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Dear Editor,

We resubmit our manuscript retitled Unconventional Superconductivity arising from Multipolar Kondo Inter-
actions to SciPost with appropriate revisions addressing all comments raised by the referees. Details of our responses
to the referee comments are provided below, as well as the changes made in the manuscript (in blue font in the
revised manuscript).

Sincerely yours,
Adarsh S. Patri
Yong Baek Kim

RESPONSE TO THE REFEREE 1

In the report, the referee discusses the importance of our study to understanding the superconducting nature of
strongly correlated non-Kramers systems. We address the interesting questions and comments below.

(1) In Sec. 3 and Appendix C, the authors describe the electron-electron interactions from
multipolar Kondo effects. However, the assumed condition to obtain the attractive force for the
superconductivity is unclear. The authors should clarify such condition.

We thank the referee for raising this important point. Equations (C7)–(C10) describe the various potential terms
contributing to the electron-electron interaction of Eq. (C6). Indeed, the potential is composed of three pieces: (i)
an explicit momentum dependence q, (ii) matrix structure from the Kondo interaction (the Γx,y,z matrices), and
(iii) phenomenological order parameters mQ, mO, a0,1,2. As such depending on the location in momentum space,
different sections of the interaction potential become attractive (Vαβγδ > 0) or repulsive (Vαβγδ < 0). The values of
phenomenological Landau values (given at end of Appendix H) were chosen so as to connect with the experimental
setting. In particular, the quadrupolar mass term (mQ ∼ (T −TQ)) was taken to be smaller than the octupolar mass
(mO ∼ (T − TO)) to reflect the fact the proposed octupolar ordering temperature TO is lower than the quadrupolar
ordering temperature TQ; here T is the temperature, which is taken to be above TQ,O in the paramagnetic phase (Ref.
65). The choices of the other phenomenological values a0,1,2 > 0 were chosen to reflect the stiffness associated with
spatial fluctuations of the order parameters; mathematically, these choices also ensured that the Gaussian multipolar
action was non-singular. With these physically motivated choices, we were able to uncover a large number of non-
trivial superconducting states, with their own characteristic quasiparticle excitation features. One may indeed be able
to select other numerical choices for these parameters, as well as modify the conduction electron band structure. Such
changes may result in stabilizing some of the other pairing functions that were not found with our choice of parameters;
for instance, the AJ=3

2 superconducting state may be realized by changes to the Landau parameters. Ultimately, the
determination of which order parameter may describe the superconducting ground state would require additional
microscopic information (such as the conduction electron density of states that mediate the multipolar fluctuations)
to connect with ongoing/recent experiments.

We highlight the physical reasoning behind the choices for the phenomenological parameters in Appendix H.

(2) In Fig. 4, the authors show gapless nodes for the odd-parity order parameters. However, it
is still difficult for readers to visualize. The authors should revise it, for example, by showing the
Bogoliubov Fermi surface. Besides, the labels for the subfigures (a), (b) etc. should be added.

The Bogoliubov Fermi surfaces depicted in Figure 4 are in fact point nodes indicated by the blue dots, while the
orange sphere is the itinerant electron Fermi surface. The indicated dashed lines were used to guide the eye along the
various cubic axes. We have added such information to the figure caption as well as clearly indicated the subfigure
labels to aid the reader.
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(3) In Sec. 6, the authors describe the properties of the relevant superconducting state found in this
research. In my view, it is helpful for readers if you can include some description about the topological
feature and whether time reversal symmetry is preserved or not for the relevant superconducting
states.

We thank the referee for this interesting question. The time-reversal properties of the superconducting state can
be examined by considering the complex nature of the non-vanishing order parameters. To be specific, a pairing |∆〉
can be written as a linear combination over the “real” angular momentum basis states,

|∆〉 =
∑
u

∆u |Oh;u〉 , (1)

where |Oh;u〉 are the time-reversal invariant cubic irrep basis function given in Appendix E, and u sums over the
cubic irreps, for example |EJ=2〉 etc. In this basis, time-reversal symmetry even order parameters are thus given by
order parameters ∆u that are equal to their complex conjugate (up to a global phase); we have appropriately added
in the global factor of i into the definition of the cubic irreps and the Cooper pair operators in the manuscript to
make this explicitly apparent.

Thus, for the non-trivial pairing states arising from the two-channel Kondo interaction (given in Table 1), the even
J states are time-reversal invariant, while the odd J break time-reversal. More specifically, AJ=0

1 and EJ=2 are time-

reversal invariant, while T J=3
2 , T J=1,3

± , T J=1,3
2 break time-reversal symmetry. These correspond to the non-vanishing

order parameters realized in Fig. 1. For the novel Kondo interaction pairing states, we have two possibilities (Figs.
2, 3). Focussing on Fig. 2, these states also follow the same prescription: even (odd) J states preserve (break) time-
reversal symmetry. For the pairing states formed from one electron from j = 1/2 and j = 3/2 (Fig. 3), interestingly
both EJ=2

− and T J=2
2 , T J=1

− break time-reversal symmetry in the mean-field theory solutions. Indeed, a thorough
topological classification of the pairing states (realized in the paramagnetic phase discussed in this work, as well as
the superconducting states coexisting with multipolar ordering as in ongoing experiments, Ref. 75) is an important
and intriguing direction that we suggest for future theoretical studies.

We update our manuscript to describe the time-reversal properties of the corresponding pairing states.

(4) The authors use the point-group irrep to classify the pairing functions. I understand this is
theoretically rigorous for the spin-orbit coupled system, but I think such notation is not accessible
for experimentalists and non-experts. I would recommend the authors to provide the relation of the
point-group irrep to the conventional notation such as p-wave or d-wave with some figures illustrating
the order parameters in k-space?

The point group irrep classification is used to categorize the total angular momentum J nature of the Cooper
pair. Indeed, this is distinct from the momentum k-space distribution of the pairing function typically used to
describe conventional superconductors. As one may see in Eqs. (C7)–(C10), the pairing potentials (and subsequently
the pairing functions) have a complicated momentum space distribution. For example, the EJ=2 irrep from the
two-channel Kondo interaction in Eq. F2 has k-space distribution that includes both an isotropic contribution from
f1 as well as dx2−y2 and d2z2−x2−y2 contributions from f2ν and f2µ, respectively. As well, the “mixing” between the
two components of the aforementioned EJ=2 irrep further complicates the momentum space distribution. We depict
the real and imaginary components of the realized order parameters in newly constructed Appendix I. As well, to
clarify any possible source of confusion, we emphasize the distinction of the k-space distribution acquired from the
pairing potentials and the point group classification in the main text.

(5) There are some errors in the reference list; Ref. [12] and [13] are duplicated, and there are
stylistic errors in the publication titles (for example, URu2Si2, UPt3 , UNi2Al3, Knight shift, etc. are
not capitalized). Authors should check carefully and revise them.

We have corrected the stylistic errors for the relevant references in the revised manuscript.
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RESPONSE TO THE REFEREE 2

We thank the referee for highlighting the rigorous nature of our work and for the applicability of our study to
understanding novel forms of superconductivity arising from multipolar fluctuations. We address the insightful
comments raised by the referee below.

(1) While I think that the authors calculations are sound, the interpretation seems incorrect,
or at least poorly explained. The symmetry aspects here are not clear. The authors claim that
superconducting order parameters (OPs) in different irreducible representations coexist, but it
is really not clear what they mean. Do they mean something like s + id pairing, where the OPs
couple quadratically? They discuss the Cooper pairs scattering off of one another, which suggests a
quadratic coupling. However, the language in the main paper, and the appendices (particularly F
and G) suggest a linear coupling. If that is the case, these are not different irreps at all, and the
effect of the different symmetrizing/antisymmetrizing, spin-orbit coupling terms has just not been
properly accounted for. I would like to see a Ginzburg-Landau theory for the superconducting order
parameters, with the final irrep of the order parameter given. Given that the high temperature state
is paraquadrupolar, there should be no linear couplings between distinct irreps allowed.

The variety of possible superconducting states examined in this work are characterized by the total angular momen-
tum J of the Cooper pair. Due to cubic nature of the system, these angular momentum states are further classified
in terms of irreducible representations of the Oh point group. Here, the Oh point group is the symmetry group
of the high-temperature paramagnetic phase. Moreover, these Cooper pair operators have been appropriately anti-
symmetrized to satisfy Fermi-Dirac statistics as described in Sec. 4, and as we have explicitly verified with the Cooper
pair operators presented in Appendix E. Now, as seen in Figures 1,2,3 and the complete Hamiltonian in Appendices F
and G, there exist “mixing” or “cross” terms between the various Cooper pair irreps. The reason for this “mixing” is
due to the momentum-space dependent pairing potentials f0, f1 (that contain isotropic in linear-momentum q depen-
dency), as well as f2ν , f2µ (that possess dx2−y2 and d2z2−x2−y2 q space dependency). Indeed, if the pairing potential
was momentum independent and a mere constant, such linear mixing terms would be forbidden by symmetry. It is
the explicit non-trivial momentum dependence that permits such “mixing” terms in the Hamiltonian.

To illustrate this point more concretely, we can consider the interaction terms in Eq. 99, where we have mixing
between an A1 irrep Cooper pair and a E irrep Cooper pair,

Hint =
∑
k,k′

[√
2f2νJ

2
2

]
k,k′

(
A†

1;j= 1
2 ;k
EJ=2

2;k′ + h.c.
)

+
∑
k,k′

[√
2f2µJ

2
2

]
k,k′

(
A†

1;j= 1
2 ;k
EJ=2

1;k′ + h.c.
)
. (2)

The A1 irrep transforms as the identity, while the components of the E irrep Cooper pair transform as (in angular
momentum space) the basis functions x2 − y2 and 3z2 − r2. Such a coupling between these different irreps is allowed
due to the momentum space basis functions f2ν , f2µ that transform as dx2−y2 and d3z2−r2 in q space. In effect, the
pairing potential and the E irreps form an identity irrep (i.e. group theoretically, E ⊗ E = A1) and thus such a
coupling is allowed from symmetry. The other mixing terms in the superconducting Hamiltonian can similarly be
understood. Though we can understand the permitted terms from such group theoretic considerations, we would like
to emphasize that the interactions terms we found were generated by integrating out the multipolar fluctuations (as
described in Sec. 3 in the manuscript).

(2) Given the authors are examining these higher order J pairings and their parity, the time-reversal
properties should also be discussed.

We thank the referee for this interesting question. Indeed, this question was also asked by Referee #1; we restate
our answer to the question here for convenience.

A pairing |∆〉 can be written as a linear combination over the “real” angular momentum basis states,

|∆〉 =
∑
u

∆u |Oh;u〉 , (3)
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where |Oh;u〉 are the time-reversal invariant cubic irrep basis function given in Appendix E, and u sums over the cubic
irreps; for example |EJ=2

1 〉 etc. In this basis, time-reversal symmetry even order parameters are thus given by order
parameters ∆u that are equal to their complex conjugate (up to a global phase). We note that we have appropriately
added in the global factor of i into the definition of the cubic irreps and the Cooper pair operators in the manuscript
to make this explicitly apparent.

Examining our mean-field theory order parameter solutions, we thus discover that the non-trivial pairing states
arising from the two-channel Kondo model (given in Table 1), the even J states are time-reversal invariant, while

the odd J break time-reversal. More specifically, AJ=0
1 and EJ=2 are time-reversal invariant, while T J=3

2 , T J=1,3
± ,

T J=1,3
2 break time-reversal symmetry. These correspond to the non-vanishing order parameters realized in Fig. 1.

For the novel Kondo interaction pairing states we have two possibilities (Figs. 2, 3). Focussing on Fig. 2, these
states also follow the same prescription: even (odd) J states preserve (break) time-reversal symmetry. For Fig. 3,
where the pairing states are formed from one electron from j = 1/2 and j = 3/2, both EJ=2

− and T J=2
2 , T J=1

− break
time-reversal symmetry. This is a surprisingly interesting feature of Cooper pairs formed from electrons belonging to
distinct j sectors, and is reminiscent of the feature that even-J and odd-J Cooper pairs may be both parity even and
odd (regardless of the even-ess of J) for the pairing states arising from the novel Kondo interaction.

We have correspondingly updated our manuscript to include this discussion.

(3) Fig. 3 is the most confusing, as they claim not only to be mixing irreps, but also to be mixing
time-reversal odd and even order parameters (odd and even J). Again, I don’t see how these can
mix if the high temperature state is not breaking time-reversal, and particularly given that the OPs
have a fixed parity. Inversion symmetry is not broken, and all the order parameters appear to be
even-frequency. This behavior needs to be explained in detail, ideally with a Ginzburg-Landau theory.

To help to understand the nature of the pairing between the T J=2
2 and T J=1

− Cooper pairs (the case highlighted by
the referee), we consider their interaction Hamiltonian (Eq. 100),

Hint (1) =−
∑
k,k′

[
f0β

2 +
1

2
f2νβ

2 −
√

3

2
f2µβ

2
]
k,k′

T †
2+(1)k

T2+(1)k′ −
∑
k,k′

[
f0β

2 − 1

2
f2νβ

2 +

√
3

2
f2µβ

2
]
k,k′

T †
1−(1)k

T1−(1)k′

+
∑
k,k′

[
−
√

3

2
f2νβ

2 − 1

2
f2µβ

2
]
k,k′

(
−iT †

2+(1)k
T1−(1)k′ + h.c.

)
, (4)

where we present the (1) component for illustration purposes. Importantly, it is the k-space distribution of the
interaction potential that permits the “mixing” between the two irreps in question. In question #1, we provided
the group-theoretic means to understand a similar mixing term between AJ=0

1 and EJ=2 irreps, which was simpler
to understand as the A1 irrep transforms as an identity under the Oh point group. In this case, we recall the
group-theoretic product T2 ⊗ T1 = A2 ⊕ E ⊕ T1 ⊕ T2. Since the pairing potential is composed of E irrep basis
functions (and since E ⊗ E = A1) one can notice that the product of the pairing potential with the Cooper pairs of
interest is E ⊗ T2 ⊗ T1 ⊃ A1. Thus, from symmetry-considerations such terms are indeed permitted. We do note
that if the pairing potential was a constant (and independent of k-space), such a term would indeed not be allowed.
It is the momentum space distribution (acquired from the Ginzburg-Landau theory of multipolar fluctuations) that
allows such non-trivial interaction Hamiltonians. Indeed, as we described above, both these order parameters break
time-reversal and coexist together in the mean-field theory solutions. That is, the pairing states pointed out by the
referee in fact break time-reversal i.e. the order parameters corresponding to T J=2

2 and T J=1
− are not equal to their

complex conjugate (up to a global phase).

(4) The role of symmetrization or antisymmetrization needs to be discussed carefully. It appears to
be playing the role of another degree of freedom that comes into the overall antisymmetric nature of
the electron wavefunction.

The Cooper pair operators presented in Appendix E are appropriately anti-symmetrized such that under the
exchange of the angular momentum j and momenta k the operator picks up a minus sign; this minus sign is indicative
of the fermionic nature of the electrons forming the Cooper pair. As we describe in Sec. 4, the Cooper pair operators
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are constructed using angular momentum via Clebsch-Gordan (CG) coefficients. Importantly, the CG coefficients
take into account the j angular momentum exchange via the phase factor identity 〈j1,m1; j2,m2|j1, j2; J,M〉 =
(−1)J−j1−j2〈j2,m2; j1,m1|j2, j1; J,M〉. The subsequent parity of the Cooper pair operator (i.e. k→ −k) is such that
the overall operator satisfies Fermi-Dirac statistics. An interesting and unusual feature is when we consider Cooper
pair operators formed by one electron from j = 1/2 and the other from j = 3/2. This permits us to define a Cooper

pair operator b†J,M,k (b̃†J,M,k) with j = 3
2 (j = 1

2 ) fermion at k and j = 1
2 (j = 3

2 ) fermion at −k, where the two Cooper
pair operators are related to each other by the CG phase factor under exchange of j1 and j2. Due to the interaction
being parity symmetric (Vq = V−q), this allows us to then consider parity even and odd Cooper pair operators,

b†J,M ;k;±, which are linear combinations of b†J,M,k and b̃†J,M,k. These operators are appropriately antisymmetrized and
possess definite parity. In the manuscript, the aforementioned linear combinations were referred to as “symmetric and
anti-symmetric linear combinations”, which may have created a source of confusion. To avoid this possible source of
confusion, we revise the manuscript to describe these operators as linear combinations of b†J,M,k and b̃†J,M,k.


