j,k},

H
c

ba
=



1/2 if b = 1 and a = c

1/2 if a = 1 and b = c

1/2 if (a, b, c) is even permutation of (i, j,k)

−1/2 if (a, b, c) is even permutation of (i,k, j)

−1/2 if c = 1 and a = b

0 otherwise.

. (111)

If we interpret this algebra as a complex algebra, it is isomorphic to the algebra of 2× 2 matrices,
which would correspond to a physically trivial model again. However, as a real algebra it is distinct
from any matrix algebra or δ-algebra, and corresponds to a non-trivial phase. This can again be
seen by evaluating the model for a closed network representing a non-orientable manifold, e.g., on
the real projective plane, where we get −2. The fact that the model becomes trivial when we drop
the reality constraints indicates that we have a model for a time-reversal SPT phase, i.e., a phase
which becomes trivial after we allow breaking the symmetry, in contrast to a symmetry breaking
phase or a symmetry enriched topological (SET) phase.
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5.5.3 Cluster Hamiltonian

The quaternion algebra model is equivalent to a commuting-projector model known as cluster
Hamiltonian [26, 27], which is known to represent the only non-trivial SPT phase protected by
time-reversal symmetry in 1 + 1 dimensions [28]. The Hamiltonian is given by

H =
∑
i

−Xi−1ZiXi+1 . (112)

Its time reversal symmetry is given by the anti-unitary operator

T = K
⊗
i

Z , (113)

where K denotes complex conjugation. After a change of basis, the time-reversal symmetry oper-
ator is given by complex conjugation in that basis alone:

H =
∑
i

−Yi−1ZiYi+1 =
∑
i

(XZ)i−1Zi(XZ)i+1 ,

T = K .

(114)

The local ground state projector acting on three neighbouring qubits is given by

P = (1−XZ ⊗ Z ⊗XZ)/2 . (115)

In order to compare the cluster Hamiltonian with our liquid model, we actually have to break
translation invariance, and block pairs of neighbouring qubits. The new local ground state pro-
jector acting on two qubit pairs is given by the product of two old ground state projectors, i.e.,

Pblocked = (1−XZ ⊗ Z ⊗XZ ⊗ 1)

(1− 1⊗XZ ⊗ Z ⊗XZ)/4

= (1−XZ ⊗ Z ⊗XZ ⊗ 1− 1⊗XZ ⊗ Z ⊗XZ
−XZ ⊗X ⊗X ⊗XZ)/4 .

(116)

As in Section 4.1, this projector is interpreted as a 4-index tensor

out2out1

in2in1

, (117)

which defines a model of a liquid for rhombus-like cellulations of space-time.
Again, the comparison between the topological liquid model and the commuting-projector

model is done by a liquid mapping. As before, the geometric interpretation is given by refining
the “rhombic cellulation” of spacetime into a triangulation

0

3

2

1

→ 0

3

2

1

. (118)

The only difference is that now the triangulation has a branching structure. In network notation,
we get

1201

3203

:=
013 132

01 12

3203

. (119)
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To show that the mapping above is in fact an equality for the chosen models, we identify the basis
elements of the quaternion algebra {1, i, j,k}with the two-qubit configurations {|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉}
and write the tensors appearing in Eq. (119) as a collection of two-qubit operators from the vector
space associated to index a to the vector space associated to the index b, indexed by the index c

c

a

b

= (1⊗ 1, 1⊗XZ,XZ ⊗ Z,XZ ⊗X) /2 ,

c

a

b

= (1⊗ 1,−Z ⊗XZ,−XZ ⊗ 1, X ⊗XZ) /2 .

(120)

Summing over the index c yields the right hand side of Eq. (116), which shows that our liquid
model is equivalent to the cluster Hamiltonian model under the chosen mapping.

6 Orientation and unitarity

In this section we will provide a liquid whose models have a standard quantum mechanical inter-
pretation, by adding an orientation and a Hermiticity move to the liquid from the previous section.
The corresponding models are basically equal to 2-dimensional lattice TQFTs as formulated in
Ref. [29].

6.1 Hermiticity and orientation-reversal

Objects like Hamiltonians, state vectors or time evolution operators, which occur in the usual
pure-state formulation of quantum mechanics, are complex tensors. A “physical” Hamiltonian is
Hermitian, which means that interchanging input and output indices of the corresponding complex
tensor is equal to complex conjugation, e.g.,

H

a b

a′ b′

= H∗

a′ b′

a b

:= H

a′ b′

a b
K

. (121)

As complex conjugation is not part of network notation, we introduce the following extension to
network notation. Every part of a network encircled by a line of the following style

K (122)

will be complex conjugated. We will sometimes omit the label K. Complex conjugation com-
mutes with tensor products and contractions, which gives us diagrammatic equivalences such as

a

b

c

d

e

=

a

b

c

d

e

=

a

b

c

d

e

=

a

b

c

d

e

. (123)

The Hermiticity of the Hamiltonian carries over to the tensors of the tensor network in the Trot-
terized imaginary time evolution, and implies that inverting the time direction is equivalent to
complex conjugation. In a topological manifold there is no “time direction”, but inverting any
direction is still an orientation-reversing map. Thus, a “physical” model of a topological liquid
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in complex tensors should have the property that orientation reversal equals complex conjugation.
The networks of the liquids we introduced so far represent manifolds without an orientation, so
it’s impossible to formulate the Hermiticity condition for their models.

On the other hand, we could say that for liquids without orientation, orientation reversal is
a trivial operation. Thus, for models of such liquids the Hermiticity condition implies that they
are invariant under complex conjugation alone, i.e., purely real. As we have seen Section 5, such
models are indeed physical and correspond to phases with a time-reversal symmetry.

There is the possibility of real models of unoriented liquids to emulate general physical models
(even ones without time-reversal symmetry) by increasing the bond dimension, called realification
(cf. Ref. [18, 30]). Realification is an operation that maps every Hermitian complex model of an
oriented liquid to a real model of the corresponding unoriented liquid, such that the former can be
identified with a subset of the latter. However, it is more straight-forward to add an orientation to
the liquid and consider models with complex tensors.

6.2 Non-simplified liquid

An orientation can be added to a triangulation by specifying for each triangle whether it is oriented
“clockwise”, or “counter-clockwise”. Clockwise and counter-clockwise triangles are represented
by two different elements in a network. The clockwise triangle is defined by the fact that its 01
edge (with respect to the branching structure) is oriented clockwise,

0

1

2

→
02

01 12

. (124)

The opposite is true for the counter-clockwise triangle

2

1

0

→
02

01 12

. (125)

In network notation, the two elements are distinguishable, as we add an inward arrow marker to
every index corresponding to a clockwise oriented edge. The clockwise triangle has two clockwise
edges, whereas the counter-clockwise triangle only has one. As we allow reflecting the shapes of
individual atoms in a network, it would be impossible to distinguish the two input indices of the
clockwise triangle. To fix this problem, we add a little “spiral” to the circle, which defines what
the counter-clockwise direction is.

In an oriented triangulation every edge is a clockwise edge of one triangle, and a counter-
clockwise edge of another triangle. Thus, the networks obey the constraint that every bond is
between an index with an arrow and an index without an arrow. Alternatively, the diagrams can
be interpreted as instances of a slightly refined graphical calculus, where indices are divided into
output and input indices, and bonds must always connect one input and one output index. The
refined graphical calculus can be fulfilled by more general data structures, namely tensor types
where each basis has a dual. For all the tensor types in this work (i.e., arrays and fermionic
tensors) the dual will be trivial. Thus, we will not explicitly distinguish input and output indices.

Each Pachner move exists with two different orientations as well. So naively we would end up
with a liquid with 14 Pachner moves plus the triangle cancellation move (which is reflection sym-
metric), which we will call the “non-simplified liquid”. Alternatively, we could take the simplified
unoriented liquid with two copies of every element and every move (unless they are reflection
symmetric). However, there is a simpler equivalent liquid, as the next section shows.
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6.3 Simplified liquid

The simplified liquid contains the clockwise triangle in Eq. (124) as an element, but not the
counter-clockwise triangle. The latter can be constructed from the former by gluing with a cyclic
2-gon, as shown in Eq. (135). For the cyclic 2-gon, we take both the clockwise and counter-
clockwise version,

0

1

→ 10 01 ,

0

1

→ 01 10 . (126)

The moves only contain a single 2-2 Pachner move, namely the one consisting of only clock-
wise triangles

a b

cd

=

a b

cd

. (127)

In the oriented case, the triangle only has a Z3 rotation symmetry, generated by the (120)
triangle symmetry move

1

2

0

↔

1

2

0

. (128)

In network notation we have
012 02

12

01

20 =
20112

20

01

12 . (129)

Furthermore, there are two cancellation moves. The triangle cancellation move depicted in
Eq. (92) has one clockwise and one counter-clockwise triangle. The latter is not part of our ele-
ments, so the oriented triangle cancellation move has the cyclic 2-gon instead a free bond on the
other side:

0

1

2

↔

0

2

. (130)

In network notation, we find
102 120

02 20 = 02

02 20
. (131)

Second, the oriented 2-gon cancellation move is

a b = aa bb . (132)

The clockwise 2-gon is rotation symmetric, so we would expect the following symmetry move

a b
sym
= (ab) , (133)

which is also implied by the choice of shape. Indeed, this move is directly derived from the
oriented triangle cancellation move in Eq. (131). The analogous symmetry move for the counter-
clockwise 2-gon

a b
sym
= (ab) (134)

can be derived from the oriented 2-gon cancellation move. The proof that the non-simplified and
simplified liquids are equivalent is analogous to the non-oriented case.
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6.4 Hermiticity move

As we mentioned above, physical models should obey the Hermiticity condition that orientation re-
versal equals complex conjugation. Using the extended network notation introduced in Eq. (122),
this condition can be written down as a move as well. This move equates the complex conju-
gated clockwise triangle and the counter-clockwise triangle. The latter can be constructed from
the former by gluing a cyclic 2-gon according to

c

a b

=

c

a b
:=

a

c

b
. (135)

One would expect that we also need to add the analogous move which relates the clockwise 2-gon
and the counter-clockwise 2-gon via complex conjugation. However, this move can be derived
from the moves defined so far. For the sake of demonstrating how to operate with networks
containing (complex conjugation) mappings, we will explicitly give the derivation

a b
(131)
= a b

(123)
= a b

(135)2
= a b

(132)
= a b (129)

= a b
(129)
= a b

(132)
= a b

(131)
= a b

(132)
= a b .

(136)

6.5 Models

As in the unoriented case, the oriented liquid is equal to associative algebras with some extra
axioms, and thus, its models can be classified. Complex models of the oriented Hermitian liquid
are not actually more general than real models of the unoriented liquid: By a change of basis, each
complex model can be brought into a form where it is purely real. Contrary, there are even less
models, in the sense that models which are in different phases as real models can be in the same
phase as complex models.

An example for this is the model coming from the quaternion algebra. As a complex model, it
is equal to the model coming from the 2× 2 matrix algebra, after the following basis change:

G := 2−1/2 (1, iX, iZ, iY ) , (137)

where X , Z and Y are the corresponding Pauli matrices, and the four entries correspond to 1, i, j,
and k. If we choose an ordering of the four entries of 2× 2 matrices, we can write G properly as
a 4× 4 unitary matrix.

6.6 Invertibility

In this section, we look at invertible models, and see how invertibility can be phrased as a set
of moves going beyond the topological moves introduced so far. A model or phase is said to be
invertible if “stacking two orientation-reversed copies yields a trivial phase”. Thus, there must be a
circuit move which transforms this double-layered tensor network into the empty tensor network.
One way of ensuring this is to demand invariance not only under homeomorphisms, but also under
the following surgery operations:

• A 0-surgery (or, equivalently, a backwards 3-surgery) consists in removing a 2-sphere

↔ . (138)
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• A 1-surgery (or backwards 2-surgery) consists in cutting out an annulus and pasting two
disks

↔ . (139)

Two manifolds are related by surgery operations iff they are cobordant, i.e., their disjoint union can
be identified with the boundary of a manifold of one dimension higher. Two layers of 2-manifold
can be removed by a circuit move using surgery operations as

→ → → . (140)

We start by applying 2-surgeries with one disk in each of the two layers, as indicated by the blue
circles. This yields a “double-layer with holes”. For each pair of neighbouring holes there is a non-
contractible loop winding through both of them. Next, we apply a 1-surgery to the annulus-like
neighbourhood of every such non-contractable loop, (whose boundaries were indicated by blue
lines). This yields a collection of disconnected 2-spheres, which can be removed by 0-surgeries.

Combinatorially, surgery operations can be implemented by the following moves.

• The 0-surgery move

↔ , (141)

where the left hand side depicts a cellulation of a sphere by a clockwise (front) and a counter-
clockwise (back) 2-gon, and the right hand side is the empty manifold. In network notation,
this looks like

= . (142)

• The 1-surgery move

0

1 ↔
0 1

2 3
, (143)

where the left hand side depicts a triangulation of an annulus, and on the right we have a
triangulation of two disks. In network notation, we find

001 011

00 11 =
002 113

00 11 . (144)

Note that both moves are non-topological, as at least one of their networks (in fact both) does
not represent a disk. In particular, the right hand side of the 1-surgery move consists of two
disconnected components.

Models of the invertible liquid are models of the topological liquid which fulfil the additional
equations Eq. (142) and Eq. (144). As such only the trivial model (every tensor being equal to the
number 1) fulfils these equations. However, physically it is fine if the equations only hold up to
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pre-factors, such that we can ignore Eq. (142) as it is only equates scalars. In this case, also the
model based on the matrix algebra in Eq. (110) is invertible, as plugging it into Eq. (144) yields

aa
a′a′

cc
c′c′

= aa
a′a′

cc
c′c′
. (145)

As we have seen in Section 5.5, this model is still in a trivial phase, as the defining tensor is a tensor
product of three identity matrices and thus the resulting network can be reshaped into a product of
independent loops. However, it can become non-trivial if we add symmetries. That is, we equip
each index with a representation of a group (or some form of Hopf algebra, see Ref. [19]). Tensors
with symmetries (of a fixed group) constitute a different tensor type, as symmetries are consistent
with contraction and tensor product.

The tensor in Eq. (110) can be equipped with many different symmetries. In particular having
a representation act twice on each of the two (row and column) index components independently
leaves the tensor invariant, because each of the three identity matrices is invariant under that sym-
metry separately. For that exact same reason though, the model with such symmetries is still in
a trivial phase. So we need a representation that does not split into a product of two representa-
tions on the two index components. One possibility for that is to take a projective representation
on each of the two components, such that both projective representations together form a proper
representation on the composite index. The simplest group which has a non-trivial projective rep-
resentations is the Klein 4-group Z2 × Z2. The projective representation R is given by the Pauli
matrices:

R((0, 0)) = 1, R((0, 1)) = X,

R((1, 0)) = Z, R((1, 1)) = iY .
(146)

In Section 5.5, we have seen models for SET (or SPT) phases protected by a time-reversal
symmetry. The present model is an example for an SPT phase protected by an ordinary symmetry,
which is also invertible. Note that projective representations are classified by the second U(1)-
valued cohomology group of the symmetry group, and our liquid models are equivalent to the
isometric MPS in Ref. [31] and to the models in terms of “dimer cristals” in Ref. [28].

6.7 Vertex weights

As a last point, let us briefly discuss the following variant of the above liquid, which is slightly
more general. The main reason for introducing this variant is that it shows up as sub-liquid of a
2 + 1-dimensional liquid in Section 7.2.

• The variant has one more element, called the vertex weight

. (147)

• The weighted oriented triangle cancellation move replaces the oriented triangle cancellation
move

a b = a b . (148)

• There is the additional weight commutation move

a

c

b
=

b

c

a
. (149)

Every vertex of the triangulation corresponds to a loop of bonds in the network. Each vertex
weight is bound to one such loop, that is, it can be moved around that loop using the weight
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commutation and other moves. Topological manifolds are represented by networks, where each
loop has exactly one vertex weight bound to it. Vertices/loops with more or less vertex weights can
never be removed, as the weighted cyclic triangle cancellation move involves exactly one vertex
weight. Thus, they should be thought of as some kind of singularity. The position of the vertex
weight corresponds to an edge in the triangulation, which can be interpreted as the “favourite edge”
of the corresponding vertex. The weight commutation move makes the evaluation of networks
independent of those favourite edge decorations.

The variation is “more general” than the original liquid, in that there is a liquid mapping

a b := aa bb (150)

from the variant to the original liquid, but no obvious inverse mapping. Indeed, the models of
the variant (in real array tensors) are slightly more general. E.g., for each α ∈ R 3, there is the
following model where all tensors are scalars: The triangle is the scalar α−1/2, the 2-gons are the
scalar 1, and the vertex weight is the scalar α. One can easily see that the evaluation of this model
on a space-time manifold M is αχ(M), where χ is the euler characteristic. Note, however, that as
a physical model using projective tensors (as explained in Section 5.5), this model is immediately
trivial. In fact, using this tensor type, we do not get any new phases compared to the liquid without
vertex weights.

7 Non-chiral topological order in 2 + 1 dimensions

In this section, we discuss non-chiral intrinsic topological order for spin systems, i.e., systems
without fermionic degrees of freedom. Whereas global symmetries and fermions (see Section 8)
can be easily incorporated into our framework, it is an open question whether there exist models for
topological liquids which represent chiral phases. For all liquids presented in this paper there are
mappings from a commuting-projector liquid, and there exist no-go theorems about commuting-
projector models describing chiral phases [32]. In our framework we can circumvent those no-go
theorems as there exist more general liquids which do not yield commuting-projector models (cf.
Ref. [33]), however, concrete examples of models representing chiral phases remain elusive as of
to date. On the contrary non-chiral topological order is well captured within our formalism and
we illustrate this fact by providing two different, yet equivalent topological liquids that cover the
most general known models of non-chiral topological order.

7.1 Volume liquid

In this section we describe a liquid whose models are similar to fixed point models originally
introduced as a state-sum invariant by Turaev and Viro [34, 35]. Later this construction has been
rephrased as a Hamiltonian model for topological order by Levin and Wen [36] referred to as
string-net models. The liquid we present here is a straight forward generalization of the oriented
topological liquid in 1 + 1 dimensions from Section 6 to 2 + 1 dimensions.

7.1.1 The non-simplified liquid

A 3-manifold can be represented by a simplicial complex (a decomposition of the manifold into
tetrahedra) with the following 3-dimensional Pachner moves. The 2-3 Pachner move replaces two
tetrahedra glued together at a single face with three tetrahedra glued together such that each pair

3If we drop the hermiticity move, this is a model also for complex α.
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of tetrahedra shares one common face and all three tetrahedra share a common edge

↔ . (151)

The 1-4 Pachner move replaces a single tetrahedron with 4 tetrahedra, such that every pair shares
a common face, every collection of three tetraheda shares a common edge and all tetrahedra share
a common vertex

↔ . (152)

A triangulation is represented by a network with one 4-index atom at every tetrahedron, and
one bond between each pair of tetrahedra sharing a face. In order to obtain a liquid with models
for a very general class of topological phases, we have to take care of the following details.

To properly represent 3-dimensional manifolds combinatorially, we need to distinguish the
different faces of a tetrahedron. On a geometrical level this can be achieved by introducing a
branching structure. That is, analogously to the 2-dimensional case, we add an orientation to all
edges which is not cyclic around any triangle. The branching structure allows us to uniquely label
the vertices of a triangle,

0 1

2

→ TT
012012

, (153)

which represents a binding T . This ensures that there is only one way to glue two triangles. It
also allows us to uniquely label the vertices of the tetrahedron, yielding an element with distinct
indices

0 1

2 3

→
0123

123123

TT

023023 TT

013013

TT

012012TT . (154)

In network notation the 4 indices are distinguished by their location relative to the small black
“arrow” inside the square which allows an unambiguous identification despite the fact that we are
allowed to rotate and reflect the shape in the diagrams.

We want the models to have a pure-state quantum mechanical interpretation. Thus, we have to
work with complex tensors, and we need to introduce an orientation. The orientation allows us to
distinguish between the counter-clockwise tetrahedron above (whose 01 edge of the 012-triangle
is oriented counter-clockwise), and the clockwise tetrahedron which is represented by the different
element

0

1

2

3

→
0123

123123

TT

023023 TT

013013

TT

012012TT . (155)

In order to access even more general models, we choose a slightly more complicated network
representation of the triangulation. For every edge encircled by tetrahedra we chose one favorite
adjacent face shared by one tetrahedron-pair and insert a 2-index atom at the corresponding bond.
Those atoms are atoms of one of three different elements (called edge weights), depending on
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whether the edge is the 01, the 02, or the 12 edge of its favourite face represented by

0 1

2

→ 012

backbackTT frontfront TT
, (156)

0 1

2

→ 012

backbackTT frontfront TT
, (157)

0 1

2

→ 012

backbackTT frontfront TT
. (158)

We can imagine to “inflate” the triangle on the left-hand side of Eq. (156), Eq. (157), and Eq. (158)
and into a pillow-like volume with three corners, whose boundary consists of two triangles, one in
the back and one in the front. We might think of the edge weight as being contained in the volume.
Here and in the following, we will mark edges at the boundary of a volume, which contain an edge
weight, with a tick.

It turns out that if we would write down the liquid without edge weights, we would only
get models for symmetry breaking order, and none for (actual, irreducible) topological order 4.
However, there are simpler ways to decorate the liquid, which already have non-trivial models, yet
not the most general ones. E.g., it suffices to add a 0-index atom 5 associated to every vertex, in
order to get models for all discrete (Dijkgraaf-Witten [37]) gauge theories.

After the refinements above, we do not have a single 2-3 and 1-4 Pachner move, but one move
for each choice of orientations, branching structure, and possitions of the edge weights. A list
of all moves can be obtained in a straight-forward fashion and here we only present one specific
example of a 2-3 Pachner move with the special property that all tetrahedra are oriented counter-
clockwise. This move will be relevant in the next section, where we present a simplified, yet
equivalent liquid. In terms of cell complexes, it looks like

0

1

2

3

4 ↔ 0

1

2

3

4 . (159)

We observe that the geometric depiction does not reveal where we put the edge weight of the
inner 13 edge on the right hand side. However, this information is contained in the corresponding
network notation

0124

0124

024

124014

012

023

234

034

=

0123 1234

0134

134

123

013

012 023 234124

034014

. (160)

4The edge weight are closely related to the quantum dimensions in the conventional fusion-category framework
of non-chiral topological order. No edge weights would mean that all quantum dimensions and the total quantum
dimension are 1.

5The corresponding scalar would be the inverse total quantum dimension in the fusion-category formulation.

40



SciPost Physics Submission

Apart from the 2-3 and 1-4 Pachner moves, we impose the following full tetrahedron cancel-
lation move analogous to the triangle cancellation move in Eq. (93). Geometrically, it consists
in taking a volume glued from a clockwise and a counter-clockwise tetrahedron at three of their
faces, and shrinking it down to a single face

0 2

3

1

↔

0

1

2

. (161)

In network notation, this face is represented by a free bond

0123b 0123f

013

123

023

012b 012f = 012b012b 012f012f . (162)

As in the 1 + 1-dimensional case, the volume on the left hand side of Eq. (161) would be rep-
resented by a projector in a real/complex model, and the move corresponds to the convention of
restricting everything to the support of that projector.

7.1.2 The simplified liquid

The liquid presented in the preceding section is quite complicated, as it consists of a large number
of slightly different versions of Pachner moves. In the following we present an equivalent “sim-
plified” liquid with only one single Pachner move, together with many simple additional moves.
The simplified liquid has a geometric interpretation as well – networks do not correspond to trian-
gulations, but more generally to cellulations with different faces and volumes.

The simplified liquid consists only of the counter-clockwise tetrahedron and several additional
elements which can be used to flip the edge orientations, and thus allow us to effectively recon-
struct the clockwise tetrahedron from the counter-clockwise one (cf. Eq. (181)). The main new
ingredient of the simplified liquid is to allow for 2-gon faces. Thus, first of all, we introduce an
additional binding D, corresponding to a 2-gon with cyclic edge orientations

0 1 → DD
0101
. (163)

The 2-gon has a rotation symmetry, so there are 2 different ways to identify two glued 2-gons. In
order to make the gluing unambiguous, we determine one “favourite edge”, marked by the small
half circle, such that those favourite edges have to coincide when gluing.

The new elements used to flip edge orientations are called flip hats. They correspond to 3-
cells whose boundary consists of two triangles and one 2-gon and which appear in four different
variants depending on orientation and the choice of the favorite edge. I.e., there is

• the clockwise 01 flip hat

0 1

2

→
012

0101

DD

102102TT 012012 TT
, (164)
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• the counter-clockwise 01 flip hat

1 0

2

→
012

0101

DD

102102TT 012012 TT
, (165)

• the clockwise 12 flip hat

1 2

0

→
012

1212

DD

021021TT 012012 TT
, (166)

• and the counter-clockwise 12 flip hat

1 2

0

→
012

1212

DD

021021TT 012012 TT
. (167)

In addition, there is the 2-gon flip which interchanges favourite edges

0 1 → 01

1010DD 0101 DD . (168)

The boundary of this volume consists of two 2-gons. The favourite edge of the 2-gon on the front
is the 01 edge, whereas for the 2-gon on the back it is the 10 edge.

At last, we need to introduce the edge weights for the simplified liquid. Of the three edge
weights from the previous section, it suffices to take the 01 edge weight in Eq. (156), since the
other edge weights can be constructed using the elements above. We additionally introduce the
2-gon edge weight

0 1 → 01

backbackDD frontfront DD
, (169)

which is a volume like the 2-gon flip, but the favourite edge of both the back and front 2-gon is
the 10 edge. According to the name, one of its edges (the 10 edge) carries an edge weight and is
therefore marked by a tick. We show in Eq. (179) that in fact all edge weights can be constructed
from the 2-gon edge weight only, such that the 01 edge weight is merely an auxiliary element.

The moves of the simplified liquid contain only one single Pachner move, which we choose
to be the one with only counter-clockwise tetrahedra in Eq. (160). Instead of the other Pachner
moves, there are a number of simpler moves involving the additional elements, from which the
former can be derived. In the following, we give a selection of those moves in terms of cell com-
plexes as well as in network notation. The remaining moves can be found in Appendix B. For
the cell complexes we can only easily draw the 1-skeletons which do not in general unambigu-
ously determine the cellulation. The network notation on the other hand is clear and completely
unambiguous, but does not make the geometric interpretation apparent.

The moves can be divided into three groups. First, there are moves corresponding to sym-
metries of the elements from which we can derive all other versions of the 2-3 Pachner moves.
E.g., there is the (01)(23) tetrahedron symmetry move for the corresponding permutation of the
tetrahedron vertices. This permutation changes the edge orientations of the (01) and (23) edge,
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which is done by using two pairs of flip hats. In the corresponding re-cellulation,

0

1

2 3 ↔ same 1-skeleton , (170)

both sides are glued from one tetrahedron and one flip hat from each of the two pairs. On the left,
the flip hats are glued to the triangles 013 and 123, whereas on the right, they are glued to the
triangles 102 and 032. In network notation, this is

0123

013

123

013

012 023

123

23

01

132

103

=
1032

023

012

102

103 132

032

01

23

023

012

. (171)

Also the flip hats have a symmetry, namely a π rotation around the axis going through the “tip” of
the hat and the centre of the 2-gon. This rotation changes the favourite edge of the 2-gon which
can be undone by gluing a 2-gon flip to the 2-gon, as, e.g., in the clockwise 01 flip hat rotation
move

1 0

2

↔

1 0

2

, (172)

in network notation
102

01

10
012 102

01

=
012

102012

01

. (173)

The second group consists of cancellation moves, which allow us to derive the 4-1 Pachner
moves from the 2-3 Pachner moves. E.g., gluing two flip hats at one triangle and one 2-gon yields
the same pillow-like volume as in Eq. (161), which can be shrinked to a triangle, as in the oriented
01 flip hat cancellation move

1 0

2

↔

1 0

2

. (174)

Again, the triangle is interpreted as a free bond in network notation

012 012

10

102
012b 012f = 012b012b 012f012f . (175)

Similarly, the tetrahedron cancellation move equates two tetrahedra glued at two triangles on the
left hand side with two flip hats glued at the 2-gon on the right hand side,

0 1

2

3

↔ 0 1

2

3

, (176)
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0132 0123

013

032

132 023

123

=

023

123

032 023

132 123

. (177)

The third group consists of moves relating the edge weights. In our case there is only one such
move, which can be viewed as the definition of the triangle weight from the 2-gon weight

0 1

2

↔

1 0

2

. (178)

In network notation, this is

012

b f =

012102

10 01

b f . (179)

The complete definition contains a few more moves, for which we refer to Appendix B.
Note that there is also a similar variant of the liquid without an orientation. The elements are

the same, just that we do not distinguish between clockwise and counter-clockwise versions. The
moves are similar, just that there are also tetrahedron symmetry moves corresponding to reflections
of the tetrahedron. E.g., there is a (01) tetrahedron symmetry move with only one single flip hat
on each side.

7.1.3 Equivalence of the simplified and non-simplified liquid

The equivalence of the simplified liquid and the non-simplified liquids is shown via mappings
from one to the other and vice versa. The mappings have to be weak inverses, as introduced in
Section 5.4.

We first present the mapping from the non-simplified liquid to the simplified liquid. The trian-
gle binding T , the counter-clockwise tetrahedron, and the 01 edge weight are shared by both
liquids and are accordingly mapped onto themselves. The clockwise tetrahedron of the non-
simplified liquid can be constructed from the counter-clockwise tetrahedron and two flip hats

0 2

3

1

→

0 2

3

1

, (180)

yielding the mapping

0132
032

012

013

132

:=

0123

123

023

23

013

012

132

032
. (181)

Likewise, the 02 and 12 edge weights of the non-simplified liquid can be constructed from the 01
edge weight and two flip hats. E.g., the 02 edge weight is obtained by

1 2

0

→

1 2

0

, (182)
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yielding the mapping
012

012b 012f
:=

021 021

10

021
012b 012f . (183)

Let us quickly sketch how the mapped moves of the non-simplified liquid are derived by the
moves of the simplified liquid. First note that using flip hat cancellation moves like Eq. (175),
we can insert pairs of flip hats at triangles between tetrahedra. Then, using symmetry moves like
Eq. (171) individual flip hats can be moved through tetrahedra between different faces adjacent to
a fixed edge. Imagine introducing a pair of flip hats at a face adjacent to an inner edge, moving
one of the flip hats once around that edge, and then removing the pair of flip hats. This flips
the orientation of the inner edge. Via this and similar derivations, we can obtain all different 2-
3 Pachner move from only the single move in Eq. (160). Moreover, consider the full tetrahedron
cancellation move in Eq. (162) and observe that it can be derived from the tetrahedron cancellation
move in Eq. (177) together with a flip hat cancellation move. With the aid of the just derived full
tetrahedron cancellation move, we can bring one of the tetrahedra on the left hand side of the 2-3
Pachner move in Eq. (160) over to the right hand side, and obtain a 1-4 Pachner move. Again,
we can use the tetrahedron symmetry moves and flip hat cancellation moves to derive all other
versions of the 1-4 Pachner move.

Next, we consider the converse mapping from the simplified liquid to the non-simplified liquid.
A 2-gon can be triangulated by a pair of triangles, and gluing two 2-gons can be replaced by gluing
two triangle pairs instead

0 1 → 0 1
2

. (184)

So we make the following identification between bindings

DD
0101

:=
TT
012012

TT
102102

. (185)

Next, we consider the mapping of the additional elements. The clockwise 01 flip hat can be
triangulated by two tetrahedra

0 1

2

→

0 1

2

3

. (186)

In terms of networks, we have

012

012102

013,103

:=
1023 0123

123 013

023

103

102 013

012

. (187)

Every time we would glue two 2-gons of the simplified liquid, we now glue two triangle pairs
instead. In doing so, the edges 02 and 12 edge in Eq. (184) (the edges 03 and 13 in Eq. (186))
become inner edges, so we have to add the corresponding edge weights. In general, we will
include the edge weights of the 02 edge (which is the 03 edge in Eq. (186)) on the side with the
clockwise 2-gon and the edge weight of the 12 edge on the side of the counter-clockwise 2-gon.
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The mapping of the counter-clockwise 01 flip hat is the similar – we just reverse the orientation
and include the 13 edge weight instead of the 03 edge weight

ab

xy
:=

y

b x

a
. (188)

The mapping of the 12 flip hats is defined analogously. At last, the 2-gon flip is mapped to two
open bonds

aa′ bb′ :=
a′a′

bbaa

b′b′
(189)

and the 2-gon edge weight can be emulated by an edge weight for one of the two triangles

aa′ bb′ :=
a a′

bb b′b′
. (190)

All of the simplified moves correspond to re-triangulations, so they must be implied by the Pachner
moves. A technical exception to this are moves involving the 2-gon flip and the cancellation
moves, for which it is easy to find derivations. E.g., the 2-gon flip cancellation move in Eq. (311)
of Appendix B simply becomes

a′a′aa

b′b′bb
=

a′a′aa

b′b′bb
. (191)

Finally, we have to show that the mappings are weak inverses to each other. However, in
trying to do so we encounter a formal problem, which we solve by generalizing the notion of weak
inverse: So far, we demanded that the network obtained by mapping an element twice is equivalent
to the original element under moves. The 2-gon binding of the simplified liquid is twice-mapped
to two triangle bindings. Thus, an element with a 2-gon index can not be equivalent to its twice-
mapped network, as moves can not change the open indices and their bindings. This issue can be
resolved by relaxing the notion of a weakly inverse mapping, in that we only demand that there
is circuit move (i.e., a sequence of moves acting on non-overlapping patches), which transforms
every doubly-mapped closed network into the original network.

Applied to the case of the twice-mapped 2-gon, we note that every 2-gon in a network is
surrounded by a pair of flip hats and two such pairs of flip hats can never overlap in any network.
Thus we call the network formed by the pair of flip hats non-overlapping. The non-overlapping
network consisting of two flip hats has only triangle open indices, and is indeed equivalent to
itself after mapping twice. The equivalence corresponds to a recellulation of two flip hats into four
tetrahedra

↔ . (192)

So our generalized notion of weakly inverse mappings overcomes the technical difficulties for
all closed networks. For networks with open indices, we can end up with additional structures
near the boundary formed by the open indices. As a consequence, the double-mapped open net-
work is allowed to have a different number of indices than its original, as we can see for a single
tetrahedron.

To justify the generalization of our notion of weakly inverse mappings we invoke the signif-
icant similarity to the notion of phases: Both are defined via circuit moves, that is, sequences of
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parallel, non-overlapping moves homogenously applied to networks. The definition of a weak
inverse from previous sections ensured that if we apply both mappings to a model, we end up
with the same model again, and thus, the models of both liquids are in one-to-one correspondence.
This property is lost with the new generalized definition. However, this definition is chosen such
that the doubly-mapped model is in the same phase, and thus, the phases of both liquids are in
one-to-one correspondence.

7.1.4 Hermiticity

If we want to impose Hermiticity, e.g., in order to allow for an interpretation of the liquid models
in terms of a imaginary time evolution tensor network, we have to include a move that equates
the clockwise tetrahedron and the complex conjugated counter-clockwise tetrahedron. The latter
is not an element of our simplified liquid, but can be constructed via Eq. (181) as

a

b

c

d

= a

b

c

d

:=

c

b

d

a
. (193)

Also the 2-gon edge weight changes its orientation under complex conjugation

ab = ab . (194)

Note that we do not need to impose a Hermiticity move relating the flip hats and their orientation-
reversed versions. This is because the flip hats always occur in pairs sharing a 2-gon, and the
Hermiticity of each such pair can be derived from the moves above. Also, the Hermiticity move
inverting the orientation of the triangle edge weight can be derived from the moves above.

7.1.5 Commuting-projector Hamiltonian

Let us briefly show how models of the present topological liquid yield commuting-projector mod-
els, formalized by a liquid mapping from the commuting-projector liquid to the topological liquid.
A convenient layout for commuting-projector models are models on a regular triangular grid with
one degree of freedom on each triangle. There is one Hamiltonian term on each vertex involving
the six degrees of freedom at the surrounding triangles. So, the local ground state projector is a
tensor with 12 indices,

a
b
c

d
e
f →

a′ b′ c′ d′ e′ f
′

a b c d e f

. (195)

Commutativity of the projectors centered around neighbouring vertices yields three different moves,
e.g.,

a′ b′ c′ d′

e′ f
′ g′ h′ i′ j

′

a b c d e f

g h i j
=

a′ b′ c′ d′ e′ f
′

g′ h′ i′ j
′

a b c d

e f g h i j

. (196)
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Additionally, there is the projector move

a′ b′ c′ d′ e′ f
′

a b c d e f

=

a′ b′ c′ d′ e′ f
′

a b c d e f

. (197)

The mapping from this commuting-projector liquid to the topological liquid is as follows. A
space-time given by stack of commuting-projector atoms can be transformed into a cellulation of
a space-time volume by replacing each projector atom with a “double-pyramide” cell. The latter
is a volume whose boundary consists of an identical upper and lower part, both equal to the patch
of six triangles above

0 1

2 3

4 5

6

7

. (198)

As depicted above this volume can be triangulated with six tetrahedra, all sharing the (67)-edge,
yielding the liquid mapping

a′ b′ c′ d′ e′ f
′

a b c d e f

:=

0467

4567

5167

0267

2367

3167

a

b
c

d

e
f

a′
b′

c′

d′
e′

f ′

. (199)

In the next section we will describe how models of the topological liquid can be considered
blocked versions of Turaev-Viro state-sums. With this interpretation, Eq. (199) is nothing but
a formal representation of the well-known relation between the latter state-sum, and the (suitably
generalized) Levin-Wen string-net models.

7.1.6 Relation to the Turaev-Viro state-sum

Models of the liquid presented here are closely related to the Turaev-Viro state-sum construction
[34, 35]. Whereas in the state-sum construction one starts with a fusion category and proves
topological invariance from the properties of the latter, we take the opposite direction, and start
from topological invariance to get to an algebraic structure similar to that of a fusion category.
Bare fusion categories are not exactly the right structure needed for topological models and many
versions of fusion categories with some additional structures exist in the literature. In Ref. [34],
the input data of the state-sum construction is restricted to a specific class of examples, namely
quantized enveloping algebras of sl2. In Ref. [35], the state-sum construction is formulated for
arbitrary spherical fusion categories. It is natural to assume that the model also works for multi-
fusion categories with an adapted sphericality condition [38]. The string-net models in Ref. [36]
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are simplified further in order to be more accessible to the physics community and have additional
restrictions such as a very strong notion of tetrahedral symmetry and vanishing Frobenius-Schur
indicators. These restrictions render them incompatible with general twisted Dijkgraaf-Witten
gauge theories [37, 39], but were partially removed for the Abelian case in Ref. [40].

In contrast, the algebraic structures we obtain in our approach are per construction the right
ones to describe fixed-point models of topological phases with gappable boundary. Finding in-
stances of our algebraic structures (i.e., models of liquids) is not fundamentally harder than finding
instances of well-known algebraic structures such as fusion categories, as both are solutions to a
set of polynomial equations. The only difference is, that for well-known structures there already
exist a hand full of examples in the literature.

We now compare the liquids presented here to the Turaev-Viro state-sum models and show
that they are equivalent up to technical details. Both constructions associate tensors to tetrahedra
of a simplicial complex. The tensor of our liquid model has four indices associated to the faces
of the tetrahedron, while the tensor in the Turaev-Viro construction is determined by the so-called
F -symbol and the quantum dimension d of a fusion category. It has 10 indices, six of which are
associated to the edges of the tetrahedron, and the remaining four to the faces, i.e.,

[F abcd ]iαβjγδ (dj)
−1 →

013

023

123

012

0301

2312

02

13 . (200)

Just as in our liquid, if two tetrahedra are adjacent to the same face, the corresponding face indices
of the tensors are contracted. However, the number x of tetrahedra adjacent to a single edge can be
more and less than 2, and we contract all the edge indices coming from those tetrahedra by an x-
index delta tensor. Moreover, at each edge there is the vector d containing the quantum dimensions
which is connected to the corresponding delta tensor via another index. With these choices, we
see that the pentagon equation for the F -symbol corresponds to invariance under the 2-3 Pachner
move.

The F -symbol is not a tensor in the conventional sense, as one and the same face index can
have different dimensions depending on the values i, j, k of the indices at the surrounding edges.
Those dimensions are collected into an object N i,j

k known as the fusion rules. F can be made into
an ordinary tensor by fixing the dimension of the face indices to the maximal possible number in
N i,j
k , and filling up the new tensor entries with zeros. In the common examples (e.g., the toric

code or the double Fibonacci model) all N i,j
k are either 0 or 1, so the face indices can be omitted

(i.e., set to dimension 1) and N i,j
k 6= 0 is interpreted as a constraint on the edge indices instead.

There are two ways to make the Turaev-Viro state-sum into a model of our liquid. The first
is to reshape the tensor F into a proper four-index tensor. To this end, we copy all edge indices
using delta tensors, and block each copy with one of the adjacent face indices

γghi

βdef

αabc

δljk =

γ

β

α

δ

i

f

b

e

g

l

a

j

dk
h

c

. (201)

Each of the new face indices is a composite of three of the old edge indices and one old face index.
The dimension of this composite is fixed and given by∑

i,j,k

N i,j
k . (202)
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The second possibility is to interpret the F -symbol as a tensor of a different type, called label-
dependent tensors [19]. The data determining such a tensor consists of a set of labels together
with one array (of varying dimension) for each value of the labels. When we interpret the moves
of the liquid using this tensor type, they turn into the equations of the Turaev-Viro model in their
original form.

It is also possible to start from a (conventional) model of the topological liquid and arrive at a
state-sum in the Turaev-Viro form in a natural way by using the fact that complex algebras (with
a few special properties that we have in this case) can be block-diagonalized. For more details on
this procedure we refer to Appendix C.

7.2 Face-edge liquid

In Section 4.2, we have encountered another way to represent 3-dimensional topological manifolds
as a liquid, namely by associating atoms to faces and edges instead of volumes. In this section
we look at this construction in more detail. Models of the resulting liquid are very similar to the
Kitaev quantum double model [25] generalized to weak Hopf algebras [41, 42]. They are also
similar to the Kuperberg invariant of 3-manifolds [43]. As in the sections above, the more general
version of the liquid in Section 4.2 has edge orientations, which allow us to distinguish the indices
of the face elements. Dually, we add dual orientations to the faces, that is, a favourite adjacent
volume.

7.2.1 Elements and moves of the face-edge liquid

Elements. The elements of the face-edge liquid are a collection of decorated face and edge ele-
ments from which all other possible decorations can be generated. One possible choice is to use
the 2-cells of the simplified 1 + 1-dimensional liquid in Section 6 with the following orientations

• The clockwise triangle

0

1

2

→
02

01 12

, (203)

where the crossed circle in the middle of the triangle represents the dual orientation of the
triangle pointing into the plane and we put an ingoing arrow to the indices corresponding to
the two edges which are oriented clockwise when looking along the dual orientation.

• The clockwise and counter-clockwise cyclic 2-gon

0 1 → 01 10 , 0 1 → 01 10 . (204)

• The clockwise 3-valent edge

21

0
→

0

1 2

, (205)

where the circle with the dot represents the dual orientation going out of the plane and the
index corresponding to the face whose dual orientation is counter-clockwise when looking
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along the orientation is marked with an ingoing arrow. With this choice of ingoing/outgoing
arrows, every bond in a network representing a piece of 3-manifold will be between one
index with ingoing arrow, and one without.

• The 2-valent edge with clockwise and counter-clockwise dual orientations

10 → 0 1 ,
10 → 0 1 . (206)

In order to get models for a large class of topological phases (i.e., presumably all topologi-
cal phase with a gappable boundary), we need to introduce one more additional structure in the
network representation of cell complexes – the corner weight. A corner denotes a volume and
an adjacent vertex. At every corner we find an alternating loop of edges and faces connected by
bonds. We introduce a 2-index element called the corner weight

, (207)

and require that at every corner a corner weight atom is placed between exactly one edge-face pair.
For example for the following corner enclosed by three faces and three edges a corner weight is
located between the (13)-edge and the (123)-face

0

1

2

3

→

302

132130

32

13

30

. (208)

In fact, there are four different corner weight elements, depending whether the orientation (dual
orientation) of the edge (face) points towards or away from the vertex (volume) of the corner.
However, the other three corner weights can be constructed from the one specific corner weight
given above where both the orientation and dual orientation point towards the vertex and volume.
E.g., the corner weight where the face is pointing away from the volume of the corner is obtained
by inverting the dual orientation by conjugating with the 2-valent edge

a b . (209)

Moves. The moves of the face-edge liquid can partially be obtained from the moves of the
oriented 1 + 1-dimensional liquid from Section 6. Networks of the face-edge liquid consisting
only of face elements separated by 2-valent edges behave like networks representing a cellulation
of a 2-manifold. Thus, it makes sense to take all moves of the 1+1-dimensional liquid of Section 6
as moves for the face elements of the face-edge liquid. More precisely, we have to take the version
of the 1 + 1-dimensional liquid with vertex weights, and the vertex weight is related to the corner
weight of the face edge liquid: Every vertex in the two-dimensional cellulation corresponds to two
corners in the three-dimensional cellulation, one with the volume above and one with the volume
below. Thus, we identify the vertex weight of the 1+1-dimensional liquid with two corner weights
of the 2 + 1-dimensional liquid

a b := a b . (210)

The relation between the face-edge liquid and the 1 + 1-dimensional liquid in Section 6 can be
formalized as a liquid mapping from the latter to the former, which we refer to as the 2D embedding
mapping.
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Dually, consider cellulations consisting only of edges that are all connected to the same 2
vertices separated by non-cyclic 2-gon faces. Also these behave like networks of the 1 + 1-
dimensional liquid alone, and so we also impose the moves of Section 6 for the edge elements of
the presented liquid. Analogously to the previous consideration the 2-dimensional vertex weight
is now given by

a b := a b . (211)

Again, the considerations above can be formalized as a mapping referred to as dual 2D embedding
mapping.

In addition to the face-liquid moves mapped under the 2D embedding mapping and the dual
2D embedding mapping, we only need a few additional moves which relate face and edge atoms.
The most important move is the corner fusion move, which we have already seen in Section 4.2 in
a simplified form. Including orientations, dual orientations, and corner weights, it is given by

0

1

2

←→
0

1

2

, (212)

which, in network notation, becomes

012b

012f

12

01

02b

02f

12

01

=
02 012

02b

02f

12

01

. (213)

Additionally, there are moves which effectively change the orientation of edges and dual edges.
For example the dual orientation of a triangle can be changed via cyclic 2-valent edges

0

1

2

←→

0

1

2

. (214)

As the counter-clockwise triangle is not an element, we have to construct it using a cyclic 2-gon.
This yields a move

012

01 12

02

12

02

01

=
021

12

01

02

12

(215)

called the dual orientation flip move. Dually, we can flip a clockwise edge into a counter-clockwise
edge by gluing cyclic 2-gons, yielding the orientation flip move

b

c

a

=
a

c

b

. (216)

At last, the Hermiticity moves are simply the 1 + 1-dimensional Hermiticity moves from Sec-
tion 6.4 mapped under the 2D embedding mapping and the dual 2D embedding mapping.
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7.2.2 Relation to quantum double models

As mentioned in Section 4.2, the moves above are very similar to the bi-algebra axioms, and even
more similar to the axioms of weak Hopf algebras. The latter (as any algebraic structure) define
a liquid themselves. As such the two liquids are not exactly equivalent, in particular, because the
weak Hopf liquid allows for a consistent flow of time, a feature missing in the face-edge liquid.
There is only a liquid mapping from the weak Hopf liquid to the present topological liquid [30].
Thus, every model of the face-edge liquid defines a weak Hopf algebra, but not vice versa.

This suggests that models of the face-edge liquids are equivalent to Kitaev quantum doubles for
weak Hopf algebras [42]. Indeed, using the commuting-projector mapping shown in the simplified
form in Eq. (73), we find that the obtained Hamiltonians are equal. However, weak Hopf algebras
are not precisely the right algebraic structure needed to obtain topological models. On the contrary
the face-edge liquid yields topological models by construction. Comparing our formalism to the
axioms of weak Hopf algebras, we see that the weak Hopf algebras in question need to fulfill a
few additional properties. E.g., both the algebra and the co-algebra need to be (special) Frobenius
(and *-algebras in the Hermitian case), and the antipode must be involutive. The need for technical
details of this kind is apparent from our formalism, while it is not straight-forward to see in existing
approaches to fixed-point models.

7.3 Equivalence of the face-edge and volume liquid

The volume liquid from Section 7.1 is “topological” due to the known fact that simplicial com-
plexes with Pachner moves are a combinatorial analogue of (piece-wise linear) topological mani-
folds modulo homeomorphism in the continuum. For the face-edge liquid in Section 7.2, there is
no such argument we can rely on. However, we can verify that the latter is topological by showing
that it is equivalent to the volume liquid. Note that from our perspective, the connection to contin-
uum topology is merely a guiding intuition and all that matters is that the liquid defines a sensible
notion of deformability to which physical models can be extended.

In this section, we present two weakly inverse mappings between the volume and the face-
edge liquids, sketch why they are well-defined and why they are indeed weak inverses of each
other. The mapping from the face-edge liquid to the volume liquid has a geometric interpretation.
It can be seen as refining a cellulation such that each volume of the refined cellulation corresponds
to either an edge or a face of the original cellulation. The mapping is given by the following
prescription.

• Every face is replaced by a “double pyramid”, that is, we add one vertex x “above” and one
vertex y “below” the face, and connect all vertices with x and y. For edges with counter-
clockwise orientation the corresponding edge of the double pyramid carries an edge weight.
E.g., for the clockwise triangle, an edge weight is associated to the 02-edge

0

1

2

→ 1

y

0

x

2 . (217)
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This volume can be triangulated by two tetrahedra. In network notation we have

012

cc′

aa′ bb′

:=

012x

012y

012

a

a′

c

c′

b

b′
. (218)

The clockwise 2-gon is mapped to a volume which can be glued from two flip hats

0 1 → 1

y

0

x

, (219)

with the following network notation

01

aa′ bb′ :=

01y

01x

a

a′
b

b′
. (220)

The counter-clockwise 2-gon is defined analogously, just that edge weights are included for
both the 01- and the 10-edge.

• Every edge is replaced by a volume constructed as follows. The two vertices adjacent to the
edge (x and y in the figure below) are connected by edges that replace the adjacent faces
(a, b, c in the figure) and edge weights are associated to all edges for which the correspond-
ing faces have clockwise dual orientation. An additional vertex is added between each pair
of edges and connected to the vertices. For the 3-valent edge we obtain

x

y

cb

a
→

x

y

021 aabbb ccc . (221)

The volume above has the following triangulation in network notation

aa′

cc′ bb′

:=

x012

y012

xy02 xy12 xy01

a
b c

a′
b′

c′

. (222)

With a bit of geometric imagination one can verify that all volumes from the two points above fit
together and form a “refining” without any holes and overlaps. If an edge is adjacent to a face
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in the original cellulation, the two corresponding volumes after refining share a pair of triangles.
Thus, the face-edge binding is mapped to two triangle bindings, that is, every index in a face-edge
network corresponds to a pair of indices in a triangle network,

:= T T . (223)

At last we check that the edge weights of the refined cellulation are distributed correctly over
the elements of the face-edge liquid. The edge weights of edges that separate pairs of triangles
constituting composite indices are already included into the triangle and face elements. They
contain the weight if the second triangle in the pair has two clockwise edges. The other edges
correspond to corners of the original triangulation and thus those edge weights are mapped to
corner weights

aa′ bb′ :=
aa bb

a′ b′
. (224)

In order to prove that the above recipe defines a liquid mapping, we would have to give deriva-
tions for all the mapped moves. This is a straight-forward and purely combinatorial procedure.
However, it is quite tedious and lengthy, thus we only give a quick argument why the mapping is
well-defined: The mapping is constructed such that all mapped moves are retriangulations. As it
is known that any retriangulation corresponds to a sequence of Pachner moves, it is clear that all
mapped moves can be derived.

The mapping from the volume liquid to the face-edge liquid also has a geometric intuition in
terms of a refining, such that every edge and face of the refined cell complex can be unambiguously
associated to a volume of the original cell complex. To this end, we first split each triangle into
two triangles separated by a pillow-like volume, such that every n-valent edge becomes 2n-valent.
Then, we replace every such 2n-valent edge into n 4-valent edges which are cyclically connected
by n trivial (non-cyclic) 2-gons. Like this, each original volume turns into one face for each of its
faces, and one 4-valent edge for each of its edges.

Applying this to the tetrahedron we get a network consisting of 4 triangles and 6 4-valent
edges. As we will see below, this network is equivalent to a simpler one which has one face (the
012 face below) missing and the adjacent edges being only 3-valent. As the counter-clockwise
triangle is not explicitly part of our liquid, we have to construct it using the cyclic 2-gon

0

1

2

3
→

0

1

2

3
. (225)

In network notation this is

a0a1a2

b0b1b2

c0c1c2

d0d1d2 :=

023

123103

23

13

03

02

1210

b0d2

a1

b1

d1

a0

c1 a2

d0

c0

b2

c2
. (226)
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Regarding the bindings, we note that a triangle has three edges and thus the triangle binding is
mapped to three times the face-edge binding. Therefore in the above equation one index on the
left corresponds to three indices on the right,

T := . (227)

Let us sketch how the mapped moves can be derived from the moves of the face-edge liquid.
The edge orientations and dual face orientations can be changed arbitrarily by inserting/moving
around cyclic 2-gons and 2-valent edges using the 2-gon cancellation move in Eq. (132) and tri-
angle symmetry move in Eq. (129) for either the edge or face elements. So, for simplicity, we
will neglect those orientations in the following considerations and focus on the derivation of the
2-3 Pachner move. We work with the geometric intuition that atoms are associated to the triangles
and edges of a 3-manifold triangulation. Internally, n-valent edges have to be decomposed into 3-
valent edges. However, the different decompositions are all equivalent using the (dually mapped)
2-dimensional moves, and we assume that these moves are applied implicitly. For the remaining
considerations it is convenient to introduce some terminology.

• The corner fusion move depicted in Eq. (212) from left to right is denoted by C(012|02),

• the 2-2 Pachner move, as depicted in Eq. (89), from left to right, by P2(012|023),

• and the following move

0

1

2

↔

0

1

2

. (228)

which replaces a single triangle by two duplicates separated by a pillow-like volume by
T (012).

The last move is derived by using the triangle cancellation move to bring one triangle in the corner
fusion move in Eq. (212) from the right to the left.

Next, we consider two variants of tetrahedra that are relevant in the 2-3 Pachner move and
apply a sequence of the moves above in order to remove several of their faces.

• For a tetrahedron with 3-valent edges where in the mapped network all four triangles and
all six edges are represented by atoms

0

1

3

2
(229)

we can remove the face 012, such that only the triangles 013, 123, 023, and the edges 03,
13, 23, are represented by atoms. This can be done by the sequence of moves

T (123)→ C(123|12)→ P2(012|123)

→ C(013|03)→ T (023) ,
(230)

where the bars denote the move in the opposite direction.
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• Start with a tetrahedron where all faces and edges are represented by triangle atoms and
3-valent edge atoms, except for the edge 12 which is a trivial 2-valent edge and thus not
represented by an atom. We can remove both the 012- and the 123-face, such that only the
triangles 013, 023, and the edge 03 are represented by 3-index atoms. This can be done by
the following sequence of moves

P2(012|123)→ C(013|03)→ T (023) . (231)

Note that it is precisely the move derived in Eq. (230) which allows us to add/remove the 012
face on the right hand side of the tetrahedron mapping in Eq. (226). If we now apply the face-edge
mapping to the 2-3 Pachner move, each triangle will be doubled (taking the version of the mapping
including the 012 triangle). We can apply the move T in Eq. (228) to reduce each triangle pair
to a single triangle. Next, we can apply the moves derived in Eq. (230) and (231) to remove all
interior triangles and edges on the left and right, which yields an equation between twice the same
network. Applying this procedure in the opposite direction, we have found a derivation of the
mapped 2-3 Pachner move from the moves of the face-edge liquid.

We still have to show that the two mappings are weak inverses to each other. The mappings
change the bindings, such that applying both mappings maps every open index to six open indices.
Thus, we have to use the generalized notion of weak inverse from Section 7.1.3. We won’t explic-
itly show that the two mappings applied in sequence (in both orders) are equivalent to a circuit of
moves acting on non-overlapping patches. However, it is easy to see that the composition of the
two mappings defines a topology-preserving refinement of the cellulation, which can be undone
by moves.

8 Fermions

In this section we will demonstrate how fixed-point models with fermionic degrees of freedom can
be formalized as liquid models. In the first part we will introduce fermionic tensors, the tensor
type which is the domain of fermionic liquid models. In the second part we will discuss the kind
of liquid that fermionic systems typically extend to, namely combinatorial representations of spin
manifolds. In the third part, we will illustrate the formalism in 1+1 dimensions, by giving a liquid
which has a model corresponding to the Kitaev chain.

8.1 Fermionic tensors

In Section 2, we have demonstrated how quantum spin systems can be formulated in terms of
tensor networks. In many condensed matter models we also have fermionic degrees of freedom.
We could just use a Jordan-Wigner transformation to write the fermionic system as a spin system.
However, such a transformation is generally non-local, and even in 1 + 1 dimensions where it
is local in principle, it changes the homogeneity of the model. That is, a translation-invariant
fermionic system (with periodic boundary conditions) does not translate into a translation-invariant
spin system/tensor network.

We can still write fermionic systems as tensor networks. However, the “tensors” cannot be just
arrays, as for spin systems, but have to take the canonical anti-commutation relations for fermions
into account. A fermionic operator acting on n modes labelled 0, . . . , n− 1, can be expanded as∑

s0,...sn−1

s′0...,s
′
n−1

A
s0,...,sn−1

s′0,...,s
′
n−1

(c†0)s0 · · · (c†n−1)sn−1 |0〉 〈0| (cy)s
′
n−1 · · · (c0)s

′
0 ,

(232)
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where the si and s′i are either 0 or 1 depending on whether the fermionic degree of freedom is
occupied or not. We observe the following.

• The operator must preserve fermion parity. That is, A can have non-zero entries only when∑
i

si +
∑
i

s′i = 0 , (233)

where the summation is understood mod 2.

• In order to specify the operator, we have to both specify A, but also the ordering of cre-
ation and annihilation operators, in the case above 0′, . . . , n − 1′, n − 1, . . . , 0. The same
fermionic operator may also be written down with any other ordering, just that then also the
coefficients A change. E.g., if we exchange 0 and 1 at the end of the ordering above, the
anti-commutation of c0 and c1 tells us that we have to modify A by

(A′)
s0,...,sn−1

s′0,...,s
′
n−1

= A
s0,...,sn−1

s′0,...,s
′
n−1

(−1)s0s1 . (234)

More generally, we can consider degrees of freedom with i configurations without a fermionic
charge, and j configurations with a fermionic charge, instead of only having only one charge-free
(non-occupied) and one charged (occupied) configuration. This motivates the following defini-
tions:

A fermionic tensor is an equivalence class of pairs (A,O), where A is an array, and O is an
ordering of its indices (compare also Ref. [44]). The i + j configurations of each index of A are
divided into i even configurations, writing |x| = 0 ∈ Z2 for 0 ≤ x < i, and j odd configurations,
writing |j| = 1 ∈ Z2 for i ≤ x < i+ j. A has to have even parity, that is

Ai,j,... = 0 if |i|+ |j|+ . . . 6= 0 . (235)

Two pairs (A,O) and (A′, O′) are equivalent if O′ and O are related by a transposition of two
consecutive indices x and y, and A and A′ are related as

O′ = τxy(O) ,

(A′)s0,s1,... = As0,s1,...(−1)|sx||sy | .
(236)

A conventional fermionic operator acting on n modes can be represented by a fermionic tensor
with 2n indices, each with only one even and one odd configuration.

The tensor product of two fermionic tensors is the tensor product of arrays, together with the
concatenation of orderings:

(A1, O1)⊗ (A2, O2) = (A1 ⊗A2, O1 ∩O2) . (237)

The order in which we concatenate O1 and O2 does not matter, as the minus signs collected from
exchanging all indices of A1 with all indices of A2 is trivial due to the even parity constraint in
Eq. (235). The contraction of two indices x and y of a fermionic tensor (A,O) consists of the
following steps.

• Go to a representative where y comes right after x in O.

• Contract x and y in A.

• Remove x and y from O.
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Roughly, the philosophy of this work is that, once we have chosen a particular liquid, we can
interpret the same equations in terms of fermionic tensors to obtain fermionic fixed point models.
However, fermionic tensors do not obey exactly the same graphical calculus as array tensors.
There are two small differences.

The first difference is that contracting indices x and y for a fermionic tensor is different from
contracting y and x, as we explicitly specified that y is after x in O. If we instead wanted y
to be before x, we would have to exchange them yielding a factor of (−1)|sx| in A before the
contraction, and hence a different result. The ordering in the contraction can be incorporated into
the graphical calculus by associating a bond direction to each bond in a network, represented by
an arrow, e.g.,

A . (238)

Note that also the open indices have a bond direction. An inwards pointing bond direction means
we multiply by the fermion parity (−1)|x|, where x is the configuration of the open index. An
outwards bond direction is assumed by default.

The second difference is that contracting two index pairs a, a′ and b, b′ one after the other is
different from blocking them into a single index pair ab, a′b′ that is contracted. In order to perform
the former contractions, we would have to order the indices like aa′bb′, which differs from aba′b′

by a sign of (−1)|b||a
′|. Note that despite this, the contractions of a, a′ and b, b′ still commute with

each other, which justifies the network calculus. However, liquid mappings for fermionic tensors
are not allowed to block multiple indices into one.

The second point can be fixed by dividing the basis configurations in “particle” and “hole”
configurations (in addition to the partition into even and odd). Then we can associate elements of
Z4 to the different configurations as

parity even odd even odd
|·| ∈ Z2 0 1 0 1

particle-hole particle particle hole hole
〈·〉 ∈ Z2 0 0 1 1

〈| · |〉 ∈ Z4 0 1 2 3

. (239)

When we block indices, we use this Z4 grading

〈|(a, b)|〉 = 〈|a|〉+ 〈|b|〉 , (240)

where (a, b) denotes a configuration of two indices blocked into a single one. A particle (odd-
particle configuration) and a hole (odd-hole configuration) together yield nothing (even-particle),
which motivates the terminology (which should otherwise not be taken too seriously). We do not
demand that the tensors are Z4-graded, only the global parity has to be even. So the configurations
of all indices of a tensor can either block to even-particle or even-hole.

We also have to modify the contraction by introducing a factor of −1 for the hole configura-
tions of the contracted indices:

Aijk → Bi =
∑
x

Aixx(−1)〈x〉 . (241)

The factor of−1 cancels the difference from contracting the blocked index pair versus the separate
pairs, which cures the incompatibility of contraction and blocking.

We will refer to the latter tensors as particle-hole fermionic tensors, and to the former tensors
without particle and hole sectors as plain fermionic tensors. Note that plain fermionic tensors are
a subset of particle-hole fermionic tensors that is closed under tensor product and contraction. So
as long as we do not consider any index-blocking mappings, we can restrict to plain fermionic
tensors without any inconsistencies.
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8.2 Liquids with spin structure

It would be very much in the spirit of the work to take, e.g., the liquid in Section 6, look for models
in fermionic tensors, and interpret them as fixed point models for fermionic topological phases in
1 + 1 dimensions. Unfortunately, things are not quite as simple: First of all, the liquids we defined
for spin models do not have bond directions, which we need for considering models in fermionic
tensors. This is not a huge problem however, as we can for example fix the bond direction to point
“towards the left” relative to the orientation of the according edge in the cellulation.

However, it turns out that “generic” fermionic models (originally defined on square lattices)
simply do not extend to bare topological manifolds. Moreover, trying to find fermionic models for
a bare topological liquid seems to not yield any interesting results. Instead, fermionic models like
to be extended to spin manifolds, which are manifolds equipped with some extra structure (the
spin structure) of the same kind as an orientation. In the context of quantum field theory this is
known as the spin-statistics relation.

In fact, we had a similar situation earlier when talking about orientations: One could look for
complex models of a non-oriented liquid, however, (apart from those models being unphysical)
we would not find very interesting models. So complex tensors “harmonize” well with liquids
featuring an orientation, just as fermionic tensors harmonize with liquids featuring a spin structure.

In order to get a liquid representing spin manifolds, we need a combinatorial representation of
a spin structure [45]. A spin structure is a Z2-valued 1-cochain η, whose boundary is the second
Stiefel-Whitney class, represented by a 2-cocycle ω2. In an n-dimensional simplicial complex,
η can be represented as a subset (or Z2 colouring) of n − 1-simplices, and ω2 as a subset (or
colouring) of n − 2-simplices. The boundary relation is obvious: The Z2-colour of an n − 2-
simplex in the boundary of η is the sum of Z2-colours of adjacent n− 1-simplices. A formula for
computing ω2 in terms of the combinatorics of a simplicial complex is given in Ref. [46].

8.3 The liquid in 1 + 1 dimensions

In this section we will give a topological liquid with spin structure in 1 + 1 dimensions, and
discuss its models in fermionic tensors. For simplicity, and to avoid discussions on what time-
reversal symmetry means for fermions, we will also add an orientation, and look for models in
fermionic tensors with complex entries.

8.3.1 Spin structures in 1 + 1 dimensions

In 1 + 1 dimensions, ω2 is a Z2-colouring of vertices, and the formula for the coloring of a vertex
v in a simplicial complex is:

ω2(v) = 1 + #E0(v) + #T0(v) (mod 2) , (242)

where #E0(v) is the number of edges starting in v, and #T0(v) is the number of triangles which
have v as their 0th vertex (when numbering them according to the branching structure).

η is a collection of edges, which form a pattern of lines whose (modulo 2) endpoints are
ω, and which are closed otherwise. Consider, e.g., the following patch of triangulation with a
combinatorial spin structure η

, (243)
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where the ω2-vertices were marked red, and the η-edges were marked blue.
While ω2 is fixed, there are many possible choices of η. The precise choice is irrelevant to a

large degree, as different choices are considered equivalent if they are related by homology moves.
A homology move changes η by adding the boundary of a triangle (modulo 2), e.g.,

↔ . (244)

Equivalence classes of η-triangulations under homology moves (as well as Pachner moves) are in
one to one correspondence with spin manifolds. There are as many equivalence classes as there
are first homology classes of the manifold (or non if the manifold is not spin), though there is
no canonical identification between the two. Of course, the spin structure also has to be incor-
porated into the Pachner moves. As the latter exchange a disk with a disk, and a disk has trivial
1-homology, all different ways of adding η to a Pachner move are equivalent.

8.3.2 The liquid

A triangulation with orientation and η-chain is represented by a liquid (with bond directions) in the
following way: As in the non-spin case, there are atoms for the clockwise and counter-clockwise
triangles. The bond direction at an edge which is not part of η is towards the left when looking
along the branching-structure orientation of that edge (in order to know what “left” means we
need the underlying global orientation). At an edge which is part of η, it is the other way round.
With this encoding, the equations corresponding to homology moves are automatically fulfilled
by any model, as simultaneously flipping all bond directions around a fixed atom does not change
anything due to the parity constraint of the corresponding tensor.

As in previous sections, we are looking for a simplified liquid, whose networks can be inter-
preted as cellulations with other types of faces. In order to do the same for η-triangulations, we
have to think about how to equip arbitrary cellulations with spin structure.

The generalization of chains and boundaries to arbitrary cellulations is obvious. A generalized
rule for ω2 is the following: For every type of face, we have to specify one special corner, and we
replace #T0(v) in Eq. (242) by the number of adjacent faces for which v is in the special corner.
We denote the special corner by a small angle, e.g., the special corner of the branching-structure
triangle is the 0-vertex

. (245)

Consider the sum of the ω2 colourings of all vertices of a triangulation of a manifold with
boundary. Every vertex, every edge and every triangle contributes exactly 1 to this sum, so we see
that we obtain the Euler characteristic (modulo 2) of the manifold. If we want to use a different
type of face, we have to define it via a η-triangulation. As the Euler characteristic (modulo 2) of
a disk is 1, η will always have an odd number of “open ends” at the boundary of the new face.
Without loss of generality, we can choose one single open end at the special corner.

The simplified liquid is very similar to the non-spin case in Section 6, just that we have to
include bond directions determined by the spin structure. The elements and their interpretations
as faces (with special corners) are the following.

• The clockwise triangle

0 2

1

→
1202

01

. (246)
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• The clockwise cyclic 2-gon. Note that this element looses its rotation symmetry due to the
spin structure (it gets replaces by a modified symmetry move though, see Eq. (258)),

0

1

→ 1001 . (247)

• The counter-clockwise cyclic 2-gon

0

1

→ 1001 . (248)

The moves are the same as in Section 6, just that we have to add a choice of η on the left and
right.

• The spin 2-2 Pachner move

0

3

2

1

↔ 0

3

2

1

. (249)

This move does not change ω2, so we can choose η to be trivial. In network notation, we
get

012

023

01 12

2303

= 013 123

01 12

2303

. (250)

• The spin triangle cancellation move

0

1

2

↔

0

2

. (251)

This move adds/removes the interior vertex 0 with odd ω2-colour, and changes the ω2-colour
of the boundary vertex 0. The minimal choice of η which corrects this, is the 10 edge on the
left. In network notation,

102 120

02 20 = 02

2002 , (252)

the bond direction corresponding to that edge is reversed.

• The spin (012) triangle symmetry move

0

1

2 ↔

0

1

2 . (253)
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Again, nothing changes with ω2, so η can be chosen empty. In network notation, again, we
find

102

21

02 10

21

20

= 210 10

20

21

. (254)

• The spin 2-gon cancellation move

0

1

↔

0

1

. (255)

Here we chose the position of the special corners such that again ω2 does not change. In
network notation, this is

a b = aaa bbb (256)

The special corner of the spin 2-gon spoils its index permutation symmetry,

0

1

↔

0

1

. (257)

As the position of the special corner changes, ω2 changes for both vertices 0 and 1, so we have to
add an η-edge between them on one side. In network notation, we have to add an inwards arrow
to one of the open indices

a b = a b . (258)

Note that, analogous to the non-spin case in Section 6, this symmetry move is derived directly
from the spin triangle cancellation move in Eq. (252). From there, the analogous move for the
counter-clockwise 2-gon,

a b = a b , (259)

is derived via the 2-gon cancellation move in Eq. 256.

8.3.3 Hermiticity

The Hermiticity condition is another point where it appears natural to distinguish between particle
and hole sectors. If we express a fermionic Hamiltonian as an ordinary operator in Fock space, we
would expect this operator to be Hermitian, e.g.,

H

a b

a′ b′

= H

a′ b′

a b
K

, (260)

where H is the array tensor representing a fermionic tensor with the fixed index ordering abb′a′.
If we interpret the same equation with H being an actual fermionic tensor (plain, or particle-hole
with all configurations in the particle sector), we get an additional reordering sign, as we have to
invert the ordering according to

(−1)|a|(|b|+|b
′|+|a′|)+|b|(|a′|+|b′|)+|b′||a′|

=

{
1 if |a|+ |b|+ |a′|+ |b′| = 0 mod 4

−1 if |a|+ |b|+ |a′|+ |b′| = 2 mod 4
= (−1)〈(a,b,a

′,b′)〉 ,
(261)
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where (a, b, a′, b′) denotes a configuration of all 4 indices blocked into a single one. So in total, we
leave the global even-particle sector as it is, and multiply the global even-hole sector by a factor
of −1. This operation, like complex conjugation, is in fact a tensor mapping, which we denote by

R . (262)

Indeed, the mapping R is compatible with tensor products, e.g.,

a

b

c

d

e RR

= a

b

c

d

e

R
. (263)

However, it inverts bond directions, e.g.,

a

R

= a

R

. (264)

In other words, the mapping makes former particle configurations behave like hole configurations
and vice versa. We therefore refer to it as the particle-hole mapping.

If H is Hermitian as an ordinary operator in Fock space, this means that H as a fermionic
tensor is invariant under transposition followed by complex conjugation and the mappingR which
reverts the reordering sign we get from the transposition. This behaviour is inherited by the tensors
of fermionic liquid models: Being Hermitian means being invariant under orientation reversal
together with the combination of the mappings K and R. E.g.,

ba

c

=

ba

c
RK

:=
b

a

c
RK

. (265)

This form of Hermiticity also appears natural without relying on the conventional formulation of
fermionic many-body physics: In order to compare a network with its orientation-reversed version,
we need to invert the bond directions as those are tied to the orientation. This is precisely the job
of the mapping R as we have seen in Eq. (264).

Note that this formulation of Hermiticity only works for particle-hole fermionic, not for plain
fermionic tensors. Surely, the reordering sign in Eq. (261) is a well-defined operation on plain
fermionic tensors as well. However, for plain fermionic tensors, this operation depends on how
indices are blocked, as

|(a, b)| mod 4 6= |a|+ |b| mod 4 . (266)

Thus, it cannot be incorporated into network notation as a “zig-zag line” such as for complex
conjugation, and does not form a tensor mapping.

Another viewpoint on the issue is to see that R can be realized (acting on a plain fermionic
tensor) by contracting each index with the matrix(

1 0
0 i1

)
, (267)

where the first and second block act on the even and odd sector, respectively. This matrix cannot
be a representation of (the additive 1-element of) Z2, but it is a representation of (the additive 1-
element of) Z4, consisting of only 0 and 1 irreducible representations. The even-hole and odd-hole
sectors are simply the missing 2 and 3 irreducible representations of Z4. Note that the square of
the matrix is (−1)Pf , where Pf is the fermion parity. Thus,KR is an anti-unitary which squares to
(−1)Pf , and these are exactly the properties that are usually required for a time-reversal operator
in a fermionic system.
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8.3.4 Models

Let us look for models of the liquid in fermionic tensors. Finding models does not involve any
blocking of indices, so we can restrict ourselves to plain fermionic tensors. We choose a fixed
index ordering for each tensor, and see what the equations mean for the array tensors representing
the fermionic tensors with this ordering. Then we look at what minus signs we pick up from
reordering the indices on both sides of the equation in order to perform the contractions, and
equate the two sides. A choice of orderings that turns out to be particularily convenient is

21

0

, 10 , 10 . (268)

In order to compute the reordering sign appearing in the fermionic liquid moves, we can proceed
as follows. We start by concatenating the orderings of the involved tensors (in an arbitrary order).
Then, we use index transpositions to move indices that are to be contracted next to each other, and
then remove them. We record the minus signs collected when we perform the index transpositions
on the way. We do this for both sides of an equation. In the end, we move the indices, such that the
orderings on each side of the equation are equal. Of course, we can also cancel reordering signs
on both sides.

In the following, we use a short-hand notation for sign calculations in contractions. E.g.,
(bc + ab)|x′abdxc|(xx′) will denote an intermediate step in the computation of the reordering
sign, with index ordering x′abdxc, where we still need to contract x and x′ (in that order), and we
already collected a sign of (−1)|b||c|+|a||b|. For the spin 2-2 Pachner move we get the following

|x′abdxc|(xx′) = |dayy′bc|(yy′),
(dx)|abdc| = |dabc|,

(dx+ cd)|abcd| = (d)|abcd|,
|abcd| = |abcd| .

(269)

We find that all the reordering signs on the left and right cancel. The other reordering signs are
computed in Appendix D. Interestingly, also all other signs cancel. Note that this would not have
been the case without the spin structure modification. This is not a general property of fermionic
liquid models, though. First of all, we would have gotten non-trivial reordering signs if we had
chosen a different index ordering in Eq. (268). Second, the fact that we can find an index ordering
for which the reordering signs vanish seems to be specific to the 1 + 1-dimensional case, and we
do not find the same to be true in dimensions 2 + 1 or higher.

The vanishing of the reordering signs implies that the models of the liquid in fermionic tensors
are in one-to-one correspondence to the models in array tensors which have a Z2-grading. Note
that the latter are agnostic of the bond directions, and so the liquid we get is equal to its non-spin
analogue in Section 6.3. A fixed array tensor model might allow for different inequivalent Z2-
gradings, corresponding to different fermionic models. Technically, there always exists a grading
by considering every configuration as even. Those models are trivial though, in the sense that they
do not have any fermionic charges.

We should warn the reader that despite there being a one-to-one correspondence, fermionic
spin-topological and Z2-graded topological models are still different models. In particular, the
one-to-one correspondence will break when we add other (non-topological) moves, such as invert-
ibility, or commutativity.

8.3.5 Kitaev chain

In this section we consider the only interesting model of the described liquid, which turns out to be
equivalent to the Kitaev chain. The Z2-graded algebra that it is based on is probably the simplest
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one one can think of, namely the group algebra of Z2 itself. Written as arrays for the fixed index
ordering in Eq. 268, the tensors of the model are given by

ab

c

=
1√
2
· δa+b,c =

1√
2

((
1 0
0 1

)(
0 1
1 0

))
,

ba = δa,b =

(
1 0
0 1

)
,

ba = δa,b =

(
1 0
0 1

)
.

(270)

Here, a, b and c are understood as elements of Z2 and in the expressions for the triangle tensor a
and b label rows and columns, while c = 0, 1 refers to the first and second matrix, respectively. It
can be easily seen that the model is also Hermitian: All tensors are real, only supported in the par-
ticle sector (by construction, as we used plain fermionic tensors), and invariant under orientation
reversal. Thus, the model is invariant under each K, R, and orientation reversal separately, and
certainly under all three operations together.

The Kitaev chain [47], to which this model is equivalent, is a fermionic chain with a nearest-
neighbour Hamiltonian of Majorana fermionic operators

H = −
∑
i

(ci + c†i )(ci+1 − c†i+1) . (271)

It is a commuting-projector model, with the projector given by

P =
1

2
(1 + (c0 + c†0)(c1 − c†1))

=
1

2

(
|0〉 〈0|+ c†0 |0〉 〈0| c0 + c†1 |0〉 〈0| c1 + c†0c

†
1c1c0 − c1c0 + c†1c0 + c†0c1 − c†0c

†
1

)
.

(272)

Applying the expansion in Eq. (232) yields

As0s1
s′0s
′
1

=
1

2
δs0+s1,s′0+s′1

(−1)s0s1+s′0s
′
1 . (273)

A becomes a fermionic tensor with index ordering s′0s
′
1s1s0.

In order to compare this commuting-projector model with our liquid model, we use a liquid
mapping identifying a projector with a rhombus-like cell of space-time, similar to how we did in
Section 5.5.3,

0

1

2

3

→ 0

1

2

3

. (274)

The shown cellulation of the rhombus yields the mapping

ba

cd

:=

a b

cd

. (275)

In order to evaluate the network on the right hand side, we first compute the reordering sign we get
when bringing the indices in the ordering dcba, starting from the orderings in Eq. (268), to find

|daxy′x′cyb|(xx′)(yy′) = x|day′cyb|(yy′) = x+ yb|dacb|
= x+ yb+ a(c+ b)|dacb| = dc+ ab|abcd| .

(276)

So for the chosen index ordering, the array representing the fermionic tensor is given by∑
x

(
1√
2
δd+x,a)(

1√
2
δc+x,b)(−1)dc+ab =

1

2
δa+b,c+d(−1)dc+ab , (277)

which exactly equals the array in Eq. (273).
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9 Topological order in 3 + 1 dimensions

In this section, we will sketch two liquids for topological order in 3 + 1 dimensions. One is a
very straight-forward liquid based on simplicial complexes, and the other one is analogous to the
face-edge liquid in 2 + 1 dimensions, with volumes and faces being represented by atoms.

9.1 The 4-cell liquid

In this section, we will sketch what is probably the most straight-forward generalization of the
volume liquid in 2 + 1 dimensions to 3 + 1 dimensions: There is one 5-index atom for every
4-simplex of a (branching structure) triangulation of a 4-manifold, and if two 4-simplices share a
3-simplex, the corresponding atoms are connected by a bond.

The liquid we will sketch describes topological manifolds without an orientation, for reasons
of variety and because the resulting liquid is a little more simple. The main element of the liquid
is the 4-simplex

0

1

23

4
→

1234

0234

01340124

0123
. (278)

In 4 dimensions, there are 3-3, 2-4, and 1-5 Pachner moves for this element, and there are many
different versions of those moves due to the edge orientations. One particular 3-3 Pachner move
is given by

0

12

3

4 5

↔ same 1-skeleton . (279)

In network notation, this is

01234

01245

02345

0123

1234
0134

1245

01450125

0345

2345
0235

=

12345

01345

01235

12342345

1245

0134
0345

0145

0123

0125

0235

. (280)

As in the lower-dimensional cases, we can restrict to only this single 3-3 Pachner move if
we introduce additional bindings, elements, and moves, which have geometric interpretations in
terms of more general cellulations. The 3-cells for the additional bindings are just the 3-cells for
the additional elements of the 2+1-dimensional volume liquid, e.g., there are two flip hat bindings,
and a 2-gon binding. As in 2+1 dimensions, we need cancellation moves which allow us to derive
2-4 and 1-5 Pachner moves from the 3-3 Pachner moves, and symmetry moves which allow us to
derive Pachner moves with different edge orientations. Permuting the vertices of the 4-simplex
changes the edge orientations though, so we have to glue elements called 4-flip hats in order to
flip them back. A 4-flip hat is given by 4-cells consisting of two flip hats and two tetrahedra, e.g.,

0

1
2

3

→
0123 1023

012 013
. (281)
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We can flip an edge of a 4-dimplex by gluing three 4-flip hats to three boundary tetrahedra sharing
that edge. E.g., the (01) 4-simplex symmetry move equates a 4-simplex mirrored at the 01 edge
with one whose 01 edge was flipped. More precisely, we use a more powerful version of this move
where one of the three 4-flip hats was brought to the other side:

0

1

23

4
↔ same 1-skeleton . (282)

In network notation, this gives

01234

0123 0134

1234 0234

0124

1023 1034

012 014

=

10234

0124

0234 1234

10341023

0124

014

012

. (283)

We get 3 different versions of the element in Eq. (281), depending on how we choose the orienta-
tions of the edges adjacent to the vertices 2 and 3. Using those, we also get a (12)-, (23)- and (34)
tetrahedron permutation move, which generate the whole 4-simplex symmetry group. Moreover,
the 4-flip hats have symmetries which however change the favourite edge of the involved 2-gon,
and we need additional elements for changing the latter.

The most important example of a cancellation move is the 4-simplex cancellation move

0

1

23

4
↔

0

1

23

4
. (284)

The left hand side consists of two 4-simplices, glued at two of their tetrahedra, whereas the right
hand side consists of 3 4-flip hats glued at their tetrahedra in a cyclic fashion. In terms of networks,
we find

01234 10234

0123

10230134

1034

0124 1024 =

0123

0134

0124

0123

0134

1023

1034

0124

1024
. (285)

There are also cancellation moves for the 4-flip hat, and so on.
In order to get the most general physical phases with gappable (i.e. topological) boundary, we

would also have to introduce face weights analogous to the edge weights in 2 + 1 dimension. Any
face in (the interior of) a 4-dimensional cellulation corresponds to a cycle of 4-cells adjacent at
3-cells. E.g., the loop on the left side of Eq. (280) corresponds to the 024 face, and the one on the
right side to the 135 face. Into each such loop we have to insert exactly one face weight.

We do not guess the bindings, elements, and moves from scratch, but follow some systematics,
which we will outline briefly. The different bindings correspond to different 3-cells, and the
elements to different 4-cells of those cellulations. The moves are equations between two different
cellulations of the 4-ball, and if we glue both sides of a move together, we get a cellulation of a
4-sphere, which can be seen as the boundary of a 5-cell.

In order to find those 3-cells, 4-cells and 5-cells, we need an operation called the stellar cone,
which transforms a n-cell into a n + 1-cell by the following procedure. First, add an additional
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vertex called central vertex. Then, for every boundary x-cell, add an x+ 1-cell which is spanned
by this x-cell and the central vertex (the original n-cell together with the central vertex span the
n + 1-cell itself). If there is a branching structure, there are two different choices of orientation
for the new edges. Either they are all pointing towards the central vertex, or away from it.

In general, in the n-dimensional n-cell liquid, we can take as x-cells the stellar cones of the
x− 1-cells, which are the same as the x− 1-cells of the n− 1-dimensional n− 1-cell liquid. E.g.,
the 3-3 Pachner moves yield a 5-simplex, which is the stellar cone of the 4-simplex representing
an element. The 4-flip hat element is the stellar cone of the flip hat, which is a binding of the
present liquid, as well as an element of the 3-dimensional volume liquid (Eq. (164)), as well as
the (01) triangle symmetry move of the unoriented 2-dimensional face liquid (Eq. (99)). At the
same time, the 4-flip hat is the (01) tetrahedron symmetry move of the unoriented version of the
3-dimensional volume liquid. As another example, both the (01) 4-simplex symmetry move as
well as the 4-simplex cancellation move yield the same 5-cell which the stellar cone of the 4-flip
hat.

As the last example shows, the 5-cells can be decomposed into two 4-ball triangulations in
different ways. We certainly do not want to choose all those decompositions, as, e.g., different
decompositions of the 5-simplex yield all different variants of the 4-dimensional Pachner moves
already. However, it always suffices to take a single Pachner move (one of the ones with the most
open indices), together with symmetry cancellation moves from which we can derive all others.

The idea that fixed-point models for topological order in general dimensions can be described
by “Pachner-move invariant simplex tensors” is rather straight-forward, and has been explicitly
spelled out, e.g., in Ref. [48]. Our contribution here is to give a framework which allows us to
arrive at a refined set of moves, containing only a single Pachner move together with a collection
of simpler “auxiliary moves”. An example for a model is the so-called Kashaev invariant, for
which the 4-simplex tensor has explicitly been spelled out in Ref. [49].

9.2 The volume-face liquid

In this section, we sketch a less straight-forward topological liquid in 3 + 1 dimensions. It is
similar to the face-edge liquid in 2 + 1 dimensions, in that we associate elements to d − 1-cells
and d− 2-cells in a d-dimensional cellulation. There is one atom at every volume and one atom at
every face. If a volume and a face are adjacent, the corresponding atoms share a bond. Note that
in a 4-dimensional cell complex, a face can be adjacent to more or less than two volumes. Faces
adjacent to exactly 2 volumes are not represented by atoms; instead, the two volumes are directly
connected by a bond. When restricting to networks with such trivial faces, we get a mapping from
3-dimensional cell complexes to 4-dimensional cell complexes, which we will call the volume
mapping. It makes sense to use the volumes of the simplified volume liquid in 2 + 1 dimensions
(Section. 7.1) as volume elements, and make all of the 2 + 1-dimensional moves into volume-only
moves of the 3 + 1-dimensional liquid.

9.2.1 The liquid

A face in a 4-dimensional cell complex is Poincaré dual to another face. The adjacent volumes,
and thus indices, correspond to the edges of that dual face. The full shape of the face is specified
by both the shape of the face itself and the shape of the dual face. E.g., when we have a triangle
face, whose dual face is a 4-gon, we will call this a 4-valent triangle. Similar to 2-valent faces,
pillow-like volumes whose boundary consists of two equal faces are just represented by a direct
bond between those faces. Restricting to cell complexes with triangle faces (with different dual
faces), separated by such trivial pillow-like volumes, yields a mapping from 1 + 1 to 3 + 1-
dimensional cell complexes, which we will call the triangle face mapping. So it makes sense
to take the triangle and cyclic 2-gon as dual shapes for the triangle faces, together with all the
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mapped 1 + 1-dimensional moves. Analogously, we get a 2-gon face mapping by restricting to
cyclic 2-gon faces with different dual faces. We will draw the 2-dimensional liquid formed by the
2-gon faces as filled circles.

Each edge is equipped with an orientation, and each volume is equipped with a dual orienta-
tion, i.e., a favourite adjacent 4-cell. Those orientations allow us to pick a 01 edge and a 01 volume
of a non-cyclic and dually non-cyclic 3-valent triangle. Considering the face itself and its 01 edge
inside its 01 volume, we can decide whether the face is clockwise or counter-clockwise relative to
the global orientation.

Analogous to the face-edge liquid in 2 + 1 dimensions, we need to introduce a 2-index corner
weight element in order to get models for a very general class of phases

. (286)

At every pair of edge and adjacent 4-cell, there is an alternating cycle of face and volume elements.
We demand that, in a network representing a 4-manifold, there is one weight atom inserted at every
such cycle. More precisely, the weight atoms are of different elements depending on the edge-4-
cell pair and the face and volume between which they are inserted. The element depends on
whether the face is a 2-gon or a triangle, whether the edge is the 01, 02, or 12 edge of the triangle
or the favourite or non-favourite edge of the 2-gon, and whether the dual orientation of the volume
points towards or away from the 4-cell. The corner weight depicted above is for the favourite
edge of a 2-gon, with the volume pointing towards the 4-cell. All other corner weights can be
constructed from this single one. E.g., the favourite edge 2-gon corner weight for the volume
pointing away from the 2-gon is obtained by

a b . (287)

Or, following Eq. (179), the corner weight for the 01 edge of the triangle is obtained by

b f := b f . (288)

Similarily, the corner weights for the 02 edge and the 12 edge

, (289)

can be constructed, e.g., following Eq. (183) for the case of the 02 edge.
Edges of 2 + 1-dimensional cell complexes stay edges under the volume mapping, and then

have two adjacent 4-cells. Thus, the edge weights of the 2 + 1-dimensional volume liquid can be
constructed from two corner weights of the present 3 + 1-dimensional liquid. For the 2-gon edge
weight, we get

a b := a b . (290)

Or, for the 01 edge weight

a b := a b . (291)

Vertices in 1 + 1-dimensional cell complexes become 4-cells under the triangle face mapping, and
are then adjacent to three edges. Thus, the vertex weight of the 1 + 1-dimensional triangle face
liquid can be constructed from three corner weights

a b := a b . (292)

Similarily, the vertex weight of the 1 + 1-dimensional 2-gon face liquid consists of two corner
weights

a b := a b . (293)
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So far, we got one copy of the 3-dimensional volume liquid, and two copies of the 2-dimensional
face-liquid. We now need moves which connect the elements of those liquids, by “pulling faces
through volumes”. Roughly, every such move can be constructed from a quadrupel consisting of
a volume V , a dual face FD, a special face of the volume, and a special edge of the dual face. The
move involves one V volume atom for each edge of FD, and one FD-valent FV face atom for each
face FV of V . The volume and face atom corresponding to the special edge and face are on one
side of the move, and all the others on the other side.

As an example, pick for V the 01 flip hat (with one of the triangles as special face), and for
FD the triangle (with the 02 edge as special edge). The corresponding pull-through move is given
by

a

b

c

d

= c

d
b

a

. (294)

Here, the empty circles represent the triangle face atoms, and the full circles represent the 2-gon
face atoms (both 3-valent in this case). Note that the two 1 + 1-dimensional liquids formed by
the triangle and 2-gon tensors do not form a 2 + 1-dimensional face-edge liquid together, as in
Section 7.2.

As another example, pick for V the 12 flip hat, and for FD the cyclic 2-gon. We get a move
that pulls the 2-valent face-atoms through the flip hat and thereby changes its orientation,

a

cb
=

a

b c

. (295)

As a further example, pick for V the tetrahedron, and for FD the triangle. We get

a

b

c

d

e
=

d

e

b

a

c

. (296)

Unfortunately, the pull-through moves as described above are not quite enough to have a fully
topological liquid (such that there is an invertible mapping to the 4-simplex liquid sketched in the
section above). We also need to allow moves where V has two special faces, such that the left hand
side consists of a volume atom with two face atoms. However, this move would not be topological
(that is, it would prevent a mapping back from the 4-simplex liquid to the present liquid). In order
to make it topological, we need to add a “projector onto two neighbouring triangles”, which we
can build from 4 flip hats

a

b

d
f

c

e
=

c

d

e

f

b

a

. (297)

9.2.2 Models

A well-known class of fixed-point models for topological phases in 3 + 1 dimensions are second
order gauge theories. Analogously to ordinary gauge theories being based on a gauge group, a
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second order gauge theory is based on a 2-group. A 2-group is concretely defined by what is called
a crossed module. The latter consists of two groups G and H , with a homomorphism

h : H → G (298)

from H to G, and an action
α : G×H → H (299)

of G on H .
Following Ref. [50], a more condensed representation of (equivalence classes of) 2-groups is

given by a group Π1, a commutative group Π2 (arising from G and H as the kernel and co-kernel
of h), an action α, and a Π2-valued group 3-cocycle of Π1 with action α, that is, a map

β : Π1 ×Π1 ×Π1 → Π2 , (300)

such that
β(ab, c, d) + β(a, b, cd)

= α(a, β(b, c, d)) + β(a, bc, d) + β(a, b, c) ,
(301)

where we denoted group multiplication in Π2 additively.
Like the fusion category models of the 2 + 1-dimensional volume liquid, 2-group models of

the present liquid are most conveniently formulated using label-dependent tensors. The labels are
the elements of Π1, and might be thought of as being located at the edges of the complex. The
dimension of the indices at a face is either |Π2| if the edge labels around the face multiply up
to 1, and 0 otherwise. All face tensors are given by delta functions (in every valid edge label
configuration), e.g.,

a b

c

=
a b

c

. (302)

where a, b and c are elements of Π2. If we denote the label of, e.g., the 03 edge of the tetrahedron
by e03, then tetrahedron is given by

c

d

a

b =


1
|Π2| if α(e01, a)− b+ c− d

= β(e01, e12, e23)

0 otherwise

. (303)

The edge weights are all identity matrices. The flip hats can be obtained from the tetrahedron by
the mapping in Eq. (187). The resulting dimension of the 2-gon index is |Π1||Π2|2. Of course,
we can also interpret the edge labels as indices, copy them and block them into the face indices to
obtain ordinary tensors.

10 Summary and conclusion

In this work we introduced a systematic graphical language which allows us to think about fixed-
point models for (topological) phases for various scenarios in a unified way, and stimulates and
facilitates the search for new families of fixed-point models corresponding to combinatorial repre-
sentations of space-time.

There are four main goals we attempt to achieve with the formalism introduced. The first
goal is to sort the vast body of existing literature on fixed-point models by introducing a simple
and unified mathematical language. All of those models are based on algebraic or categorical
structures defined by a set of equations. All those equations are manifestations of one central
property, namely topological invariance in Euclicean space-time. All other properties, such as
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commuting-projector Hamiltonians, or PEPS representations with virtual symmetries, are direct
consequences of the topolgical invariance, but not the other way round. That’s why we believe
that topological invariance should be the point to start with. Instead of “guessing” an algebraic or
categorical structure used as an input to fixed-point construction, we derive algebraic structures
from the topological invariance. Tensor networks with their familiar Penrose notation appear as the
natural mathematical language, as they represent at the same time combinatorial representations
of the space-time topology (and their moves) as well as the path integral itself (and its equations).
We would also like to mention that unlike “string diagrams” in conventional algebra or category
theory, tensor networks are not formulated with an inherent flow of (real-)time, and thus more
natural to represent path integrals in Euclidean space-time.

The second goal is to obtain a deeper understanding of existing families of models, and formu-
late them in their most general form. In the literature, clear explanations of why known state-sum
constructions or fixed-point models take the form they have are lacking. We deliver many of those
explanations: We explain the role of an orientation, and show the necessity to add a branching
structure to state-sums based on triangulations. It is easy to see that every topologically invariant
path integral with topological boundary can be coarse grained into a Pachner-move invariant sim-
plicial tensor network. We show how to get from many Pachner-move equations (due to different
branching structures) to a single one by extending the construction to more general cellulations.
In Appendix C, we show how to arrive at the usual Turaev-Viro form of the state-sum. Further-
more, we introduce a new path integral picture for weak Hopf algebra based quantum doubles.
Quantum double models have been mostly studied from the perspective of commuting-projector
Hamiltonians [41, 42]. The commutativity follows from the weak Hopf axioms, however, a direct
motivation for why weak Hopf algebra related structures are the correct input for those models was
still lacking. We demonstrate that those structures directly emerge from a combinatorial version
of topological invariance. In particular, the central bi-algebra axiom corresponds to a topological
move which “pulls an edge through a face” as in Eq. (213).

The first two goals have been addressed to a large extent in the present paper by working out
concrete examples. The other two goals will be worked out in future publications. The third goal
is that we can systematically construct new combinatorial representations of topolgical manifolds,
yielding new classes of models. Using our formalism, this can be achieved very quickly with a bit
of geometric intuition and creativity. To sketch one example in 2+1D, think of cellulations where
all vertices are colored red, blue, or green, and all faces are triangles with one red, one blue, and
one green vertex. Now, associate tensors to the volumes and contract between volumes sharing
a face. The simplest volume compatible with the coloring is the octahedron. The topological
moves are, among others, given by commuting two tetrahedron tensors past each other in different
ways. Octahedron tensors obeying the moves form a new family of models, one of which turns
out to be the well-known color code. If we add appropriate edge weights, the “tricolored” liquid
will be equivalent to a standard triangular liquid, so the two families of models describe the same
phases. In particular, the color code is known to be phase-equivalent to two copies of the toric
code. It is, however, a different microscopic model and has advantages (and disadvantages) over
the latter for error-correction purposes. Having different microscopic realizations of the same
phases is important for engeneering those phases (e.g., for building a quantum computer), and our
framework yields a method of systematically constructing such new realizations.

As a fourth goal, we would like to mention that, apart from obtaining new models for the same
phases, our formalism has the potential to go beyond known constructions and obtain fixed-point
models for new phases. There are liquids that are not equivalent to the standard ones, which means
that the corresponding path-integral tensor networks cannot be coarse-grained into a standard sim-
plicial form [33]. This does not directly imply that the more general liquids have models for more
general phases, but it does indicate that this is indeed possible. An exciting candidate for more
general phases are chiral phases in 2+1D which are lacking any fixed-point description so far. The
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generalized liquid models are compatible with the absence of both a topological (i.e. gapped)
boundary and commuting-projector Hamiltonians, features characteristic for chiral phases.

One of the central tools that we have introduced are liquid mappings. The most important use
of liquid mappings in this paper was to define a notion of equivalence of liquids. Liquid mappings
formalize various operations and relations in a unified way, such as the following.

• The equivalence between ad hoc topological liquids and their more sophisticated simplified
forms.

• The equivalence between different liquids representing the same deformability class, as we
have, e.g., seen in Section 7.3.

• The relation between topological liquids and known algebraic structures, as described, e.g.,
in Section 4.1.2.

• Topological deformations, such as reshaping a boundary into a bulk as in Section 4.3.3, or
compactifications or suspensions like the 2D embedding mapping in Section 7.2.

• The relation of liquids to commuting-projector Hamiltonians, as seen, e.g., in Section 4.1.4.

• The relation of fixed-point liquid models to square lattice models, as introduced in Sec-
tion 4.1.1.

In this work, we have focused on liquids for topological order as such. Boundaries, anyons,
and other sorts of defects are described by liquids as well, as we have sketched in Section 4.3.
E.g., there is a liquid describing anyons within the 3-dimensional face-edge liquid, whose models
are similar to representations of quantum doubles of weak Hopf algebras. Or, there is a liquid
describing boundaries of the 3-dimensional volume liquid, whose models are similar to modules
of fusion categories. We have already seen the possibility to add extra structures like orientations
in Section 6 or spin structures in Section 8, and the possibility to add beyond-topological moves,
such as the ones that guarantee invertibility of the model in Section 6.6. A much more novel
pursuit would be the formalization of conformal, not topological, field theories in terms of liquid
models. To this end, one would need a combinatorial representation of conformal manifolds (more
precisely, a combinatorial representation for a dense set in the conformal moduli space), together
with moves preserving the conformal structure.

All of our liquid models are microscopic physical models defined by a concrete local partition
function. This is in contrast to the description of phases via more abstract and indirect invariants,
such as (non-fully extended) axiomatic TQFT, giving rise to structures like (non-special) commu-
tative Frobenius algebras in 1 + 1 dimensions, or modular tensor categories in 2 + 1 dimensions.
All these structures can be formulated as liquids as well, as long as they have a finite set of gener-
ators and relations (which roughly appears to be the case for TQFTs extended down to at least the
circle). The relation between those more abstract invariant liquids and the concrete microscopic
liquids is formalized by a liquid mapping from the former to the latter. The most famous example
for this is the quantum double, or Drinfeld centre of fusion categories, or Hopf algebras.

The systematics and simplicity of our language also makes it more accessible to automatiza-
tion. The standard task on the combinatorial/graphical level of liquids is to find derivations of
moves from a given set of moves. This is needed in order to prove that substrate mappings are
actually liquid mappings, which is important for showing that certain liquids are equivalent. We
think that it is possible to automatize the process of finding derivations numerically. Of course,
in the general case, finding derivations is an undecidable and certainly hard problem, as tasks like
theorem proving can be relatively easily encoded in finding derivations. However, the networks we
deal with do not represent arbitrary logical statements, but patches of low-dimensional manifolds.
Surely, proving the equivalence of manifolds based on triangulations is a hard and undecidable

74



SciPost Physics Submission

problem as well in general, but this is only if we scale the complexity of the topology. In our
case, the manifold patches have a simple and constant topology (two balls if we’re dealing with
topological liquids), and we merely scale the size of the triangulation and not the complexity of
the topology itself.

The standard task on the level of models is, of course, finding models. For conventional array
tensors, but also for fermionic tensors or tensors with symmetry, the moves turn into polynomial
equations for the tensor entries. In principle, even though with a possibly high computational
effort, we can find roots to those equations by iterative numerical optimization methods, such non-
linear conjugate-gradient, or Gauss-Newton methods. Surely, finding roots of general liquids has
a bad scaling in the bond dimension: The cost of per iteration scales with rather high polynomials
(depending on the algorithm and on how complicated the liquid is) in the bond dimension, and
the volume of initial conditions for which the iteration actually converges to a global minimum
might be small. We should keep in mind though, that only the simplest phases, i.e., the ones
realizable with a low bond dimension, are physically relevant. Roughly speaking, the higher the
bond dimension needed to realize the phase, the more unlikely it will be to encounter it in nature,
and the harder it will be to experimentally realize it. So for practical purposes, we can restrict to
small bond dimensions where numerical methods might still be feasible. Note that also for known
families of fixed-point models, their equations boil down to polynomials. However, due to the
systematics of our language we don’t have to write a separate algorithm for every different family
of fixed-point model, but can take the latter as an input to a single algorithm.

One point that was not the focus of this work is the role of tensor types. We saw that models
with symmetries, fermions, or models which are deformable only up to pre-factors, can be seen as
different tensor types. We also saw that certain tensor types seem to “get along” well with certain
kinds of extra structures added to liquids, such as complex tensors and orientation, or fermionic
tensors and spin structures. What we did not mention so far is that certain restrictions to “exactly
solvable” classes of models can also be formulated as tensor types, such as non-interacting (i.e.,
Gaussian, quadratic, free) fermionic models, or models that can be formulated within the stabilizer
formalism. It is the hope that this work stimulates such further endeavours.
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A Overview over the complete vocabulary

In this section, we give an overview over the complete vocabulary introduced in the main text. A
substrate consists of a finite set of elements. Each of these elements has a finite set of indices.
Additionally, there is a finite set of bindings, and each index is associated to a binding.

A network (of a given substrate) consists a finite set of atoms. Each atom has a specific
element. There is a finite set of bonds connecting pairs of indices of the individual atoms. A bond
might also have one or two open indices which are not connected to any other atom.

A move is a pair of networks, together with a bijection between their open indices. A liquid is
a substrate together with a set of moves. Moves can be composed to yield other moves, and such
a composition is called a derivation of the resulting move.

A liquid mapping between two liquidsA andB associates 1) to every binding ofA a collection
of bindings of B and 2) to every element of A a network of B, such that every index of the A-
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element corresponds to an according collection of open indices of the B-network. Applying this
replacement to all elements in a move of A, we obtain another move, called the mapped move.
The mapped moves have to be derived moves of B.

A model of a substrate consists of 1) one bond dimension for each binding, and 2) one tensor
for each element. The indices of the tensor and their bases correspond to the indices of the element
and their bindings,

Binding→ Dimension

Element→ Tensor
(304)

A model of a liquid is a model of the corresponding substrate. Every move defines an equation
between two tensors via the evaluations of the two corresponding networks. All these equations
have to hold,

network 1 network 2

tensor 1 tensor 2

move

=

evaluate evaluate . (305)

B Remaining moves for the volume liquid in 3 dimensions

In this appendix, we complete the moves of the simplified 2 + 1-dimensional liquid from Sec-
tion 7.1.2. In order to generate the full orientation-preserving symmetry group of the tetrahedron,
we have to add the (012) tetrahedron symmetry move

c a

x

y

d

b

= a b
y

x

d

c

. (306)

We also need the remaining symmetry moves of the flip hats, i.e., for ones for the counter-
clockwise 01, the clockwise 12 and the counter-clockwise 12 flip hats

a b

x

=
ba

x
, (307)

a b

x

=
ba

x
, (308)

a b

x

=
ba

x
. (309)

Regarding the cancellation moves, we need to add the cancellation move for the 12 flip hats

a b = aa bb (310)

and the 2-gon flip cancellation move

a b = aa bb . (311)
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C From the face-edge liquid to Turaev-Viro models

In this section, we describe how to reshape complex models of the 3-dimensional face-edge liquid
into state-sums of Turaev-Viro form. First of all, we further extend the liquid by introducing the
non-cyclic 2-gon as a further binding. The latter can be triangulated with two triangles

0 1 → 0 1
2

, (312)

so, the new binding is defined by
CC
0101

:=
TT
012012

TT
102102

. (313)

Note that the favourite edge is needed to determine the ordering of the two triangles. We also need
it to define when a 2-gon is clockwise or counter-clockwise. With the new 2-cell binding, we can
construct banana-like volumes whose boundaries consist of non-cyclic 2-gons glued at edges, e.g.,

, . (314)

The boundary of the volume on the right consists of 3 2-gons, two in the front and one in the back.
If we want to construct this new element, we have to replace every 2-gon by two triangles as in
Eq. (312), and triangulate the resulting volume. Precisely the same volume was triangulated in
Eq. (221), and thus the corresponding element is the same as the edge element of the equivalent
face-edge liquid, defined in Eq. (222). So bananas define a (mapping from a) 1 + 1-dimensional
face liquid.

The 01 hat can be triangulated by two tetrahedra

0 1

2

→

0 1

2

3

. (315)

In network notation, we have

ab

x y
:=

0123f 0123b

x y

a
b

. (316)

This element defines a topological boundary for the banana liquid. Consider the following re-
cellulation from two flip hats glued at a triangle on the left to one flip hat and a banana glued at a
2-gon on the right

0 1

2

→ same 1-skeleton . (317)

This corresponds to the move whose simplified version is depicted in Eq. (76)

a b

x y
=

a b

x y

. (318)
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Note that there is also a counter-clockwise version of the 01 hat, for which the 13 instead of
the 03 edge carries an edge weight. Also, there are the 02 and the 12 hats (together with their
counter-clockwise counterparts), which are the same apart from different edge orientations of the
02 and 12 edges in Eq. (315). The topological moves further imply that those representations
commute, thus they form a single representation of the product of the three algebras.

Consider an arbitrary 3-volume with boundary, the network P representing it, and an arbitrary
edge on the boundary of the volume together with the two adjacent triangles, e.g.,

0

3

2

1

→
P
. . .

130 132

. (319)

We can glue two hats at their 2-gons, and then glue the resulting “double-hat” to the two adjacent
faces above. This corresponds to a topological move

0

3

2

1

↔ 0

3

2

1

(320)

Which hats we take depends on the edge orientations. In our case, we get a move

P
. . .

130 132

=

P
. . .

132130

132130

. (321)

This is as far as we get on the combinatorial liquid level, and now we have to make use of
the fact that we’re looking for models of the liquid in complex tensors. All the algebras and
representations in question have extra properties due to the topological moves which make them
block-diagonalizable. That is, we can go to a basis where the algebra is given by

αab

βcd γef
=

α

γβ

aa

cc

bb

ff

eedd

, (322)

and the representation is given by

αab

βcx γdy
=

α

γβ

aa

cc

bb

dd

yyxx

. (323)

Here, α, β, . . . are called irreducible representation indices, a, b, . . . are called block indices, and
x, y multiplicity indices. Note that this is a fake tensor network notation, as the dimension of both
block and multiplicity index are allowed to dependent on the value of the irreducible representation
indices.

As we saw above, the vector space of the triangle is equipped with a representation of three
times the banana algebra. Going to the block-diagonal basis, we can decompose the vector space
into three indices corresponding to irreducible representations of the banana algebra, three block
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indices, and one joint multiplicity index. The irreducible representation and block indices can be
associated to the three edges of the triangle each. Note that the dimension of each block index
depends on the dimension of the corresponding irreducible representation index, and the multi-
plicity index depends on the values of all three irreducible representation indices (this dimension
becomes the Nab

c ).
All we need to show is that 1) we can get rid of the block indices and 2) the two irreducible

representation indices at an edge coming from the two adjacent triangles can be unified into one.
To this end, we look at Eq. (321) with the representations in their block-diagonal form

P
. . .

α βbax y

=

P
. . .

βα aa bb yx

=

P̃
. . .

α βaa bb yx

. (324)

Applying these procedure to all edges, we get a tensor P̃ with irreducible representation indices at
all edges and multiplicity indices at all faces. Now, we plug the above equation into the network
representing a cellulation. For each edge of the cellulation, we get 1) a completely disconnected
loop of block indices, and 2) a loop of delta tensors connected to the tensors at the adjacent
volumes. The loop 1) can be contracted to a scalar which can be incorporated into the edge
weight, and the loop 2) can be contracted to a single delta tensor, e.g., for an edge with 3 adjacent
volumes we get

a b

c

=
m

a b

c

, (325)

where m consists of the multiplicities of the different irreducible representations.

D Reordering signs for the remaining fermionic moves

In this appendix, we compute the reordering signs for the remaining moves of the 1+1-dimensional
fermionic liquid, and find that they all cancel out.

• For the spin triangle cancellation move Eq. (252)

|y′x′axyb|(xx′)(yy′) = |ab|,
(a+ x+ y)|ba| = |ab|,

|ab| = |ab| .
(326)

• For the spin (012) triangle symmetry move Eq. (254)

|y′cxax′by|(xx′)(yy′) = |abc|
(ax)|bcxx′a| = |abc|,

(a)|bca| = |abc|,
|abc| = |abc| .

(327)

• For the spin 2-gon cancellation move Eq. (256)

|axbx′|(xx′) = |ba|,
|ab| = |ab| .

(328)
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