Label	Character	h	Label	Character	h	Label	Character	h
φ_{0}	$\frac{1}{2} \chi_{0,2}+\frac{1}{2} \theta_{0, \frac{1}{2}}$	0	φ_{3}	$\frac{1}{2} \chi_{2,2}$	$\frac{1}{2}$	φ_{6}	$\frac{1}{2} \theta_{\frac{1}{4}, 0}+\frac{1}{2} \theta_{\frac{1}{4}, \frac{1}{2}}$	$\frac{1}{16}$
φ_{1}	$\frac{1}{2} \chi_{0,2}-\frac{1}{2} \theta_{0, \frac{1}{2}}$	1	φ_{4}	$\chi_{1,2}$	$\frac{1}{8}$	φ_{7}	$\frac{1}{2} \theta_{\frac{1}{4}, 0}-\frac{1}{2} \theta_{\frac{1}{4}, \frac{1}{2}}$	$\frac{9}{16}$
φ_{2}	$\frac{1}{2} \chi_{2,2}$	$\frac{1}{2}$	φ_{5}	$\frac{1}{2} \theta_{\frac{1}{4}, 0}+\frac{1}{2} \theta_{\frac{1}{4}, \frac{1}{2}}$	$\frac{1}{16}$	φ_{8}	$\frac{1}{2} \theta_{\frac{1}{4}, 0}-\frac{1}{2} \theta_{\frac{1}{4}, \frac{1}{2}}$	$\frac{9}{16}$

Table 1: Primaries of an orbifold theory $U(1)_{4} / \mathbb{Z}_{2}$.

In this note, we present an example where the presence of the conserved currents of spin $\frac{3}{2}$ does not guarantee supersymmetry.

To this end, we apply the Jordan-Wigner transformation to a tensor product of two $c=1$ RCFTs, $\mathcal{B}=\left(U(1)_{4} / \mathbb{Z}_{2}\right)^{2}$. We show that the corresponding fermionic theory \mathcal{F} has a conserved current of spin $3 / 2$ but non-constant Ramond-Ramond partition function. Furthermore, the SUSY unitarity bound is violated in \mathcal{F}.

Let us start with a brief review on $U(1)_{4} / \mathbb{Z}_{2}$: It is a \mathbb{Z}_{2} orbifold of a compact boson on S_{1} with radius 2 where \mathbb{Z}_{2} acts on the scalar field $\varphi(z)$ as $\iota: \varphi(z) \rightarrow-\varphi(z)$. The \mathbb{Z}_{2} orbifold theory consists of nine chiral primaries summarized in table 1. Here, the character of each primary can be expressed in terms of $\chi_{k, n}$ and $\theta_{\alpha, \beta}$:

$$
\begin{equation*}
\chi_{k, n}=\frac{1}{\eta(q)} \sum_{m \in \mathbb{Z}} q^{\frac{(k+2 m n)^{2}}{4 n}}, \quad \theta_{\alpha, \beta}=\frac{1}{\eta(q)} \sum_{m \in \mathbb{Z}} q^{(m+\alpha)^{2}} e^{2 \pi i m \beta} \tag{1}
\end{equation*}
$$

Next, we consider a tensor product theory $\mathcal{B}=\left(U(1)_{4} / \mathbb{Z}_{2}\right)^{2}$. We denote 81 primaries of this theory as $\varphi_{i, j} \equiv \varphi_{i} \otimes \varphi_{j}$ for $i, j=0,2, \cdots, 8$ and their characters as $\chi_{\varphi_{i, j}}$. The bosonic theory \mathcal{B} has a non-anomalous \mathbb{Z}_{2} symmetry generated by the Verlinde line defect associated with the primary $\varphi_{2,1} \equiv \varphi_{2} \otimes \varphi_{1}$ of conformal weight $h=3 / 2$. Performing the Jordan-Wigner transformation with the above nonanomalous \mathbb{Z}_{2} symmetry, one can compute the partition functions of \mathcal{F}. As a result, we show that the NS-sector partition function involves of 21 primaries and the NS vacuum character is given by $f_{0}^{\mathrm{NS}}=\chi_{\varphi 0,0}+\chi_{\varphi_{2,1}}$. This implies that \mathcal{F} has spin $3 / 2$ currents.

On the other hand, the Ramond-Ramond partition function of \mathcal{F} becomes

$$
\begin{align*}
Z_{\mathcal{F}}^{\widetilde{R}}(\tau, \bar{\tau})= & \left|\chi_{\varphi_{0,5}}-\chi_{\varphi_{2,7}}\right|^{2}+\left|\chi_{\varphi_{0,6}}-\chi_{\varphi_{2,8}}\right|^{2}+\left|\chi_{\varphi_{0,6}}-\chi_{\varphi_{1,6}}\right|^{2} \\
& +\left|\chi_{\varphi_{3,5}}-\chi_{\varphi_{1,7}}\right|^{2}+\left|\chi_{\varphi_{0,8}}-\chi_{\varphi_{1,8}}\right|^{2}+\left|\chi_{\varphi_{3,6}}-\chi_{\varphi_{1,8}}\right|^{2} \tag{2}\\
& +\left|\chi_{\varphi_{0,4}}-\chi_{\varphi_{1,4}}\right|^{2}+\left|\chi_{\varphi_{5,5}}-\chi_{\varphi_{7,7}}\right|^{2}+\left|\chi_{\varphi_{5,6}}-\chi_{\varphi_{7,8}}\right|^{2}
\end{align*}
$$

where the q-expansion of each character is given as follows,

$$
\begin{align*}
f_{0}^{\widetilde{R}}(q)= & \chi_{\varphi_{0,5}}-\chi_{\varphi_{2,7}}=\chi_{\varphi_{0,6}}-\chi_{\varphi_{2,8}}=\chi_{\varphi_{0,6}}-\chi_{\varphi_{1,6}} \\
& =q^{-1 / 48}+q^{95 / 48}+q^{143 / 48}+2 q^{191 / 48}+2 q^{239 / 48}+3 q^{287 / 48}+\cdots, \\
f_{1}^{\widetilde{R}}(q)= & \chi_{\varphi_{3,5}}-\chi_{\varphi_{1,7}}=\chi_{\varphi_{0,8}}-\chi_{\varphi_{1,8}}=\chi_{\varphi_{3,6}}-\chi_{\varphi_{1,8}} \tag{3}\\
& =q^{23 / 48}+q^{71 / 48}+q^{119 / 48}+q^{167 / 48}+2 q^{215 / 48}+2 q^{263 / 48}+\cdots \\
f_{2}^{\widetilde{R}}(q)= & \chi_{\varphi_{0,4}}-\chi_{\varphi_{1,4}}=\chi_{\varphi_{5,5}}-\chi_{\varphi_{7,7}}=\chi_{\varphi_{5,6}}-\chi_{\varphi_{7,8}} \\
& =q^{1 / 24}+q^{25 / 24}+q^{49 / 24}+2 q^{73 / 24}+2 q^{97 / 24}+3 q^{121 / 24}+\cdots
\end{align*}
$$

We note that the three functions $f_{0}^{\widetilde{R}}(q), f_{1}^{\widetilde{R}}(q)$, and $f_{2}^{\widetilde{R}}(q)$ are identical to the characters of the Ising model. Therefore, $\frac{1}{3} Z_{\mathcal{F}}^{\widetilde{R}}(\tau, \bar{\tau})$ is same with the partition function of the Ising model. In other words, the contribution from the excited states to $Z_{\widetilde{\mathrm{R}}}$ is not cancelled out, the fermionic theory \mathcal{F} could not be supersymmetric. Furthermore, wecan see that the supersymmetry unitary bound is violated in \mathcal{F}.

